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Abstract - The intention of this article is to introduce and develop the concept of Neutrosophic almost gpr continuous 

mappings, Neutrosophic almost gpr closed mappings using NGPRCS and the interrelations between the new mappings and 

existing mappings are established. Also we extend our study to Neutrosophic gpr compactness in Neutrosophic topological 

spaces. 
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1. Introduction 
In 1965, L.A.Zadeh [17] introduced the notion of fuzzy sets [FS]. It shows the degree of membership of the element in a 

set X. Later, fuzzy topological space was introduced by C.L. Chang [3] in 1968. In 1986, K.Atanassov [2] introduced the 

notion of intuitionistic fuzzy sets [IFS], where the degree of membership and degree of non-membership are discussed. Later, 

Intuitionistic fuzzy topological spaces was introduced by Coker [4] in 1997. In 2010, Florentin Smarandache [6] defined the 

Neutrosophic set on three components, namely Truth (membership), Indeterminacy, Falsehood (non-membership). In 2012,    

A. A Salama and S. A. Alblowi [14] introduced the concept of Neutrosophic topological space by using Neutrosophic sets. A. 

A. Salama [15] introduced Neutrosophic closed set and Neutrosophic continuous function in Neutrosophic topological spaces. 

I.Mohammed Ali Jaffer and K.Ramesh [10] introduced Neutrosophic generalized pre regular closed sets in Neutrosophic 

topological spaces. Wadei Al-Omeri and Saeid Jafari [16] introduced Generalized Closed Sets, Generalized Pre-Closed, 

Generalized connectedness and Generalized compactness in Neutrosophic Topological Spaces. Parimala M et al[12] introduced 

Neutrosophic αψ Homeomorphism in Neutrosophic Topological Spaces 

In this direction, we introduce the concept of Neutrosophic almost gpr continuous mappings, Neutrosophic almost gpr closed 

mappings and the interrelations among these mappings and existing mappings in Neutrosophic topological spaces are 

established. Further we extend our study to the concept of Neutrosophic gpr compactness in Neutrosophic topological spaces. 

2. Preliminaries 
Definition 2.1: [14] Let X be a non-empty fixed set. A Neutrosophic set (NS for short) A in X is an object having the form A = 
{〈x, µA(x), σA(x), νA(x)〉: x ∈ X} where the functions µA(x), σA(x) and νA(x) represent the degree of membership, degree of 
indeterminacy and the degree of non-membership respectively of each element x ∈ X to the set A. 

Remark 2.2: [14] A Neutrosophic set A = {〈x, µA(x), σA(x), νA(x) 〉: x ∈ X} can be identified to an ordered triple A = 〈µA(x), 

σA(x), νA(x)〉 in non-standard unit interval  ]−0, 1+[ on X. 

Remark 2.3: [14] For the sake of simplicity, we shall use the symbol A = 〈µA, σA, νA〉 for the Neutrosophic set   A = {〈x, 

µA(x), σA(x), νA(x)〉: x ∈ X}. 

Example 2.4: [14] Every IFS A is a non-empty set in X is obviously a NS having the form  A = {〈x, µA(x), 1 – (µA(x)+ νA(x)), 

νA(x)〉: x ∈ X}. Since our main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic topology, 

we must introduce the NS 0N and 1N in X as follows: 
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0N may be defined as:     

1N may be defined as: 

(01) 0N = {〈x, 0, 0, 1〉: x ∈ X}   (11) 1N = {〈x, 1, 0, 0〉: x ∈ X} 

(02) 0N = {〈x, 0, 1, 1〉: x ∈ X}   (12) 1N = {〈x, 1, 0, 1〉: x ∈ X} 

(03) 0N = {〈x, 0, 1, 0〉: x ∈ X}   (13) 1N = {〈x, 1, 1, 0〉: x ∈ X} 

(04) 0N = {〈x, 0, 0, 0〉: x ∈ X}   (14) 1N = {〈x, 1, 1, 1〉: x ∈ X} 
  

Definition 2.5: [14] Let A = 〈µA, σA, νA〉 be a NS on X, then the complement of the set A [C(A) for short] may be defined as 

three kind of complements: 

(C1) C(A) = {〈x, 1-µA(x), 1-σA(x), 1-νA(x)〉: x ∈ X } 

(C2) C(A) = {〈x, νA(x), σA(x), µA(x)〉: x ∈ X} 

(C3) C(A) = {〈x, νA(x), 1-σA(x), µA(x)〉: x ∈ X} 

Definition 2.6: [14] Let X be a non-empty set and Neutrosophic sets A and B in the form  A =   {〈x, µA(x), σA(x), νA(x)〉: x ∈ 

X} and B = {〈x, µB(x), σB(x), νB(x)〉: x ∈ X}. Then we may consider two possible definitions for subsets (A ⊆ B). 

(1) A ⊆ B ⇔ µA(x) ≤ µB(x), σA(x) ≤ σB(x) and µA(x) ≥ µB(x) ∀ x ∈ X 

(2) A ⊆ B ⇔ µA(x) ≤ µB(x), σA(x) ≥ σB(x) and µA(x) ≥ µB(x) ∀ x ∈ X 

Definition 2.7: [14] Let X be a non-empty set and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X}, B =  {〈x, µB(x), σB(x), νB(x)〉: x ∈ X} 

are NSs. Then  

(1) A∩B may be defined as: 

(I1) A∩B = 〈x, µA(x)∧µB(x), σA(x)∧σB(x) and νA(x)∨νB(x)〉 
(I2) A∩B = 〈x, µA(x)∧µB(x), σA(x)∨σB(x) and νA(x)∨νB(x)〉 
(2) A∪B may be defined as: 

(U1) A∪B = 〈x, µA(x)∨µB(x), σA(x)∨σB(x) and νA(x)∧νB(x)〉 
(U2) A∪B = 〈x, µA(x)∨µB(x), σA(x)∧σB(x) and νA(x)∧νB(x)〉 
 We can easily generalize the operations of intersection and union in Definition 2.8., to arbitrary family of NSs as 

follows: 

Proposition 2.8: [14] For all A and B are two Neutrosophic sets then the following conditions are true: 

C(A∩B) = C(A) ∪ C(B) ; C(A∪B) = C(A) ∩ C(B). 

Definition 2.9: [14] A Neutrosophic topology [NT for short] on a non-empty set X is a family τ of Neutrosophic subsets in X 

satisfying the following axioms: 

(NT1) 0N, 1N ∈ τ, 

(NT2) G1∩G2 ∈ τ for any G1, G2 ∈ τ, 

(NT3) ∪ Gi ∈ τ for every { Gi : i ∈ J} ⊆ τ. 

 Throughout this paper, the pair (X, τ) is called a Neutrosophic topological space (NTS for short).  The elements of τ 

are called Neutrosophic open sets [NOS for short]. A complement C(A) of a NOS A in NTS (X, τ) is called a Neutrosophic 

closed set [NCS for short] in X. 

Definition 2.10: [14] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the Neutrosophic closure 

and Neutrosophic interior of A are defined by  

NCl(A) = ∩{K : K is a NCS in X and A ⊆ K}   

NInt(A) = ∪{G : G is a NOS in X and G ⊆ A} 

It can be also shown that NCl(A) is NCS and NInt(A) is a NOS in X. 

a) A is NOS if and only if A = NInt(A), 

b) A is NCS if and only if A = NCl(A). 

Definition 2.11: [7] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be  

(i) Neutrosophic regular closed set (NRCS for short) if A = NCl(NInt(A)), 

(ii) Neutrosophic regular open set (NROS for short) if A = NInt(NCl(A)), 

(iii) Neutrosophic semi closed set (NSCS for short) if NInt(NCl(A)) ⊆ A, 

(iv) Neutrosophic semi open set (NSOS for short) if A ⊆ NCl(NInt(A)), 

(v) Neutrosophic pre closed set (NPCS for short) if NCl(NInt(A)) ⊆ A,  

(vi) Neutrosophic pre open set (NPOS for short) if A ⊆ NInt(NCl(A)). 

(vii) Neutrosophic α- closed set (Nα CS for short) if NCl(NInt(NCl(A))) ⊆ A, 

(viii) Neutrosophic α- open set (Nα OS for short) if A ⊆ NInt(NCl(NInt(A))), 



K. Ramesh & I. Mohammed Ali Jaffer / IJMTT, 68(8), 21-31, 2022 

23 

Definition 2.12: [16] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the Neutrosophic pre 

closure and Neutrosophic pre interior of A are defined by  

NPCl(A) = ∩{K : K is a NPCS in X and A ⊆ K}, 

NPInt(A) = ∪{G : G is a NPOS in X and G ⊆ A}. 

Definition 2.13: [13] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a Neutrosophic generalized 

closed set (NGCS for short) if  NCl(A) ⊆ U whenever A ⊆ U and U is NOS in (X, τ). A NS A of a NTS (X, τ) is called 

Neutrosophic generalized open set (NGOS for short) if C(A) is a NGCS in (X, τ). 

Definition 2.14: [9] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a Neutrosophic α- generalized 

closed set (NαGCS for short) if  NαCl(A) ⊆ U whenever A ⊆ U and U is a NOS in (X, τ). A NS A of a NTS (X, τ) is called a 

Neutrosophic α- generalized open set (NαGOS for short) if C(A) is a NαGCS in (X, τ). 

Definition 2.15: [16] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a Neutrosophic generalized pre 

closed set (NGPCS for short) if  NPCl(A) ⊆ U whenever A ⊆ U and U is a NOS in (X, τ). A NS A of a NTS (X, τ) is called a 

Neutrosophic generalized pre open set (NGPOS for short) if C(A) is a NGPCS in (X, τ). 

Definition 2.16: [10] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a Neutrosophic generalized pre 

regular closed set (NGPRCS for short) if NPCl(A) ⊆ U whenever A ⊆ U and U is a NROS in (X, τ). The family of all 

NGPRCSs of a NTS(X, τ) is denoted by NGPRC(X). A NS A of a NTS (X, τ) is called Neutrosophic generalized pre regular 

open set (NGPROS for short) if C(A) is NGPRCS in (X, τ). 

Definition 2.17: [10] A Neutrosophic topological space (X, τ) is called a Neutrosophic pre regular T1/2 (NPRT1/2 for short) 

space if every NGPRCS in (X, τ) is NPCS in (X, τ).  A Neutrosophic topological space (X, τ) is called a Neutrosophic pre 

regular T*
1/2 (NPRT*

1/2 for short) space if every NGPRCS in (X, τ) is NCS in (X, τ). 

Definition 2.18: [15] Let (X, τ) and (Y, σ) be two Neutrosophic topological spaces. A mapping f: (X, τ)→(Y, σ) is called 

Neutrosophic continuous if the inverse image of every NCS in (Y, σ) is a NCS in (X, τ). 

Definition 2.19: [1] Let (X, τ) and (Y, τ1) be two Neutrosophic topological spaces. Then the  

(i) mapping f: (X, τ)→(Y, τ1) is called a Neutrosophic α continuous if the inverse image of every NCS in (Y, σ) is a 

NαCS in (X, τ). 

(ii) mapping f: (X, τ)→(Y, τ1) is called a Neutrosophic pre continuous if the inverse image of every NCS in (Y, σ) is a 

NPCS in (X, τ). 

Definition 2.20: [5] Let (X, τ) and (Y, τ1) be two Neutrosophic topological spaces. A mapping f: (X, τ)→(Y, τ1) is called 

Neutrosophic generalized continuous mapping if the inverse image of every NCS in (Y, τ1) is a NGCS in (X, τ). 

Definition 2.21: [11] Let (X, τ) and (Y, τ1) be two Neutrosophic topological spaces. A mapping f: (X, τ)→(Y, τ1) is called 

Neutrosophic α  generalized continuous mapping if the inverse image of every NCS in (Y, τ1) is a NαGCS in (X, τ). 

Definition 2.22: [8] Let (X, τ) and (Y, τ1) be two Neutrosophic topological spaces. A mapping f: (X, τ)→(Y, τ1) is called 

Neutrosophic regular α  generalized continuous mapping if the inverse image of every NCS in (Y, τ1) is a NRαGCS in (X, τ). 

Definition 2.23: [12] Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Neutrosophic closed mapping 

(resp. Neutrosophic open mapping) (NCM (resp. NOM) for short) if the image of every NCS (resp. NOS) in (X, τ) is a 

NCS(resp. NOS) in (Y, σ). 

Definition 2.24: [16] A NTS (X, τ) is called neutrosophic compact space iff every neutrosophic open cover of (X, τ) has a 

finite subcover. 

Definition 2.25: [16] A NTS (X, τ) is called NG compact space iff every NG open cover of (X, τ) has a finite subcover. 

3. Neutrosophic almost gpr continuous mappings 
Definition 3.1.  A mapping f: (X, τ)→(Y, τ1) is said to be a neutrosophic almost generalized pre regular continuous mapping 

(NaGPR continuous mapping for short) if f-1(A) is a NGPRCS in X for every NRCS A in Y. 

 

Example 3.2: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.5, 0.3, 0.5), (0.5, 0.3, 0.5)〉 and V =〈y, (0.3, 0.2, 0.6), (0.1, 0.2, 0.7)〉. Define a mapping          

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Vc is a NRCS in Y. Then  f-1(Vc) is a NGPRCS in (X, τ) as 

f-1(Vc) ⊆1N and Npcl(f-1(Vc)) ⊆ 1N where 1N is a NROS in X. Therefore f is a NaGPR continuous mapping. 
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Theorem 3.3: Every Neutrosophic continuous mapping is a NaGPR continuous mapping but not conversely. 

Proof: Let f : (X, ) → (Y, τ1) be a Neutrosophic continuous mapping. Let V be a NRCS in Y. Since every NRCS is a NCS, V 

is a NCS in Y. Then f -1(V) is a NCS in X, by hypothesis. Since every NCS is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f 

is a NaGPR continuous mapping. 

 

Example 3.4: Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.6, 0.3, 0.3), (0.7, 0.3, 0.3)〉 and V = 〈y, (0.4, 0.3, 0.6), (0.4, 0.3,  0.6)〉. Define a mapping        

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Vc is a NRCS in Y. Then f-1(Vc) is a NGPRCS in X as      

f-1(Vc) ⊆1N and Npcl(f-1(Vc)) = f-1(Vc) ⊆1N where 1N is a NROS in X. Hence f is a NaGPR continuous mapping. But f is not a 

Neutrosophic continuous mapping. 

 

Theorem 3.5: Every Nα continuous mapping is a NaGPR continuous mapping but not conversely. 

Proof:  Let f : (X, ) → (Y, τ1) be a Nα continuous mapping. Let V be a NRCS in Y. Since every NRCS is a NCS, V is a NCS 

in Y.  Then f -1(V) is a NαCS in X. Since every NαCS is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f is a NaGPR 

continuous mapping. 

 

Example 3.6:  Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.5, 0.4, 0.5), (0.4, 0.4, 0.6)〉 and V = 〈y, (0.4, 0.3, 0.6), (0.4, 0.3,  0.6)〉. Define a mapping        

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Vc is a NRCS in Y. Then f-1(Vc) is a NGPRCS in X as      

f-1(Vc) ⊆1N and Npcl(f-1(Vc)) = f-1(Vc) ⊆1N where 1N is a NROS in X. Hence f is a NaGPR continuous mapping. But f is not a 

Nα continuous mapping since Vc  is Neutrosophic closed set in Y but     f-1(Vc) is not a NαCS in X as Ncl(Nint(Ncl(f-1(Vc)))) = 

1N ⊈ f-1(Vc). 

 

Theorem 3.7: Every NP continuous mapping is a NaGPR continuous mapping but not conversely. 

Proof: Let f : (X, ) → (Y, τ1) be a NP continuous mapping. Let V be a NRCS in Y. Since every NRCS is a NCS, V is a NCS 

in Y.  Then f -1(V) is a NPCS in X. Since every NPCS is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f is a NaGPR 

continuous mapping. 

  

Example 3.8:  Let X = {a, b} and Y = {u,v}. Then τ = {0N, U1, U2, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X 

and Y respectively, where U1 = 〈x, (0.5, 0.3, 0.5), (0.6, 0.3, 0.3)〉, U2 = 〈x, (0.5, 0.3, 0.5), (0.2, 0.3, 0.8)〉 and V = 〈y, (0.2, 0.4, 

0.7), (0.3, 0.5,  0.6)〉. Define a mapping f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Vc = 〈y, (0.7, 0.6, 

0.2), (0.6, 0.5, 0.3)〉 is a NRCS in Y. Then f-1(Vc) = 〈x, (0.7, 0.6, 0.2), (0.6, 0.5, 0.3)〉 is a NGPRCS in X as f-1(Vc) ⊆ 1N and 

Npcl(f-1(Vc)) = f-1(Vc) ⊆ 1N where 1N is a NROS in X. Hence f is a NaGPR continuous mapping. But f is not a NP continuous 

mapping since Vc  is NCS in Y but f-1(Vc) is not a NPCS in X as Ncl(Nint(f-1(Vc))) ⊆ U2
c ⊈ f-1(Vc). 

 

Theorem 3.9: Every NG continuous mapping is a NaGPR continuous mapping but not conversely. 

Proof:  Let f : (X, ) → (Y, τ1) be a NG continuous mapping. Let V be a NRCS in Y. Since every NRCS is a NCS, V is a NCS 

in Y.  Then f -1(V) is a NGCS in X. Since every NGCS is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f is a NaGPR 

continuous mapping. 

 

Example 3.10: Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.6, 0.7, 0.3), (0.7, 0.7, 0.3)〉 and V = 〈y, (0.4, 0.4, 0.5), (0.4, 0.5,  0.6)〉. Define a mapping         

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Vc is a NRCS in Y. Then f-1(Vc) is a NGPRCS in X as      

f-1(Vc) ⊆1N and Npcl(f-1(Vc)) = f-1(Vc) ⊆1N where 1N is a NROS in X. Hence f is a NaGPR continuous mapping. But f is not a 

NG continuous mapping since Vc  is Neutrosophic closed set in Y but f-1(Vc) is not a NGCS in X as f-1(Vc) ⊆ U and           

Ncl(f-1(Vc)) = 1N ⊈ U where U is a NOS in X.    

 

Theorem 3.11: Every NGP continuous mapping is an NaGPR continuous mapping but not conversely. 

Proof:  Let f : (X, ) → (Y, τ1) be a NGP continuous mapping. Let V be a NRCS in Y. Since every NRCS is a NCS, V is a 

NCS in Y.  Then f -1(V) is a NGPCS in X. Since every NGPCS is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f is a NaGPR 

continuous mapping. 

  

Example 3.12: Let X = {a, b} and Y = {u,v}. Then τ = {0N, U1, U2, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X 

and Y respectively, where U1 = 〈x, (0.6, 0.5, 0.4), (0.6, 0.5, 0.4)〉, U2 = 〈x, (0.8, 0.5, 0.2), (0.8, 0.5, 0.2)〉 and V = 〈y, (0.3, 0.5, 

0.7), (0.3, 0.5,  0.7)〉. Define a mapping f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Vc is a NRCS in 
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Y. Then f-1(Vc) is a NGPRCS in X as f-1(Vc) ⊆ 1N and Npcl(f-1(Vc)) = 1N ⊆ 1N where 1N is a NROS in X. Hence f is a NaGPR 

continuous mapping. But f is not a NGP continuous mapping since Vc  is NCS in Y but f-1(Vc) is not a NGPCS in X as as         

f-1(Vc) ⊆ U2 and Npcl(f-1(Vc)) = 1N ⊈ U2 where U2 is a NOS in X.  

 

Theorem 3.13: Every NαG continuous mapping is a NaGPR continuous mapping but not conversely. 

Proof:  Let f : (X, ) → (Y, τ1) be a NαG continuous mapping. Let V be a NRCS in Y. Since every NRCS is a NCS, V is a 

NCS in Y.  Then f -1(V) is a NαGCS in X. Since every NαGCS is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f is a NaGPR 

continuous mapping. 

 

Example 3.14:  Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.7, 0.5, 0.3), (0.9, 0.5, 0.1)〉 and V = 〈y, (0.4, 0.5, 0.6), (0.3, 0.5,  0.7)〉. Define a mapping        

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Vc is a NRCS in Y. Then f-1(Vc) is a NGPRCS in X as      

f-1(Vc) ⊆ 1N and Npcl(f-1(Vc)) = f-1(Vc) ⊆ 1N  where 1N  is a NROS in X. Hence     f is a NaGPR continuous mapping. But f is 

not a NαG continuous mapping, since Vc  is NCS in Y but f-1(Vc) is not a NαGCS in X as f-1(Vc) ⊆ U and Nαcl(f-1(Vc)) = 1N ⊈ 

U.   

 

Theorem 3.15: Every NRαG continuous mapping is a NaGPR continuous mapping but not conversely. 

Proof:  Let f : (X, ) → (Y, τ1) be a NRαG continuous mapping. Let V be a NRCS in Y. Since every NRCS is a NCS, V is a 

NCS in Y.  Then f -1(V) is a NRαGCS in X. Since every NRαGCS is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f is a 

NaGPR continuous mapping. 

 

Example 3.16:  Let X = {a, b} and Y = {u,v}. Then τ = {0N, U1, U2, 1N} and τ1 = {0N, V1, V2, 1N} are Neutrosophic topologies 

on X and Y respectively, where U1 = 〈x, (0.5, 0.5, 0.5), (0.6, 0.5, 0.3)〉, U2 = 〈x, (0.4, 0.3, 0.6), (0.2, 0.3, 0.7)〉, V1= 〈y, (0.5, 0.5, 

0.5), (0.2, 0.5,  0.8)〉 and V2= 〈y, (0.7, 0.7, 0.3), (0.7, 0.7,  0.2)〉  . Define a mapping f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. 

Here the Neutrosophic set V1
c is a NRCS in Y. Then f-1(V1

c) is a NGPRCS in X as f-1(V1
c) ⊆ U1 and Npcl(f-1(V1

c)) = f-1(V1
c) ⊆ 

U1 where U1 is a NROS in X. Hence f is a NaGPR continuous mapping. But f is not a NRαG continuous mapping, since V2
c  is 

NCS in Y but f-1(V2
c) is not a NRαGCS in X as as  f-1(V2

c) ⊆ U2 and Nαcl(f-1(V2
c)) = U1

c ⊈ U2 where U2 is a NROS in X. 

   

Theorem 3.17:  Let f : (X, ) → (Y, τ1) be a mapping where f -1(V) is a NRCS in X for every NCS in Y. Then f is a NaGPR 

continuous mapping but not conversely. 

Proof:  Let A be a NRCS in Y. Since every NRCS is a NCS, V is a NCS in Y. Then f -1(V) is a NRCS in X. Since every NRCS 

is a NGPRCS, f -1(V) is a NGPRCS in X. Hence f is a NaGPR continuous mapping. 

 

Example 3.18:  Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.5, 0.4, 0.5), (0.4, 0.4, 0.6)〉 and V = 〈y, (0.4, 0.3, 0.6), (0.4, 0.3,  0.6)〉. Define a mapping          

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Then f is a NaGPR continuous mapping. But not a mapping as defined in Theorem 

3.17. 

 

Theorem 3.19:  Let f : (X, ) → (Y, τ1) be a mapping. Then the following are equivalent: 

(i) f is a NaGPR continuous mapping, 

(ii) f -1(A) is a NGPROS in X for every NROS A in Y.  

 

Proof: (i)  (ii) Let A be a NROS in Y. Then Ac is a NRCS in Y.  By hypothesis, f -1(Ac) is a NGPRCS in X. That is f -1(A)c is 

a NGPRCS in X. Therefore f -1(A) is a NGPROS in X. 

(ii)  (i) Let A be a NRCS in Y. Then Ac is a NROS in Y.  By hypothesis, f -1(Ac) is a NGPROS in X. That is f -1(A)c is a 

NGPROS in X. Therefore f -1(A) is a NGPRCS in X. Then f is a NaGPR continuous mapping. 

 

Definition 3.20: A NS A is said to be neutrosophic dense (ND for short) in another NS B in NTS (X, τ) if Ncl(A) = B. 

 

Theorem 3.21: Let p(α, β) be a NP in X. A mapping f : (X, τ)→(Y, τ1) is a NaGPR continuous mapping if for every NOS A in Y 

with f(p(α, β))  A, there exists a NOS B in X with  p(α, β)  B such that f -1(A) is  ND in B. 

Proof: Let A be a NROS in Y. Then A is NOS in Y. Let f(p(α, β))  A, then there exists a NOS B in X such that p(α, β)  B and 

Ncl(f -1(A)) =  B. Since B is an NOS, Ncl(f -1(A)) is also a NOS in X. Therefore Nint(Ncl(f -1(A))) = Ncl(f -1(A)). Now f -1(A)  

Ncl(f -1(A)) = Nint(Ncl(f -1(A)))  Ncl(Nint(Ncl(f -1(A)))). This implies f -1(A) is a NPOS in X and hence an NGPROS in X. 

Thus f is a NaGPR continuous mapping. 
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Theorem 3.22: Let f : (X, ) → (Y, τ1) be a mapping where X is an NPRT1/2 space. Then the following are equivalent: 

(i) f is an NaGPR continuous mapping, 

(ii) f -1(A)  Npint(f -1(Nint(Ncl(A)))) for every NPOS A in Y. 
 

Proof:  

(i)  (ii) Let A be a NPOS in Y. Then ANint(Ncl(A)). Since, Nint(Ncl(A)) is NROS in Y, by hypothesis f -1(Nint(Ncl(A))) is 

NGPROS in X. Since X is NPRT1/2 space, f -1(Nint(Ncl(A))) is a NPOS in X. Therefore f -1(A)  f -1(Nint(Ncl(A))) = Npint       

(f -1(Nint(Ncl(A)))). 

(ii)  (i) Let A be a NROS in Y. Then A is a NPOS in Y. By hypothesis f -1(A)  Npint(f -1(Nint(Ncl(A)))) = Npint(f -1(A))   

f -1(A). This implies f -1(A) is a NPOS in X and hence is a NGPROS in X. Therefore f is a NaGPR continuous mapping. 

 

Theorem 3.23: Let f : (X, ) → (Y, τ1) be a mapping. If f is NaGPR continuous mapping, then Ngprcl(f -1(A))  f -1(Ncl(A)) 

for every NROS A in Y. 

Proof: Let A be a NROS in Y. Then Ncl(A) is a NRCS in Y. By hypothesis f -1(Ncl(A)) is a NGPRCS in X. Then Ngprcl        

(f -1(Ncl(A))) = f -1(Ncl(A)). Now Ngprcl(f -1(A))  Ngprcl(f -1(Ncl(A))) = f -1(Ncl(A)). That is Ngprcl(f -1(A)  f -1(Ncl(A)). 

 

Theorem 3.24: Let f : (X, ) → (Y, τ1) be a mapping. If f -1(Npint(B))  Npint(f -1(B)) for every NS B in Y, then f is a NaGPR 

continuous mapping. 

Proof: Let B  Y be a NROS. By hypothesis, f -1(Npint(B))  Npint(f -1(B)). Since B is a NROS, it is a NPOS in Y. Therefore 

Npint(B) = B. Hence f -1(B) = f -1(Npint(B))  Npint(f -1(B))  f -1(B). This implies f -1(B) is a NPOS and hence a NGPROS in 

X. Thus f is a NaGPR continuous mapping. 

 

Remark 3.25: The converse of the above theorem is true if B  Y is a NROS and X is a NPRT1/2 space. 

 

Proof: Let f be a NaGPR continuous mapping. Let B be a NROS in Y. Then f -1(B) is a NGPROS in X. Since X is a NPRT1/2 

space, f -1(B) is a NPOS in X. Therefore f -1(Npint(B))  f -1(B)  = Npint(f -1(B)). That is f -1(Npint(B))  Npint(f -1(B)). 

 

Theorem 3.26: Let f : (X, ) → (Y, τ1) be a mapping. If Npcl(f -1(B))   f -1(Npcl(B)) for every NS B in Y, then f is a NaGPR 

continuous mapping. 

 

Proof: Let B  Y be a NRCS. By hypothesis, Npcl(f -1(B))   f -1(Npcl(B)). Since B is a NRCS, it is a NPCS in Y. Therefore 

Npcl(B) = B. Hence f -1(B) = f -1(Npcl(B))  Npcl(f -1(B))  f -1(B). This implies f -1(B) is a NPCS and hence a NGPRCS in X. 

Thus f is a NaGPR continuous mapping. 

 

Remark 3.27: The converse of the above theorem is true if B  Y is a NRCS and X is a NPRT1/2 space. 

 

Proof: Let f be a NaGPR continuous mapping. Let B be a NRCS in Y. Then f -1(B) is a NGPRCS in X. Since X is a NPRT1/2 

space, f -1(B) is a NPCS in X. Therefore Npcl(f -1(B)) =   f -1(B))   f -1(Npcl(B)). 

 

4. Neutrosophic almost gpr closed mappings 
Definition 4.1: A mapping f : (X, ) → (Y, τ1) is called a neutrosophic almost generalized pre regular closed mapping 

(NaGPRC mapping for short) if f(A) is a NGPRCS in Y for each NRCS A in X. 

 

Example 4.2:  Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.3, 0.2, 0.6), (0.1, 0.2, 0.7)〉 and V =〈y, (0.5, 0.3, 0.5), (0.5, 0.3, 0.5)〉. Define a mapping          

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Then f is a NaGPRC mapping. 

 

Theorem 4.3:  Every NC mapping is a NaGPRC mapping but not conversely. 

Proof: Assume that f: (X, ) → (Y, τ1) is a NC mapping. Let A be a NRCS in X. Since every NRCS is a NCS, A is a NCS in 

X. Then f(A) is a NCS in Y. Since every NCS is a NGPRCS, f(A) is a NGPRCS in Y. Hence f is a NaGPRC mapping. 

 

Example 4.4: Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.4, 0.3, 0.6), (0.4, 0.3,  0.6)〉 and V = 〈y, (0.6, 0.3, 0.3), (0.7, 0.3, 0.3)〉. Define a mapping         

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Hence f is a NaGPRC mapping. But f is not a NC mapping. 
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Theorem 4.5:  Every NαC mapping is a NaGPRC mapping but not conversely. 

Proof: Let f : (X, ) → (Y, τ1) be a NαC mapping . Let A be a NRCS in X. Since every NRCS is a NCS, A is a NCS in X. 

Then f(A) is a NαCS in Y. Since every NαCS is a NGPRCS, f(A) is a NGPRCS in Y. Hence f is a NaGPRC mapping. 

 

Example 4.6: Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.4, 0.3, 0.6), (0.4, 0.3,  0.6)〉 and V = 〈y, (0.5, 0.4, 0.5), (0.4, 0.4, 0.6)〉. Define a mapping         

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Hence f is a NaGPRC mapping. But f is not a NαC mapping. 

  

Theorem 4.7:  Every NPC mapping is a NaGPRC mapping but not conversely. 

Proof: Assume that f : (X, ) → (Y, τ1) be a NPC mapping. Let A be a NRCS in X. Since every NRCS is a NCS, A is a NCS in 

X.  Then f(A) is a NPCS in Y. Since every NPCS is a NGPRCS, f(A) is a NGPRCS in Y. Hence f is a NaGPRC mapping. 

 

Example 4.8:  Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V1, V2, 1N} are Neutrosophic topologies on X 

and Y respectively, where U = 〈x, (0.2, 0.4, 0.7), (0.3, 0.5,  0.6)〉, V1 = 〈y, (0.5, 0.3, 0.5), (0.6, 0.3, 0.3)〉 and V2 = 〈y, (0.5, 0.3, 

0.5), (0.2, 0.3, 0.8)〉. Define a mapping f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Hence f is a NaGPRC mapping. But f is not a 

NPC mapping.  

 

Theorem 4.9:  Every NGC mapping is a NaGPRC mapping but not conversely. 

Proof: Assume that f : (X, ) → (Y, τ1) be a NGC mapping. Let A be a NRCS in X. Since every NRCS is a NCS, A is a NCS 

in X.  Then f(A) is a NGCS in Y. Since every NGCS is a NGPRCS, f(A) is a NGPRCS in Y. Hence f is a NaGPRC mapping. 

 

Example 4.10: Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.4, 0.4, 0.5), (0.4, 0.5,  0.6)〉 and V = 〈y, (0.6, 0.7, 0.3), (0.7, 0.7, 0.3)〉. Define a mapping        

f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Hence f is a NaGPRC mapping. But f is not a NGC mapping. 

 

Theorem 4.11:  Every NGPC mapping is a NaGPRC mapping but not conversely. 

Proof: Assume that f : (X, ) → (Y, τ1) be a NGPC mapping. Let A be a NRCS in X. Since every NRCS is a NCS, A is a NCS 

in X.  Then f(A) is a NGPCS in Y. Since every NGPCS is a NGPRCS, f(A) is a NGPRCS in Y. Hence f is a NaGPRC 

mapping. 

Example 4.12: Let X = {a, b} and Y = {u,v}. Then τ = {0N, U, 1N} and τ1 = {0N, V1, V2, 1N} are Neutrosophic topologies on X 

and Y respectively, where U = 〈x, (0.3, 0.5, 0.7), (0.3, 0.5,  0.7) 〉, V1 = 〈y, (0.6, 0.5, 0.4), (0.6, 0.5, 0.4)〉 and V2 = 〈y, (0.8, 0.5, 

0.2), (0.8, 0.5, 0.2)〉. Define a mapping f: (X, τ)→(Y, τ1) by f(a) = u and f(b) = v. Hence f is a NaGPRC mapping. But f is not a 

NGPC mapping. 

 

Theorem 4.13:  Every NiGPRC mapping is a NaGPRC mapping but not conversely. 

Proof:  Assume that f : (X, ) → (Y, τ1) be a NiGPRC mapping . Let A be a NRCS in X. Then A is a NGPRCS in X. By 

hypothesis f (A) is a NGPRCS in Y. Therefore f is a NaGPRC mapping. 

 

Example 4.14: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and τ1 = {0N, V, 1N} are Neutrosophic topologies on X and 

Y respectively, where U = 〈x, (0.2, 0.5, 0.7), (0.3, 0.5, 0.6)〉 and V = 〈y, (0.3, 0.5, 0.6), (0.4, 0.5, 0.5)〉. Define a mapping         

f: (X, τ) → (Y, τ1) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc = 〈x, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)〉 is a NRCS in X. 

Then f(Uc) = 〈y, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)〉 is a NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N 

is a NROS in Y. Therefore f is a NaGPRC mapping. But f is not a NiGPRC mapping since W = 〈x, (0.3, 0.5, 0.6), (0.4, 0.5, 

0.5)〉 is NGPRCS in X but f(W) is not a NGPRCS in Y as f(W) ⊆ V implies Npcl(f(W)) = Vc ⊈ V where V is a NROS in Y. 

Therefore f is not a Nigpr closed mapping. 

 

Definition 4.15: A mapping f : (X, ) → (Y, τ1) is called an neutrosophic almost generalized pre regular open mapping 

(NaGPRO mapping for short) if f(A) is a NGPROS in Y for each NROS A in X.  

 

Theorem 4.16: Let f : (X, ) → (Y, τ1) be a bijective mapping. Then the following statements are equivalent: 

(i) f is a NaGPRO mapping, 

(ii) f is a NaGPRC mapping. 

Proof: Straightforward. 
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Theorem 4.17:  Let p(α, β) be a NP in X. A mapping f : (X, ) → (Y, τ1) is a NaGPRO mapping if for every NOS A in X with     

f -1(p(α, β))  A, then there exists a NOS B in Y with  p(α, β)  B such that f (A) is  ND in B. 

Proof: Let A be a NROS in X. Then A is a NOS in X. Let f -1(p(α, β))  A, then there exists a NOS B in Y such that p(α, β)  B 

and Ncl(f(A)) =  B. Since B is a NOS, Ncl(f(A)) = B is also a NOS in Y. Therefore Nint(Ncl(f(A))) = Ncl(f(A)). Now f(A)  

Ncl(f(A)) = Nint(Ncl(f(A)))  Ncl(Nint(Ncl(f(A)))). This implies f(A) is a NPOS in Y and hence a NGPROS in Y. Thus f is a 

NaGPRO mapping. 

 

Theorem 4.18: Let f : (X, ) → (Y, τ1) be a mapping where Y is a NPRT1/2 space. Then the following statements are 

equivalent: 

(i) f is a NaGPRC mapping, 

(ii) f (A)  Npint(f (Nint(Ncl(A)))) for every NPOS A in X. 

Proof:  

(i)  (ii) Let  A be a NPOS in X. Then A  Nint(Ncl(A)). Since Nint(Ncl(A)) is a NROS in X, by hypothesis, f(Nint(Ncl(A))) 

is an NGPROS in Y. Since Y is a NPRT1/2 space, f(Nint(Ncl(A))) is a NPOS in Y. Therefore f(A)  f(Nint(Ncl(A)))  

Npint(f(Nint(Ncl(A)))). 

(ii)  (i) Let A be a NROS in X. Then A is a NPOS in X. By hypothesis, f(A)  Npint(f(Nint(Ncl(A)))) = Npint(f(A))  f(A). 

This implies f(A) is a NPOS in Y and hence is a NGPROS in Y. Therefore f is a NaGPRC mapping. 

 

Theorem 4.19: Let f : (X, ) → (Y, τ1) be a mapping. If f is a NaGPRC mapping, then Ngprcl(f(A))  f(Ncl(A)) for every 

NPOS A in X. 

 

Proof: Let A be a NPOS in X. Then Ncl(A) is a NRCS in X. By hypothesis f(Ncl(A)) is a NGPRCS in Y. Then 

Ngprcl(f(Ncl(A)) = f(Ncl(A)). Now Ngprcl(f(A))   Ngprcl(f(Ncl(A))) = f(Ncl(A)). That is Ngprcl(f(A))  f(Ncl(A)). 

 

Theorem 4.20: Let f : (X, ) → (Y, τ1) be a mapping. If f is a NaGPRC mapping, then Ngprcl(f(A))  f(Ncl(Npint(A))) for 

every NPOS A in X. 

 

Proof: Let A be a NPOS in X. Then Ncl(A) is a NRCS in X. By hypothesis, f(Ncl(A)) is a NGPRCS in Y. Then Ngprcl(f(A)) 

 Ngprcl(f(Ncl(A))) = f(Ncl(A))   f(Ncl(Npint(A))), since Npint(A) = A. 

 

Theorem 4.21:  Let f : (X, ) → (Y, τ1) be a mapping. If f(Npint(B))  Npint(f(B)) for every NS B in X, then f is a NaGPRO 

mapping. 

 

Proof: Let B  X be a NROS. By hypothesis, f(Npint(B))  Npint(f(B)). Since B is an NROS, it is a NPOS in X. Therefore 

Npint(B) = B. Hence f(B) = f(Npint(B))  Npint(f(B))  f(B). This implies f(B) is a NPOS and hence a NGPROS in Y. Thus    

f is a NaGPRO mapping. 

 

Theorem 4.22:  Let f : (X, ) → (Y, τ1) be a mapping. If Npcl(f(B))   f(Npcl(B)) for every NS B in X, then f is a NaGPRC 

mapping. 

 

Proof: Let B  X be a NRCS. By hypothesis, Npcl(f(B))   f(Npcl(B)). Since B is a NRCS, it is a NPCS in X. Therefore 

Npcl(B) = B. Hence f(B) = f(Npcl(B))  Npcl(f(B))  f(B). This implies f(B) is a NPCS and hence a NGPRCS in Y. Thus f is 

a NaGPRC mapping. 

 

Theorem 4.23: The following statements are equivalent for a mapping f : (X, ) → (Y, τ1), where Y is an NPRT1/2 space: 

(i) f is a NaGPRC mapping, 

(ii) f(A)  Npint(f(Nscl(A))) for every NPOS A in X. 
 

Proof: (i)  (ii) Let  A be an NPOS in X. Then A  Nint(Ncl(A)). Since Nint(Ncl(A)) is an NROS in X, by hypothesis, 

f(Nint(Ncl(A))) is a NGPROS in Y. Since Y is an NPRT1/2 space, f(Nint(Ncl(A))) is an NPOS in Y. Therefore f(A)  

f(Nint(Ncl(A)))  Npint(f(Nint(Ncl(A))))  Npint(f(A  Nint(Ncl(A)))) = Npint(f(Nscl(A))). That is f(A)  

Npint(f(Nscl(A))). 

(ii)  (i) Let A be an NROS in X. Then A is a NPOS in X. By hypothesis, f(A)  Npint(f(Nscl(A))). This implies f(A)  

Npint(f(A  Nint(Ncl(A))))  Npint(f(A  A)) = Npint(f(A ))  f(A). Therefore f(A) is a NGPROS in Y and hence it is a 

NGPROS in Y. Thus f is a NaGPRC mapping.    
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Theorem 4.24: Let f : (X, ) → (Y, τ1) be a mapping where Y is a NPRT1/2 space. If f is a NaGPRC mapping, then 

Nint(Ncl(Nint(f(B))))  f(Npcl(B)) for every NRCS B in X. 

 

Proof: Let B  X be a NRCS. By hypothesis, f(B) is a NGPRCS in Y. Since Y is a NPRT1/2 space, f(B) is a NPCS in Y. 

Therefore Npcl(f(B)) = f(B). Now Nint(Ncl(Nint(f(B))))   f(B) = f(Npcl(B)), since B = Npcl(B). Hence Nint(Ncl(Nint(f(B)))) 

 f(Npcl(B)). 

 

Theorem 4.25: Let f : (X, ) → (Y, τ1) be a bijective mapping. Then the following statements are equivalent: 

(i) f is a NaGPRO mapping, 

(ii) f is a NaGPRC mapping, 

(iii) f -1 is a NaGPR continuous mapping. 

Proof: (i)  (ii) is obvious from the Theorem 4.16. 

(ii)  (iii) Let A  X be a NRCS. Then by hypothesis, f(A) is a NGPRCS in Y. That is (f -1) -1(A) is a NGPRCS in Y. This 

implies f -1 is a NaGPR continuous mapping. 

(iii)  (ii) Let A  X be a NRCS. Then by hypothesis (f -1) -1(A) is a NGPRCS in Y. That is f(A) is a NGPRCS in Y. Hence f is 

a NaGPRC mapping. 

5. Neutrosophic gpr Compactness 
Definition 5.1: Let (Z, τ) be a NTS. If a family {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉} of NGPR open sets in (Z, τ) satisfies the 

condition ⋃{〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉} = 1N, then it is called a NGPR open cover of (Z, τ).  

 A finite subfamily of a NGPR open cover {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ J〉} of (Z, τ), which is also a NGPR open cover of 

(Z, τ) is called a finite subcover of {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉}. 

 

Definition 5.2: A NTS (Z, τ) is called neutrosophic gpr compact (NGPR compact for short) if and only if every NGPR open 

cover of (Z, τ) has a finite subcover. 

 

Definition 5.3: Let (Z, τ) be a NTS and A be a NS in (Z, τ). If a family {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉} of NGPR open sets in 

(Z, τ) satisfies the condition A ⊆ ⋃{〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉} = 1N, then it is called a NGPR open cover of A.  

 A finite subfamily of a NGPR open cover {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ J〉} of A, which is also a NGPR open cover of A 

is called a finite subcover of {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉}. 

 

Definition 5.4: A NS A in a NTS (Z, τ) is called NGPR compact relative to Z iff every NGPR open cover of A has a finite sub 

cover. 

 

Theorem 5.5: Every NGPR compact space is neutrosophic compact space. 

Proof: Let (Z, τ) be a NGPR compact space. Let  iU i : be a neutrosophic open cover of (Z, τ) by NOSs in (Z, τ). From 

[10],  iU i : is a NGPR open cover of (Z, τ) by NGPROSs in (Z, τ). Since (Z, τ) be a NGPR compact space, the NGPR 

open cover  iU i : has a finite subcover say  niU i .......3,2,1: = of (Z, τ). Hence (Z, τ) is neutrosophic compact space. 

 

Theorem 5.6: Every NGPR compact space is NG compact space. 

Proof: Let (Z, τ) be a NGPR compact space. Let  iU i : be a NG open cover of (Z, τ) by NGOSs in (Z, τ). From [10], 

 iU i : is a NGPR open cover of (Z, τ) by NGPROSs in (Z, τ). Since (Z, τ) be a NGPR compact space, the NGPR open 

cover  iU i : has a finite subcover say  niU i .......3,2,1: = of . Hence (Z, τ) is NG compact space. 

 

Theorem 5.7: If (Y, τ) is a neutrosophic compact space and NPRT*
1/2 space then (Y, τ) is NGPR compact space. 

Proof: Let (Y, τ) be a neutrosophic compact space and NPRT*
1/2 space. Assume that  iU i : be a NGPR open cover of 

(Y, τ). Here (Y, τ) is NPRT*
1/2 space, by hypothesis every NGPROS is NOS. Therefore  iU i : is a neutrosophic open 

cover in (Y, τ) and it has a finit subcover say  niU i .......3,2,1: = of (Y, τ). Hence (Y, τ) is NGPR compact space. 
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Theorem 5.8: Let (Y, τ) and (Z, τ1) be any two NTSs and g: (Y, τ) → (Z, τ1) be NGPR continuous surjection. If (Y, τ) is 

NGPR compact then (Z, τ1) is neutrosophic compact. 

 

Proof: Let Ui = {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉} be a neutrosophic open cover in (Z, τ1) with ⋃{〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ 

Λ〉} =
iU

i

 = 1N. Since g is NGPR continuous,  − iUg i :)(1
 is a NGPR open cover of Y. Now, 

N
ii

1)U(g)(Ug i

-1

i

-1 ==


 . Since, (Y, τ) is NGPR compact, there exist a finite subcover JεΛ, such that =


)(Ug i

-1

Ji

 1N. 

Hence, N
Ji

g 1)(Ug i

1- =







 . That is 
N

Ji

1U i =


 . Since g is surjective, {Ui:iεJ} is a neutrosophic open cover of (Z, τ1) and 

hence (Z, τ1) is neutrosophic compact. 

 

Theorem 5.9: Let (Y, τ) and (Z, τ1) be any two NTSs and g: (Y, τ) → (Z, τ1) be NGPR continuous mapping. If A is NGPR 

compact in (Y, τ) then g(A) is neutrosophic compact in (Z, τ1). 

Proof: Let Ui = {〈z, µUi(z), σUi(z), νUi(z)〉: i ∈ Λ〉} be a neutrosophic open cover of g(A) in (Z, τ1). That is  g(A)⊆
iU

i

 . Since 

g is NGPR continuous,  − iUg i :)(1
 is a NGPR open cover of A in (Y, τ). Now, A ⊆ )(Ug i

-1

i

 . Since, A in (Y, τ) is 

NGPR compact, there exist a finite subcover JεΛ, such that A ⊆ =


)(Ug i

-1

Ji

 1N. Hence, g(A) ⊆

N
JiJi

g 1U)(Ug ii

1- ==








 . Therefore g(A) is neutrosophic compact in (Z, τ1).  

 

Theorem 5.10: Let g: (Y, τ) → (Z, τ1) be NGPR irresolute mapping and if A is NGPR compact relative to (Y, τ) then g(A) is 

NGPR compact relative (Z, τ1). 

Proof: Let  iU i : be a NGPR open cover of Z such that g(A) ⊆ iU
i

 . Then A ⊆ )(Ug i

-1

i

  where  i:)(Ug i

-1

is NGPR open cover in Y for each i . Since A is NGPR compact relative to Y, there exist a finite sub collection {Ui:iεJ} 

such that A ⊆ )(Ug i

-1

Ji

 . That is g(A) ⊆ iU
Ji

 . Hence g(A) is NGPR compact relative (Z, τ1). 

 

Theorem 5.11: Let g: (Y, τ) → (Z, τ1) be NGPR irresolute mapping. If (Y, τ)  is NGPR compact space then (Z, τ1) is also a 

NGPR compact space. 

Proof: Let g: (Y, τ) → (Z, τ1) be NGPR irresolute mapping form NGPR compact space (Y, τ) onto a NTS (Z, τ1). Let 

 iU i : be a NGPR open cover of Z then  i:)(Ug i

-1
is a NGPR open cover of Y. Since Y is a NGPR compact 

space, there exist a finite subfamily  )(Ug)........(Ug),(Ug),(Ug in

-1

i3

-1

i2

-1

i1

-1
of  i:)(Ug i

-1
such that 

.1U ij
1

N

n

j

=
=

  Since g is onto, g(1N) =1N and ( ) ( )( ) ( ).UUU ij
1

ij

1

1
ij

1

1

n

j

n

j

n

j

gggg
=

−

=

−

=

==







  It follow that ( ) N

n

j

1U ij
1

=
=

 and 

the family {Ui1, Ui2, ……Uin} is a neutrosophic finite subcover of  iU i : . Hence (Z, τ1) is a NGPR compact space. 

 

Theorem 5.12: A NTS  (Y, τ) is NGPR compact space if and only if Y is finite. 

 

Proof: Let (Y, τ) is NGPR compact space. Since  iU i :  is NGPR open cover of (Y, τ). Since (Y, τ) is NGPR compact 

space, there exist a finite subcover Y1= niU i .......3,2,1: = of Y such that Y ⊆  niU i .......3,2,1: = = Y1⊆ Y. Hence Y= 

Y1. Which is finite. Converse is obvious. 

6. Conclusion 
 The concept of Neutrosophic almost gpr continuous mappings, Neutrosophic almost gpr closed mappings and the 

interrelations among these mappings and existing mappings in Neutrosophic topological spaces have been introduced and 

studied. Further we extended our study to the concept of Neutrosophic gpr compactness in Neutrosophic topological spaces. 
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The above concepts are used to develop theory in the field of Neutrosophic fuzzy topological spaces and Neutrosophic soft 

topological spaces. 
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