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Abstract - In this paper, the boundedness and control of nonlinear switched time-varying delay systems in finite time are
studied. By constructing a new Lyapunov-Krasovskii functional (LKF) and based on a new switching rule, sufficient
conditions for the boundedness of the system in finite time and the calculation method of the state feedback controller are
obtained. Finally, a numerical example is given to prove the feasibility of the proposed method.
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1. Introduction

Nowadays, the switching system plays an important role in the field of control applications [1-6]. However, the time-delay
phenomenon often appears in practical engineering applications, and may make the system unstable or even deteriorate its
performance [7-11]. At the same time, when the system is nonlinear [12-15], the dynamic behavior is more complicated, and it
is widely used in practical engineering applications, Such as mobile robot system [16], multi-modal controller [17], variable
structure controller [18-19]. Cheng et al. discussed the stability of linear switched systems [20]. Hadi et al. studied the control
problem of nonlinear systems with constant delay [21]. Therefore, the research on nonlinear switched time-varying delay
systems is very popular and necessary.

The purpose of this paper is to combine LKF and switching rules to get a new switching law. Finite-time boundedness and
state feedback control are also discussed. Primarily, consider the following nonlinear switched system:

{x(t) = AooyX(6) + Aroryx(t — h(1)) + Auoy(0) + Aworyw(t) + Fy(x (), )
x(to) = ¢(to), Vty € [—hy,0].

where x(t) € R™ is state variable, 4(t) is the considered time-varying delay and satisfies 0 < h; < h(t) < h,,0 < h(t) < 1,
1(t) € R™ is control input, w(t) € L, is external disturbances, and F,(x(t)): R® - R™ is nonlinear function. Switching
signal o(t):[0,0] > M is a piecewise constant function, where M = {1,2,---,m}. Finally, Aoy 1), A15(t) Auo(e) Awo(e) are
constant real matrices, and 4, 4, are constants. The assumptions and definition useful for proving the above switched system
are given below.

Assumption 1.1: [22] The external disturbances w(t) satisfy fotf wT(Dw(t)dt < 65,6 > 0.
Assumption 1.2: [23] The nonlinear function Fi(x(t)) satisfies F;(0) = 0, it is Lipschitz condition if

[IFi (21 (©)) = Fi ()| < pillxs (&) = %O, )
Where p; € R is Lipschitz constant.

Definition 1.1: [24] The switched system (1) is said to be finite-time bounded, if there exist positive constants ¢;, c,(c, > ¢; >
0),t, 6, a switching signal o (t), such that
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max |[x(@E)I? < ¢, = ||x®O|? < c,,
toe[_hZ'O]” )z < cz = llx®l5 < c;

tr
vt € [0,¢],h(t) € [hl,hz],w(t):J oT(Hw(t)dt < 8.
0

The following switch signal o (t) will be abbreviated as i, which also indicates that the ith subsystem is active at time t
(i=12,--,m). At the same time as the system switching, here we consider the controller with switching. Therefore, the
following state feedback controller is considered:

u(t) = K;x(t). (3)

Then, system (1) can be converted to the following closed-loop system:

{a‘c(t) = (Ao + AuK)x(©) + Ayx(t — h(®)) + Ayiw(®) + Fi(x(D)), @

x(ty) = ¢(to), Vo € [—hy,0].

2. Main Results
Theorem 2.1: For any i,j € {1,2,---,m}, given parameters (cl, 2, b7, 6, a), and constants a > 0, p, if there exist symmetric
positive-definite matrices P;, Q,;, Q5;, 03; € R™™ matrices X;, I; € R™ " satisfying the following conditions:

I 0 0 AP Ay 1

*  —ehQy; 0 0 0 0
=" * me™Qy 00 0y )

. ¢ M 00

* * * * —al O

* * * * * —1
e“r{ci[Biz + Bahie™ + (Bs + Bi)hre™2] + ad} — Bric; <O, (6)

where []y; = APy + PT AL + AuiX + XTAL — aPi + Qy + Qp + Q3 + pil;, [ =— (1 - jl(t)) e™Qy, Py S P <
Bizs P QuiP7Y < Bo, PT1Q0i Pt < B3, PTQ3i P < Ba

Then, under the switching law
a(t) = argminxT (£)Px(t), )
and the switched time-delay system (4) is finite-time bounded, the state feedback controller isu(t) = K;x(t) = X;P7*x(t).
Proof:

For the systems (4), we consider the following LKF:

V(x(0) = ¥ (OPXO) + J[, e“OxT@)0,x(0)d8 + [{, e“OxT(6)0,x(6)d8
1 €T (0)Qsx(6)d8. o

Define the following function J1 =Vi(x(@®) — aVi(x(@®) — aw" (Ow(t)
= 2xT(OP[(Ao; + AuiKi)x () + Ayx(t — h(0)) + Agiw(®) + F;(x(®))] + xT (©)Qyx(t)
+x7(0)Q2x (1) + xT (£)Q3x(t) — e®1x™ (t — hy)Qyx(t — hy) — e™2xT (t — hy)Q,x(t — hy)
= (1= i(®)) e Ox™ (£ = h(©))Qax(t — h()) — ax™ (P (t) — aw” (Do (t)
< xT(O)[2P,Ag; + 2P;AK; — aP; + Qy + Qa + Qs]x(t) + 2xT ()P, Ay x(t — h(1))
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+ 2xT ()P Ayiw(t) + 2xT (O PF(x(t)) — e 1xT(t — hy)Qqx(t — 1ry)
— e®h2xT(t — h,)Qux(t — hy) — (1 - h(t)) e@xT(t — h(t))Qsx(t — h(t)) — aw” (Dw ().
C))

where @, (t) = col{x(t), x(t —hy), x(t — hz),x(t - h(t)), w(t), Fi(x(t))}.

Since the function F; (x(t)) satisfies Lipschitz condition (2), we can get the following inequality

pixT (O)x(t) — FF (x(©))F;(x(t)) = 0. (10)
Substitute (10) into (9), we have:
[T 0 0 Pidy; PiAwi  Pi
x  —evhQ, 0 0 0 0
<| * * —e®2(), 0 0 0= =71 t 11
L= . . . s 0 0 @i (O]]w1(t), (11)
[ * * * * —al OJ
* * * * * -1

where [T, = AR +R'A + AX + XAl -aP +Q +Q +Q +gl.,[l2= —(1 — h(t))e*MQ;.
Next, pre- and post-multiplying (11) by diag{P;*, P;*, P;*, P;',I,1}. Let F? = P, QJ = P'QP™, @z =

P;1Q,P;1,Q5 = P;1QsP; L 1; = P7YIP;, X; = K;P;, according to the condition (5), we can get w} (£)[];@,(t) <
0, thatis

Vi(x(®) — aVy(x(8)) — aw” (Dw(t) < 0. (12)
Multiply both sides of this inequality (12) by e~%¢, and integrating from ¢, to t, we have
Vi(x(1)) < e®tV(x(t)) + @ fttk et T (s)w(s)ds. (13)

On account of the trajectory x(t) is everywhere continuous, we have x(t;;) = x(t;) . Thus, according to the conditions
switching law (7), we can obtain

Vi(x(t)) = Vi(x(t)). (14)

Combining (13) and (14), using the similar iterative method in [25], according to t € [0, tf], 0 < e™* < 1 and Assumption
1.1, we have

Vi(x(0) < e*V;(x(0)) + afote“(t‘s)wT(s)w(s)ds < eV (x(0)) + ae®sé. (15)

Moerover, based (8), the condition 0 < /1, < h(t) < h,, and Definition 1.1, we get

0 0

e~ ¥xT(0)x(0)d6 + B3j e xT(0)x(0)do
—hy

Vi(x(©) < frox (O + £, | h

+,84f e *xT(9)x(6)do
—h(t)
< PiaCy + Pacihie™t + (B + By)crhye®2, (16)

Then,

Vi(x(®) < e®r{c1[Baz + B2hre™ + (Bs + Ba)hye™2] + as}. (17)
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On the other hand,
Vi(x(8)) = Brax" (£)x(8). (18)
Therefore, the following result can be obtained
T (Ox() < {Cllﬁlz+ﬁ2hle“’;+(ﬁ3+ﬁ4)hze“”2]+“5} < e (19)
11

According to the condition (6) and Definition 1.1 it is easy to get that the nonlinear switched system (4) is finite-time

bounded. This completes the proof.

3. Numerical simulation
In this section, a numerical example is given to certify the correctness of the proposed method. Consider the switched

system (4) with two subsystems as following:

[-12 -0.1 [-2.1 0.5 [ 1 o [-12 o 1 o
g {0.2 -1.5] fe {-1.5 0.2] g {-0.2 0.9] Ao {0.5 -0.1] i {-0.2 0.8]

-0.2 _ [-5cos(x;) _ 0
b= [ = [0.1cos(x2)]’

-0.9 o]’ Aw2=[0'5 seost)],

_[3 0 _
A“z_[0.7 -1]"4‘”1_[0.2 -1 0 01/l
0.05(1+1.5¢t)

w(t) = =5
(5+1t)

,h(t) = 0.15 + 0.1 sin(t).

Theorem 2.1 shows that the switched system (4) is finite-time bounded when the switching law (7) is satisfied.

The corresponding parameter selected are c; = 0.01,tf = 3,6=0.1, h; = 0.05, h, = 0.25, h(t) =0.1,a =
0.2, p; = p, = 0.5. Using the LMI toolbox of MATLAB to solve conditions (5) and (6), the following feasible solutions can
be obtained. Meanwhile, the state trajectories of the closed-loop system (4) are also given below when the initial condition
xo = [—1.5,0.5]7 in Figurel. Figure 2 shows the value of x” (t)x(t) . Obviously, this is less than the value of c, that we get.

- 14.2456 0.29931 ~ _ [28.2684 -0.00001 5 _ [27.6653 -0.0000
P [ ] 11_[-0.0000 28.2684]’ 217 1.0.0000 27.6653]'

17102993 14.6538

25.6779 -0.9632] x. = [37:1076  0.2929
4 0.2929  -31.4437

Q31=[—0.9632 244462
-0.0000] 113819 -0.0000]

p. _ [0-6280 0.0251] Ory = 1.4102 _
27 10.0251 1.3963!" <12 7 1.0.0000 1.41021" <227 1-.0.0000 1.3819
92.3011 10.2407

0y = [LO003 -00049]  _ 184760 06372 ; ]
27 10.0049 14862172 " lo.6372 18595612 ~ l10.2407 58.7988)

B1,=0.0675, B1,=1.5945, B,=3.5854, B;=3.5133, B,=4.0691, c,=12.2765.
-13.5252 0.6992

. -2.6064 0.0732
And the controller gain: Ky = | 0 - -2.1471]'K2= 0.4834 13.3088"

] i =[-6.4873 -7.3235
'1 7 1.7.3235 -27.2802)
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Fig. 1 The time response of the state variables.
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Fig. 2 The time response of xT (£)x(t) for the closed-loop system (4).

4. Conclusion

In this paper, the boundedness and control of nonlinear switched time-varying delay systems in finite time are studied. By
combining LKF with switching rules, a new switching law is obtained, and the boundedness and controller gain of the system
in finite time are obtained. Finally, a numerical example is given to prove the feasibility of the proposed method.
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