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Abstract - For a graph 𝐺, the hub set 𝑆 is defined to be the subset of vertices of 𝐺 with the property that for any pair of 

vertices in 𝑉\𝑆, there exists a path with all intermediate vertices which belongs to 𝑆. The hub number of a graph 𝐺 is defined 

to be the smallest size of hub set. In this paper, we develop a method to find the hub number of total transformation graphs in 

terms of order and size of the graph considered. 
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1. Introduction 
 In 2006, Walsh came across the following problem [17]: Imagine that we have a graph 𝐺 which represents a large 

industrial complex, with edge between two buildings if it is an easy walk from one to other. The corporation of the city is 

considering implementation of a rapid-transit system (RTS) and wants to place its stations in buildings so that to travel between 

two nonadjacent buildings, one need only to walk to an adjacent station, take the RTS, and walk to the desired buildings. The 

corporation would like to implement this plan as cheaply as possible, which involves converting as few buildings as possible 

into transit stations. Walsh [17], translated the above problem to graph theoretical model and defined hub number of a graph in 

this context follows: 

 

Let 𝑆 ⊆ 𝑉(𝐺) and let 𝑥, 𝑦 ∈ 𝑉(𝐺). An 𝑆-path between 𝑥 and 𝑦 is a path where all intermediate vertices are from 𝑆. A set 

𝑆 ⊆ 𝑉(𝐺) is a hub set of 𝐺 if it has the property that, for any 𝑥, 𝑦 ∈ 𝑉(𝐺)\𝑆 there is an 𝑆 -path in 𝐺 between 𝑥 and 𝑦. The 

minimum cardinality of hub set is called hub number and is denoted by ℎ(𝐺). A connected hub set, and the size of a smallest 

connected hub set will be the connected hub number ℎ𝑐(𝐺) of the graph 𝐺. 

 

The problem in the first paragraph can be rephrased as: what is the smallest size of a hub set in 𝐺  ? It is clear that ℎ(𝐺) is 

well defined for any 𝐺, as 𝑉(𝐺) is itself a hub set. 

 

 This inspired many graph theorists to study the hub number of graphs. To mention few, Grauman et al. [7] obtained the 

relationship between hub number, connected hub number and connected domination number of a graph. Cauresma et al. [5] 

obtained hub number of join, corona and cartesian product of two connected graphs. In [17] the relation between domination 

number 𝛾(𝐺) and hub number of a graph has been obtained as 𝛾(𝐺) ≤ ℎ(𝐺) + 1. In the same paper, the author has conjectured 

that, for any connected non-tree graph 𝐺,  

 

 ℎ(𝐺) ≥ 𝑔(𝐺) − 3. 
 

The relation between the hub sets and cut sets was noticed by Vandell and Walsh in [17]. Goddard and Walsh [17], proved 

that the recognition of a hub set can be done in polynomial time, since vertex contraction and clique recognition are both 

polynomial-time operations. The hub number of Sierpiński graph is given in [12] and the connected hub number of Mycielski 

Graph in [13]. Hub numbers of grid graphs were obtained in [9] and the hub number of co-comparability graphs in [14]. The 

relation between connected hub number and the connected domination number and the structural characterization of graphs 

which satisfy 𝛾𝑐(𝐺) = ℎ𝑐(𝐺) + 1 are studied in [11] where, 𝛾𝑐(𝐺) is the connected domination number. Basavanagoud et al. 

[1, 2] studied hub number of some wheel related graphs and hub number of generalized middle graphs. The concept of hub 

number was extended to total hub number of a graph in [15]. Inspired by these, in this paper, we obtain hub number of total 

transformation graphs. 
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The present paper is organized as follows: In section 2, we discuss the preliminaries and definition of total transformation 

graphs denoted by 𝐺𝑥𝑦𝑧. In section 3, we obtain the main results on the hub number of total transformation graphs 𝐺𝑥𝑦𝑧. 
 

2. Preliminaries 
In this paper, we consider only nontrivial, connected, simple and undirected graphs. Let 𝐺 be a graph with vertex set 

𝑉(𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and edge set 𝐸(𝐺) = {𝑒1, 𝑒2, . . . , 𝑒𝑚}. Thus |𝑉(𝐺)| = 𝑛 and |𝐸(𝐺)| = 𝑚 where, 𝑛 and 𝑚 are called 

order and size of graph 𝐺 respectively. The pendant vertices are called leaf vertices of graph 𝐺, it is denoted by 𝑙. An edge 

incident to a pendant vertex 𝑙 of a graph 𝐺 is called pendant edge and denoted by 𝑙𝑒. The girth of a graph 𝐺 defined as the 

length of the shortest cycle in 𝐺 and denoted by 𝑔(𝐺). The complement of a graph 𝐺 [8] is denoted by 𝐺 whose vertex set is 

𝑉(𝐺) and two vertices of 𝐺 are adjacent if and only if they are not adjacent in 𝐺. The line graph 𝐿(𝐺) of a graph 𝐺 [16] is the 

graph with vertex set as the edge set of 𝐺 and two vertices of 𝐿(𝐺) are adjacent whenever the corresponding edges in 𝐺 have a 

vertex in common. The subdivision graph 𝑆(𝐺) of a graph 𝐺 [8] whose vertex set is 𝑉(𝐺) ∪ 𝐸(𝐺) where two vertices are 

adjacent if and only if one is a vertex of 𝐺 and other is an edge of 𝐺 incident with it. The partial complement of subdivision 

graph 𝑆(𝐺) of a graph 𝐺 [10] whose vertex set is 𝑉(𝐺) ∪ 𝐸(𝐺) where two vertices are adjacent if and only if one is a vertex of 

𝐺 and the other is an edge of 𝐺 not incident with it. In this paper, graph 𝐺 means only some standard class of graphs which are 

path, cycle, star, tree and complete graph. A path, cycle, star, tree and complete graph are denoted by 𝑃𝑛, 𝐶𝑛, 𝐾1,𝑛, 𝑇 and 𝐾𝑛 

respectively. Here we have shown selection of hub set in respective class of graphs. For undefined terminology and notations 

refer [6, 8]. 

 

The total transformation graphs 𝐺𝑥𝑦𝑧, introduced by Wu and Meng [3] are defined as follows: Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a 

graph, and 𝑥, 𝑦, 𝑧 be three variables taking values + or −. The transformation graph 𝐺𝑥𝑦𝑧 is the graph having 𝑉(𝐺) ∪ 𝐸(𝐺) as 

the vertex set, and for 𝛼, 𝛽 ∈ 𝑉(𝐺) ∪ 𝐸(𝐺), 𝛼 and 𝛽 are adjacent in 𝐺𝑥𝑦𝑧 if and only if one of the following holds: 

 

(i) 𝛼, 𝛽 ∈ 𝑉(𝐺). 𝛼 and 𝛽 are adjacent in 𝐺 if 𝑥 = +; 𝛼 and 𝛽 are nonadjacent in 𝐺 if 𝑥 = −. 
(ii) 𝛼, 𝛽 ∈ 𝐸(𝐺). 𝛼 and 𝛽 are adjacent in 𝐺 if 𝑦 = +; 𝛼 and 𝛽 are nonadjacent in 𝐺 if 𝑦 = −. 
(iii) 𝛼 ∈ 𝑉(𝐺), 𝛽 ∈ 𝐸(𝐺). 𝛼 and 𝛽 are incident in 𝐺 if 𝑧 = +; 𝛼 and 𝛽 are nonincident in 𝐺 if 𝑧 = −.  

  

 

 
 

Fig. 1 Graph 𝑮 and its total transformation graphs 𝑮𝒙𝒚𝒛. 
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Thus, one can obtain eight kinds of transformation graphs, in which 𝐺+++ is the total graph [4] of 𝐺, and 𝐺−−− is its 

complement. Also, 𝐺−−+, 𝐺−+−, and 𝐺−++ are the complements of 𝐺++−, 𝐺+−+, and 𝐺+−− respectively, are depicted in Figure 

1. The vertex 𝑣 of 𝐺𝑥𝑦𝑧 corresponding to a vertex 𝑣 of 𝐺 is referred to as a point vertex. The vertex 𝑒 of 𝐺𝑥𝑦𝑧 corresponding to 

an edge 𝑒 of 𝐺 is referred to as a line vertex. 

 

Proposition 2.1  [17] The hub number of 

i) The path 𝑃𝑛, ℎ(𝑃𝑛) = 𝑛 − 2, 

ii) The cycle 𝐶𝑛, ℎ(𝐶𝑛) = 𝑛 − 3, 

iii) The complete graph 𝐾𝑛, ℎ(𝐾𝑛) = 0, 

iv) The tree 𝑇, ℎ(𝑇) = 𝑛 − 𝑙.  
 

3. Hub number of total transformation graphs 
 The main purpose of this section is to provide hub number of total transformation graphs through a most convenient 

method. We also present the hub number of these graphs in terms of the order and and size of the graph considered and 

wherever generalization is not possible, we have considered case by case. We begin with the theorem on hub number of total 

graph of a tree.  

 

Theorem 3.1  Let 𝐺 be tree of order 𝑛 and 𝑙 be leaf vertices. Then  

 

 ℎ(𝐺+++) = 𝑛 − 𝑙. 
 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐺+++ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐺+++. Consider 𝑣𝑖 ∈ 𝑉(𝐺
+++) with 

maximum degree then 𝑑𝐺+++(𝑣𝑖) = 2𝑑𝐺(𝑢). Now 𝑆 = {𝑣𝑖|𝑣𝑖 ∈ 𝑉(𝐺
+++)} such that 𝑣𝑖 has maximum degree in 𝐺+++. Then 

choose a vertices in 𝐺 which has degree of a vertex ≥ 2, which is adjacent to all other line vertices in 𝐺+++. i.e., nonleaf 

vertices (𝑛 − 𝑙) of 𝐺, which gives the minimum hub set in 𝐺+++. Thus, 𝑆 = {𝑣𝑖|𝑣𝑖 ∈ 𝑉(𝐺), 𝑑𝐺(𝑣) ≥ 2}. Therefore, |𝑆| = 𝑛 −
𝑙. Hence, ℎ(𝐺+++) = 𝑛 − 𝑙.  

 

Theorem 3.2  Let 𝐺 be cycle or complete graph of order 𝑛. Then  

 

 ℎ(𝐺+++) = {
1  𝑖𝑓  𝑛 = 3,

𝑛 − 1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐺+++ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐺+++. We consider the following cases: 

Case 1: If 𝑛 = 3, then 𝐺+++ is a 4-regular graph with 6 vertices. Choose a set 𝑆 = {𝑣𝑖} such that it contains a point vertex 𝑣𝑖 
in 𝐺+++. So |𝑆| = 1. Therefore, ℎ(𝐺+++) = 1. 

Case 2: If 𝑛 ≥ 4, then choose a set 𝑆 such that it contains 𝑛 − 1 vertices of 𝐺 such that either they are mutually adjacent in 𝐺 

or they should form a path of length 𝑛 − 1 in 𝐺. So, |𝑆| = 𝑛 − 1. For any two vertices 𝑥, 𝑦 ∈ 𝐺+++\𝑆 have 𝑆-path between 

them. Therefore 𝑆 is a hub set of 𝐺+++ minimum cardinality. Hence, ℎ(𝐺+++) = 𝑛 − 1.  

 

Theorem 3.3  Let 𝐺 be tree of order 𝑛 ≥ 3. Then  

 ℎ(𝐺++−) = {
2  𝑖𝑓  𝑛 = 3, 4,

3  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐺++− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐺++−. We consider the following cases: 

Case 1: If 𝑛 = 3, then 𝑃3
++− ≅ 𝐶5. By Proposition 2.1, ℎ(𝑃3

++−) = 2. 

Case 2: If 𝑛 = 4, then we get two graphs, 𝑃4 and 𝐾1,3. If 𝐺 = 𝑃4, then choose nonpendant vertices, which forms a 𝑆-path in 

𝑃4
++−. Similarly, if 𝐺 = 𝐾1,3, choose two pendant vertices which gives the minimum hub set. Therefore, ℎ(𝐺++−) = 2. 

Case 3: If 𝑛 ≥ 5, then choose a set 𝑆 such that it contains two pendant edges {𝑒1, 𝑒2} and a vertices 𝑣𝑖 which is nonincident to 

pendant edges in 𝐺. Thus, 𝑆 = {𝑒1, 𝑒2, 𝑣𝑖} gives the minimum hub set. Therefore, |𝑆| = 3. Hence, ℎ(𝐺++−) = 3.  
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Theorem 3.4  Let 𝐺 be cycle or complete graph of order 𝑛. Then  

 

 ℎ(𝐺++−) = {
2  𝑖𝑓  𝑛 = 3,

3  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐺++− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐺++−. We consider the following cases: 

Case 1: If 𝑛 = 3, then choose a vertex 𝑣1 and edge 𝑒1 which is nonincident to 𝑣1 in 𝐶3 gives the hub set. Therefore, 

ℎ(𝐶3
++−) = 2. 

Case 2: If 𝑛 = 4, then choose three vertices {𝑣1, 𝑣2, 𝑣3} in 𝐺, which forms a 𝑆-path in 𝐺++−. Therefore, ℎ(𝐺++−) = 3. 

Case 3: If 𝑛 ≥ 5, then 𝐺 = 𝐶𝑛, 𝐾𝑛. If 𝐺 = 𝐶𝑛, then choose a set 𝑆 such that it contains any two nonadjacent vertices 𝑣1, 𝑣2 and 

edge 𝑒1 which is nonincident to vertices 𝑣1 and 𝑣2 in 𝐶𝑛. If 𝐺 = 𝐾𝑛, then choose a set 𝑆 such that it contains any two 

nonadjacent edges 𝑒1, 𝑒2 and vertex 𝑣1 which is nonincident to edges 𝑒1 and 𝑒2 in 𝐾𝑛. Thus, 𝑆 gives the minimum hub set. 

Therefore, |𝑆| = 3. Hence, ℎ(𝐺++−) = 3.  

 

Theorem 3.5  Let 𝑃𝑛 be path graph of order 𝑛. Then  

 

 ℎ(𝑃𝑛
−++) =

{
 
 

 
 
1  𝑖𝑓  𝑛 = 2,
2  𝑖𝑓  𝑛 = 3,

⌊
𝑛

2
⌋  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝑃𝑛
−++ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝑃𝑛

−++. We consider the following cases: 

Case 1: If 𝑛 = 2, then 𝑃2
−++ ≅ 𝑃3. By Proposition 2.1, ℎ(𝐺−++(𝑃2)) = 1. 

Case 2: If 𝑛 = 3, then choose pendant vertices {𝑣1, 𝑣2} in 𝑃3, which forms a 𝑆-path in 𝑃3
−++. Therefore, ℎ(𝑃3

−++) = 2. 

Case 3: If 𝑛 ≥ 4, then choose a set 𝑆 such that it contains ⌊
𝑛

2
⌋ vertices of 𝑃𝑛, in such way that these vertices are incident to at 

most two edges of 𝑃𝑛. So, |𝑆| = ⌊
𝑛

2
⌋. For any two vertices 𝑥, 𝑦 ∈ 𝑃𝑛

−++\𝑆, there exist an 𝑆-path between them in 𝑃𝑛
−++. 

Therefore 𝑆 is a hub set of 𝑃𝑛
−++ minimum cardinality. Hence, ℎ(𝑃𝑛

−++) = ⌊
𝑛

2
⌋.  

 

Theorem 3.6  Let 𝐶𝑛 be cycle graph of order 𝑛. Then  

 

 ℎ(𝐶𝑛
−++) =

{
 
 

 
 
2  𝑖𝑓  𝑛 = 3,
3  𝑖𝑓  𝑛 = 4,

⌈
𝑛

2
⌉  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐶𝑛
−++ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐶𝑛

−++. We consider the following cases: 

Case 1: If 𝑛 = 3, then choose a vertex 𝑣1 and edge 𝑒1 which is nonincident to 𝑣1 in 𝐶3 gives the hub set. Therefore, 

ℎ(𝐶3
−++) = 2. 

Case 2: If 𝑛 = 4, then choose any three adjacent edges {𝑒1, 𝑒2, 𝑒3} in 𝐶4, which forms a 𝑆-path in 𝐶4
−++. Therefore, ℎ(𝐶4

−++) =
3. 

Case 3: If 𝑛 ≥ 5, then choose a set 𝑆 such that it contains ⌈
𝑛

2
⌉ vertices of 𝐶𝑛, in such way that these vertices are incident to at 

most two edges of 𝐶𝑛. So, |𝑆| = ⌈
𝑛

2
⌉. For any two vertices 𝑥, 𝑦 ∈ 𝐶𝑛

−++\𝑆, there exist an 𝑆-path between them in 𝐶𝑛
−++. 

Therefore 𝑆 is a hub set of 𝐶𝑛
−++ minimum cardinality. Hence, ℎ(𝐶𝑛

−++) = ⌈
𝑛

2
⌉.  

 

Theorem 3.7  Let 𝐾1,𝑛 be star graph of order 𝑛 ≥ 2. Then 

ℎ(𝐾1,𝑛
−++) = 2. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐾1,𝑛
−++ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐾1,𝑛

−++. Let 𝑆 ⊂ 𝑉(𝐾1,𝑛
−++). Choose a set 

𝑆 containing vertex 𝑣1 and edge 𝑒1 which is incident to vertex 𝑣1 in 𝐾1,𝑛. Therefore, |𝑆| = 2. Hence, ℎ(𝐾1,𝑛
−++) = 2.  
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Theorem 3.8  Let 𝑇 be tree of order 𝑛 ≥ 4 and 𝑙 be leaf vertices. Then 

 

ℎ(𝑇−++) = 𝑛 +𝑚 − 𝑙 − 𝑙𝑒. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝑇−++ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝑇−++. Let 𝑆 ⊂ 𝑉(𝑇−++). Choose a set 𝑆 

containing nonpendant vertices and nonpendant edges which are incident to vertices in 𝑇. Therefore, |𝑆| = 𝑛 +𝑚 − 𝑙 − 𝑙𝑒. 

Hence, ℎ(𝑇−++) = 𝑛 +𝑚 − 𝑙 − 𝑙𝑒.  

 

Theorem 3.9  Let 𝐺 be complete graph of order 𝑛 ≥ 4. Then 

 

ℎ(𝐾𝑛
−++) = 𝑛 − 1. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐾𝑛
−++ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐾𝑛

−++. Let 𝑆 ⊂ 𝑉(𝐾𝑛
−++). Choose a set 

𝑆 containing 𝑛 − 1 adjacent edges in such way that it forms path of length 𝑛 − 1 in 𝐾𝑛. Therefore, |𝑆| = 𝑛 − 1. Hence, 

ℎ(𝐾𝑛
−++) = 𝑛 − 1.  

 

Theorem 3.10  Let 𝐺 be tree of order 𝑛 ≥ 4. Then 

ℎ(𝐺−+−) = 2. 

  

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐺−+− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐺−+−. Choose a set 𝑆 ⊂ 𝑉(𝐺−+−) of 

vertices of 𝐺−+− corresponding to any two pendant vertices of 𝐺. So, |𝑆| = 2. For any two vertices 𝑥, 𝑦 ∈ 𝐺−+−\𝑆, there exist 

an 𝑆-path between them in 𝐺−+−. Therefore 𝑆 is a hub set of 𝐺−+− minimum cardinality. Hence, ℎ(𝐺−+−) = 2.  

 

Theorem 3.11  Let 𝐶𝑛 be cycle graph of order 𝑛. Then  

 

 ℎ(𝐶𝑛
−+−) = {

3  𝑖𝑓  𝑛 = 3, 4, 5,
2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐶𝑛
−+− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐶𝑛

−+−. We consider the following cases: 

Case 1: If 𝑛 = 3, then 𝐶3
−+− is isomorphic to crown graph 𝐶𝑊4. Therefore, ℎ(𝐶3

−+−) = 3 (since ℎ(𝐶𝑊𝑛) = 𝑛 − 1 [1]). 

Case 2: If 𝑛 = 4,5, then 𝐺 = 𝐶4, 𝐶5. Choose any three adjacent edges {𝑒1, 𝑒2, 𝑒3} in 𝐺, which forms an 𝑆-path in 𝐺−+−. 

Therefore, ℎ(𝐺−+−) = 3. 

Case 3: If 𝑛 ≥ 6, then choose a set 𝑆 such that it contains any two nonadjacent vertices of 𝐶𝑛, in such way that distance 

between these two vertices are at least three. Then for any two vertices 𝑥, 𝑦 ∈ 𝐶𝑛
−+−\𝑆, there exist an 𝑆-path between them in 

𝐶𝑛
−+−. Therefore 𝑆 is a hub set of 𝐶𝑛

−+− minimum cardinality. Hence, ℎ(𝐶𝑛
−+−) = 2.  

 

Theorem 3.12  Let 𝐾𝑛 be complete graph of order 𝑛 ≥ 4. Then 

 

ℎ(𝐾𝑛
−+−) = 3. 

  

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐾𝑛
−+− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐾𝑛

−+−. We consider the following cases: 

Case 1: If 𝑛 = 4, then choose any three mutually adjacent edges {𝑒1, 𝑒2, 𝑒3} in 𝐾4, which forms a 𝑆-path in 𝐾4
−+−. Therefore, 

ℎ(𝐾4
−+−) = 3. 

Case 2: If 𝑛 ≥ 5, then choose a set 𝑆 such that it contains any two nonadjacent edges 𝑒1, 𝑒2 and a vertex 𝑣1, which is 

nonincident to edges 𝑒1 and 𝑒2 in 𝐾𝑛. Then for any two vertices 𝑥, 𝑦 ∈ 𝐾𝑛
−+−\𝑆, there exist an 𝑆-path between them in 𝐾𝑛

−+−. 

Therefore 𝑆 is a hub set of 𝐾𝑛
−+− minimum cardinality. Hence, ℎ(𝐾𝑛

−+−) = 3.  

 

Theorem 3.13  Let 𝑇 be tree of order 𝑛 ≥ 4. Then 

ℎ(𝑇−−−) = 2. 

  

Proof. The proof is similar to that of Theorem 3.10.  

 

 



B. Basavanagoud et al. / IJMTT, 68(7), 75-83, 2022 

 

80 

Theorem 3.14  Let 𝐶𝑛 be cycle graph of order 𝑛 ≥ 4. Then  

 

 ℎ(𝐶𝑛
−−−) = {

3  𝑖𝑓  𝑛 = 4,
2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐶𝑛
−−− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐶𝑛

−−−. We consider the following cases: 

Case 1: If 𝑛 = 4, then choose any two adjacent vertices 𝑣1, 𝑣2 and an edge 𝑒1 which is nonincident to vertices 𝑣1 and 𝑣2 in 𝐶4, 

which forms a 𝑆-path in 𝐶4
−−−. Therefore, ℎ(𝐶4

−−−) = 3. 

Case 2: If 𝑛 = 5, then choose a vertex 𝑣1 and an edge 𝑒1, which are nonincident in 𝐶5 and also whose length is two in 𝐶5. 

Therefore ℎ(𝐶4
−−−) = 2. For 𝑛 ≥ 6, then choose a set 𝑆 such that it contains any two nonadjacent vertices of 𝐶𝑛, in such way 

that distance between whose length is at least three. Then for any two vertices 𝑥, 𝑦 ∈ 𝐶𝑛
−−−\𝑆, there exist an 𝑆-path between 

them in 𝐶𝑛
−−−. Therefore 𝑆 is a hub set of 𝐶𝑛

−−− minimum cardinality. Hence, ℎ(𝐶𝑛
−−−) = 2.  

 

Theorem 3.15  Let 𝐾𝑛 be complete graph of order 𝑛 ≥ 4. Then 

 

ℎ(𝐾𝑛
−−−) = 3. 

Proof. The proof is similar to that of Theorem 3.12.  

 

Theorem 3.16  Let 𝑃𝑛 be path graph of order 𝑛. Then  

 ℎ(𝑃𝑛
−−+) = {

1  𝑖𝑓  𝑛 = 2,
2  𝑖𝑓  𝑛 = 3,4,
3  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝑃𝑛
−−+ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝑃𝑛

−−+. We consider the following cases: 

Case 1: If 𝑛 = 2, then 𝑃2
−−+ ≅ 𝑃3. By Proposition 2.1, ℎ(𝑃2

−−+) = 1. 

Case 2: If 𝑛 = 3, then 𝑃3
−−+ ≅ 𝐶5. By Proposition 2.1, ℎ(𝑃3

−−+) = 2. 

Case 3: If 𝑛 = 4, then choose nonpendant vertices, which forms an 𝑆-path in 𝑃4
−−+. Therefore, ℎ(𝑃4

−−+) = 2. 

Case 4: If 𝑛 ≥ 5, then choose a set 𝑆 such that it contains a pendant vertex 𝑣1 and any two adjacent edges 𝑒1, 𝑒2, in which one 

of edge is incident to a vertex 𝑣1 in 𝑃𝑛. Then for any two vertices 𝑥, 𝑦 ∈ 𝑃𝑛
−−+\𝑆, there exist an 𝑆-path between them in 𝑃𝑛

−−+. 

Therefore 𝑆 is a hub set of 𝑃𝑛
−−+ minimum cardinality. Hence, ℎ(𝑃𝑛

−−+) = 3.  

 

Theorem 3.17  Let 𝐶𝑛 be cycle graph of order 𝑛. Then  

 

 ℎ(𝐶𝑛
−−+) = {

3  𝑖𝑓  𝑛 = 3,4,5,
4  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐶𝑛
−−+ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐶𝑛

−−+. We consider the following cases: 

Case 1: If 𝑛 = 3, then 𝐶3
−−+ ≅ 𝐶6. By Proposition 2.1, ℎ(𝐶3

−−+) = 3. 

Case 2: If 𝑛 = 4, then choose any three adjacent vertices in 𝐶4 gives the minimum hub set. Therefore, ℎ(𝐶4
−−+) = 3. 

Case 3: If 𝑛 = 5, then choose any two adjacent vertices 𝑣1, 𝑣2 and next choose another vertex 𝑣3 which in nonadjacent in 𝐶5, 

which forms an 𝑆-path in 𝐶5
−−+. Therefore, ℎ(𝐶5

−−+) = 3. 

Case 4: If 𝑛 ≥ 6, then choose a set 𝑆 such that it contains two nonadjacent vertices 𝑣1, 𝑣2 and two nonadjacent edges 𝑒1, 𝑒2, 

which are incident to each vertices in 𝐶𝑛. Then for any two vertices 𝑥, 𝑦 ∈ 𝐶𝑛
−−+\𝑆, there exist an 𝑆-path between them in 

𝐶𝑛
−−+. Therefore 𝑆 is a hub set of 𝐶𝑛

−−+ minimum cardinality. Hence, ℎ(𝐶𝑛
−−+) = 3.  

 

Theorem 3.18  Let 𝐾1,𝑛 be star graph of order 𝑛 ≥ 3. Then 

ℎ(𝐾1,𝑛
−−+) = 3. 

  

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐾1,𝑛
−−+ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐾1,𝑛

−−+. If 𝑛 ≥ 3, then choose a set 𝑆 

such that it contains central vertex 𝑣𝑖 and pendant vertex 𝑣1. Next choose an edge which is incident to 𝑣1 and 𝑣𝑖 in 𝐾1,𝑛. Then 

for any two vertices 𝑥, 𝑦 ∈ 𝐾1,𝑛
−−+\𝑆, there exist an 𝑆-path between them in 𝐾1,𝑛

−−+. Therefore 𝑆 is a hub set of 𝐾1,𝑛
−−+ minimum 

cardinality. Hence, ℎ(𝐾1,𝑛
−−+) = 3.  
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Theorem 3.19  Let 𝑇 be tree of order 𝑛 ≥ 3. Then 

ℎ(𝑇−−+) = 3. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝑇−−+ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝑇−−+. If 𝑛 ≥ 3, then choose two 

pendant edges 𝑒1, 𝑒2 and a vertex 𝑣1 which is incident to one of pendant edge in 𝑇. Then for any two vertices 𝑥, 𝑦 ∈ 𝑇−−+\𝑆, 

there exist an 𝑆-path between them in 𝑇−−+. Therefore 𝑆 is a hub set of 𝑇−−+ minimum cardinality. Hence, ℎ(𝑇−−+) = 3.  

 

Theorem 3.20  Let 𝐾𝑛 be complete graph of order 𝑛 ≥ 4. Then  

 

 ℎ(𝐾𝑛
−−+) = {

4  𝑖𝑓  𝑛 = 4,
𝑛 − 1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐾𝑛
−−+ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐾𝑛

−−+. We consider the following cases: 

Case 1: If 𝑛 = 4, then choose all vertices in 𝐾4 gives the minimum hub set. Therefore, ℎ(𝐾4
−−+) = 4. 

Case 2: The proof is similar to that of Theorem 3.9.  

 

Theorem 3.21  Let 𝑃𝑛 be path graph of order 𝑛. Then  

 

 ℎ(𝑃𝑛
+−+) =

{
 
 

 
 
0  𝑖𝑓  𝑛 = 2,
1  𝑖𝑓  𝑛 = 3,
2  𝑖𝑓  𝑛 = 4,

⌈
𝑛

2
⌉  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝑃𝑛
+−+ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝑃𝑛

+−+. We consider the following cases: 

Case 1: If 𝑛 = 2, then 𝑃2
+−+ ≅ 𝐶3. By Proposition 2.1, ℎ(𝐺+−+(𝑃2)) = 0. 

Case 2: If 𝑛 = 3, then 𝑃3
+−+ is isomorphic to friendship graph 𝑓2. Therefore, ℎ(𝐺+−+(𝑃3)) = 1 (since ℎ(𝑓𝑛) = 1 [1]). 

Case 3: If 𝑛 = 4, then choose nonpendant vertices {𝑣1, 𝑣2} in 𝑃4, which forms an 𝑆-path in 𝑃4
+−+. Therefore, ℎ(𝑃4

+−+) = 2. 

Case 4: If 𝑛 ≥ 5, then choose a set 𝑆 such that it contains ⌈
𝑛

2
⌉ edges of 𝑃𝑛, in such way that these edges are incident to at most 

two vertices of 𝑃𝑛. So, |𝑆| = ⌈
𝑛

2
⌉. Then for any two vertices 𝑥, 𝑦 ∈ 𝑃𝑛

+−+\𝑆, there exist an 𝑆-path between them in 𝑃𝑛
+−+. 

Therefore 𝑆 is a hub set of 𝑃𝑛
+−+ minimum cardinality. Hence, ℎ(𝑃𝑛

+−+) = ⌈
𝑛

2
⌉.  

 

Theorem 3.22  Let 𝐺 be cycle or complete graph of order 𝑛. Then  

 

 ℎ(𝐺+−+) =

{
 
 

 
 
2  𝑖𝑓  𝑛 = 3,
3  𝑖𝑓  𝑛 = 4,

⌈
𝑛

2
⌉  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐺+−+ and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐺+−+. We consider the following cases: 

Case 1: If 𝑛 = 3, then choose a vertex 𝑣1 and an edge which in nonincident to vertex 𝑣1 in 𝐶3, which forms an 𝑆-path in 𝐶3
+−+. 

Therefore, ℎ(𝐶3
+−+) = 2. 

Case 2: If 𝑛 = 4, then choose any three adjacent vertices in 𝐺, which forms an 𝑆-path in 𝐺+−+. Therefore, ℎ(𝐺+−+) = 3. 

Case 3: The proof is similar to that of Theorem 3.21.  

 

Theorem 3.23  Let 𝑇 be tree graph of order 𝑛 ≥ 4. Then 

 

ℎ(𝑇+−+) = 𝑛 − 𝑙. 
  

Proof. The proof is similar to that of Theorem 3.1.  
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Theorem 3.24  Let 𝑇 be tree graph of order 𝑛 ≥ 3. Then  

 

 ℎ(𝑇+−−) = {
3  𝑖𝑓  𝑛 = 3,
2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝑇+−− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝑇+−−. We consider the following cases: 

Case 1: If 𝑛 = 3, then 𝑃3
+−− ≅ 𝑃5. By Proposition 2.1, ℎ(𝑃3

+−−) = 3. 
Case 2: If 𝑛 ≥ 4, then choose a set 𝑆 such that it contains any two pendant edges 𝑒1 and 𝑒2, which gives the minimum hub set. 

So, |𝑆| = 2. Then for any two vertices 𝑥, 𝑦 ∈ 𝑇+−−\𝑆, there exist an 𝑆-path between them in 𝑇+−−. Therefore 𝑆 is a hub set of 

𝑇+−− minimum cardinality. Hence, ℎ(𝑇+−−) = 2.  

 

 

Theorem 3.25  Let 𝐶𝑛 be cycle graph of order 𝑛 ≥ 3. Then  

 

 ℎ(𝐶𝑛
+−−) = {

3  𝑖𝑓  𝑛 = 3,
2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐶𝑛
+−− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐶𝑛

+−−. We consider the following cases: 

Case 1: If 𝑛 = 3, then 𝐶3
+−− ≅ 𝐶𝑊4. Therefore, ℎ(𝐶3

+−−) = 3, (since ℎ(𝐶𝑊𝑛) = 𝑛 − 1 [1]). 

Case 2: If 𝑛 ≥ 4, then choose a set 𝑆 such that it contains any two nonadjacent edges 𝑒1 and 𝑒2 of 𝐶𝑛, in such way that distance 

between these edges are at least three. Then for any two vertices 𝑥, 𝑦 ∈ 𝐶𝑛
+−−\𝑆, there exist an 𝑆-path between them in 𝐶𝑛

+−−. 

Therefore 𝑆 is a hub set of 𝐶𝑛
+−− minimum cardinality. Hence, ℎ(𝐶𝑛

+−−) = 2.  

 

Theorem 3.26  Let 𝐾1,𝑛 be star graph of order 𝑛 ≥ 3. Then 

 

ℎ(𝐾1,𝑛
+−−) = 3. 

  

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be point vertices of 𝐾1,𝑛
+−− and 𝑒1, 𝑒2, . . . , 𝑒𝑚 be line vertices of 𝐾1,𝑛

+−−. If 𝑛 ≥ 3, then choose a set 𝑆 

such that it contains any three adjacent vertices of path of length two in 𝐾1,𝑛. Then for any two vertices 𝑥, 𝑦 ∈ 𝐾1,𝑛
+−−\𝑆, there 

exist an 𝑆-path between them in 𝐾1,𝑛
+−−. Therefore 𝑆 is a hub set of 𝐾1,𝑛

+−− minimum cardinality. Hence, ℎ(𝐾1,𝑛
+−−) = 3.  

 

Theorem 3.27  Let 𝐾𝑛 be complete graph of order 𝑛 ≥ 5. Then 

 

ℎ(𝐾𝑛
+−−) = 3. 

Proof. The proof is similar to that of Theorem 3.12.  
 

4. Conclusion  
In this paper, we have seen that obtaining the hub number of total transformation graphs in general is a tough problem 

so we have presented the results for some class of total transformation graphs. For further research one can investigate different 

graphs and try to generalize the results. 
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