Finite-Time Control of Nonlinear Switched TimeVarying Delay System

Xin Qi^{1}, Wenqin Wang ${ }^{1}$
${ }^{1}$ School of Mathematical Sciences, Tiangong University, Tianjin, China.

Received: 29 June 2022
Revised: 30 July 2022
Accepted: 09 August 2022
Published: 22 August 2022

Abstract

In this paper, the boundedness and control of nonlinear switched time-varying delay systems in finite time are studied. By constructing a new Lyapunov-Krasovskii functional (LKF) and based on a new switching rule, sufficient conditions for the boundedness of the system in finite time and the calculation method of the state feedback controller are obtained. Finally, a numerical example is given to prove the feasibility of the proposed method.

Keywords - Time-varying delay, Switching system, Lyapunov-Krasovskii function, Finite time boundedness, Control.

1. Introduction

Nowadays, the switching system plays an important role in the field of control applications [1-6]. However, the time-delay phenomenon often appears in practical engineering applications, and may make the system unstable or even deteriorate its performance [7-11]. At the same time, when the system is nonlinear [12-15], the dynamic behavior is more complicated, and it is widely used in practical engineering applications, Such as mobile robot system [16], multi-modal controller [17], variable structure controller [18-19]. Cheng et al. discussed the stability of linear switched systems [20]. Hadi et al. studied the control problem of nonlinear systems with constant delay [21]. Therefore, the research on nonlinear switched time-varying delay systems is very popular and necessary.

The purpose of this paper is to combine LKF and switching rules to get a new switching law. Finite-time boundedness and state feedback control are also discussed. Primarily, consider the following nonlinear switched system:

$$
\left\{\begin{array}{l}
\dot{x}(t)=A_{0 \sigma(t)} x(t)+A_{1 \sigma(t)} x(t-h(t))+A_{\mu \sigma(t)} \mu(t)+A_{w \sigma(t)} \omega(t)+F_{\sigma(t)}(x(t)), \tag{1}\\
x\left(t_{0}\right)=\phi\left(t_{0}\right), \forall t_{0} \in\left[-h_{2}, 0\right] .
\end{array}\right.
$$

where $x(t) \in R^{n}$ is state variable, $h(t)$ is the considered time-varying delay and satisfies $0 \leq h_{1} \leq h(t) \leq h_{2}, 0<\dot{h}(t)<1$, $\mu(t) \in R^{n}$ is control input, $\omega(t) \in L_{2}$ is external disturbances, and $F_{\sigma(t)}(x(t)): R^{n} \rightarrow R^{n}$ is nonlinear function. Switching signal $\sigma(t):[0, \infty] \rightarrow M$ is a piecewise constant function, where $M=\{1,2, \cdots, m\}$. Finally, $A_{0 \sigma(t)}, A_{1 \sigma(t)}, A_{\mu \sigma(t)}, A_{w \sigma(t)}$ are constant real matrices, and h_{1}, h_{2} are constants. The assumptions and definition useful for proving the above switched system are given below.

Assumption 1.1: [22] The external disturbances $\omega(t)$ satisfy $\int_{0}^{t_{f}} \omega^{T}(t) \omega(t) d t \leq \delta, \delta>0$.
Assumption 1.2: [23] The nonlinear function $F_{i}(x(t))$ satisfies $F_{i}(0)=0$, it is Lipschitz condition if

$$
\begin{equation*}
\left\|F_{i}\left(x_{1}(t)\right)-F_{i}\left(x_{2}(t)\right)\right\| \leq \rho_{i}\left\|x_{1}(t)-x_{2}(t)\right\|, \tag{2}
\end{equation*}
$$

Where $\rho_{i} \in R$ is Lipschitz constant.
Definition 1.1: [24] The switched system (1) is said to be finite-time bounded, if there exist positive constants $c_{1}, c_{2}\left(c_{2}>c_{1}>\right.$ $0), t_{f}, \delta$, a switching signal $\sigma(t)$, such that

$$
\begin{gathered}
\max _{t_{0} \in\left[-h_{2}, 0\right]}\left\|x\left(t_{0}\right)\right\|_{2}^{2}<c_{2} \Rightarrow\|x(t)\|_{2}^{2}<c_{2}, \\
\forall t \in\left[0, t_{f}\right], h(t) \in\left[h_{1}, h_{2}\right], \omega(t): \int_{0}^{t_{f}} \omega^{T}(t) \omega(t) d t \leq \delta .
\end{gathered}
$$

The following switch signal $\sigma(t)$ will be abbreviated as i , which also indicates that the ith subsystem is active at time t $(i=1,2, \cdots, m)$. At the same time as the system switching, here we consider the controller with switching. Therefore, the following state feedback controller is considered:

$$
\begin{equation*}
\mu(t)=K_{i} x(t) \tag{3}
\end{equation*}
$$

Then, system (1) can be converted to the following closed-loop system:

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left(A_{0 i}+A_{\mu i} K_{i}\right) x(t)+A_{1 i} x(t-h(t))+A_{w i} \omega(t)+F_{i}(x(t)) \tag{4}\\
x\left(t_{0}\right)=\phi\left(t_{0}\right), \forall t_{0} \in\left[-h_{2}, 0\right]
\end{array}\right.
$$

2. Main Results

Theorem 2.1: For any $i, j \in\{1,2, \cdots, m\}$, given parameters $\left(c_{1}, c_{2}, t_{f}, \delta, \sigma\right)$, and constants $\alpha>0, \rho$, if there exist symmetric positive-definite matrices $\bar{P}_{i}, \bar{Q}_{1 i}, \bar{Q}_{2 i}, \bar{Q}_{3 i} \in R^{n \times n}$ matrices $X_{i}, \bar{I}_{i} \in R^{n \times n}$ satisfying the following conditions:

$$
\begin{align*}
& \bar{\Pi}_{i}=\left[\begin{array}{cccccc}
\bar{\Pi}_{1 i} & 0 & 0 & A_{1 i} \bar{P}_{i} & A_{w i} & I \\
* & -e^{\alpha h_{1}} \bar{Q}_{1 i} & 0 & 0 & 0 & 0 \\
* & * & -e^{\alpha h_{2}} \bar{Q}_{2 i} & 0 & 0 & 0 \\
* & * & * & \bar{\Pi}_{2 i} & 0 & 0 \\
* & * & * & * & -\alpha I & 0 \\
* & * & * & * & * & -I
\end{array}\right], \tag{5}\\
& e^{\alpha t} f\left\{c_{1}\left[\beta_{12}+\beta_{2} h_{1} e^{\alpha h_{1}}+\left(\beta_{3}+\beta_{4}\right) h_{2} e^{\alpha h_{2}}\right]+\alpha \delta\right\}-\beta_{11} c_{2}<0, \tag{6}
\end{align*}
$$

where $\bar{\Pi}_{1 i}=A_{0 i} \bar{P}_{i}+\bar{P}_{i}^{T} A_{0 i}^{T}+A_{\mu i} X_{i}+X_{i}^{T} A_{\mu i}^{T}-\alpha \bar{P}_{i}+\bar{Q}_{1 i}+\bar{Q}_{2 i}+\bar{Q}_{3 i}+\rho_{i} \bar{I}_{i}, \bar{\Pi}_{2 i}=-(1-\dot{h}(t)) e^{\alpha h_{1}} \bar{Q}_{3 i}, \beta_{11} \leq \bar{P}_{i}^{-1} \leq$ $\beta_{12}, \bar{P}_{i}^{-1} \bar{Q}_{1 i} \bar{P}_{i}^{-1} \leq \beta_{2}, \bar{P}_{i}^{-1} \bar{Q}_{2 i} \bar{P}_{i}^{-1} \leq \beta_{3}, \bar{P}_{i}^{-1} \bar{Q}_{3 i} \bar{P}_{i}^{-1} \leq \beta_{4}$.

Then, under the switching law

$$
\begin{equation*}
\sigma(t)=\operatorname{argmin} x^{T}(t) \bar{P}_{i}^{-1} x(t) \tag{7}
\end{equation*}
$$

and the switched time-delay system (4) is finite-time bounded, the state feedback controller is $\mu(t)=K_{i} x(t)=X_{i} \bar{P}_{i}^{-1} x(t)$.

Proof:

For the systems (4), we consider the following LKF:

$$
\begin{align*}
& V_{i}(x(t))=x^{T}(t) P_{i} x(t)+\int_{t-h_{1}}^{t} e^{\alpha(t-\theta)} x^{T}(\theta) Q_{1} x(\theta) d \theta+\int_{t-h_{2}}^{t} e^{\alpha(t-\theta)} x^{T}(\theta) Q_{2} x(\theta) d \theta \\
+ & \int_{t-h(t)}^{t} e^{\alpha(t-\theta)} x^{T}(\theta) Q_{3} x(\theta) d \theta \tag{8}
\end{align*}
$$

Define the following function $\quad J_{1}=\dot{V}_{i}(x(t))-\alpha V_{i}(x(t))-\alpha \omega^{T}(t) \omega(t)$

$$
\begin{aligned}
= & 2 x^{T}(t) P_{i}\left[\left(A_{0 i}+A_{\mu i} K_{i}\right) x(t)+A_{1 i} x(t-h(t))+A_{\omega i} \omega(t)+F_{i}(x(t))\right]+x^{T}(t) Q_{1} x(t) \\
& +x^{T}(t) Q_{2} x(t)+x^{T}(t) Q_{3} x(t)-e^{\alpha h_{1}} x^{T}\left(t-h_{1}\right) Q_{1} x\left(t-h_{1}\right)-e^{\alpha h_{2}} x^{T}\left(t-h_{2}\right) Q_{2} x\left(t-h_{2}\right) \\
& -(1-\dot{h}(t)) e^{\alpha h(t)} x^{T}(t-h(t)) Q_{3} x(t-h(t))-\alpha x^{T}(t) P_{i} x(t)-\alpha \omega^{T}(t) \omega(t) \\
\leq & x^{T}(t)\left[2 P_{i} A_{0 i}+2 P_{i} A_{\mu i} K_{i}-\alpha P_{i}+Q_{1}+Q_{2}+Q_{3}\right] x(t)+2 x^{T}(t) P_{i} A_{1 i} x(t-h(t))
\end{aligned}
$$

$$
\begin{gather*}
+2 x^{T}(t) P_{i} A_{w i} \omega(t)+2 x^{T}(t) P_{i} F_{i}(x(t))-e^{\alpha h_{1}} x^{T}\left(t-h_{1}\right) Q_{1} x\left(t-h_{1}\right) \\
-e^{\alpha h_{2}} x^{T}\left(t-h_{2}\right) Q_{2} x\left(t-h_{2}\right)-(1-\dot{h}(t)) e^{\alpha h_{1}} x^{T}(t-h(t)) Q_{3} x(t-h(t))-\alpha \omega^{T}(t) \omega(t) . \tag{9}
\end{gather*}
$$

where $\omega_{1}(t)=\operatorname{col}\left\{x(t), x\left(t-h_{1}\right), x\left(t-h_{2}\right), x(t-h(t)), \omega(t), F_{i}(x(t))\right\}$.
Since the function $F_{i}(x(t))$ satisfies Lipschitz condition (2), we can get the following inequality

$$
\begin{equation*}
\rho_{i} x^{T}(t) x(t)-F_{i}^{T}(x(t)) F_{i}(x(t)) \geq 0 . \tag{10}
\end{equation*}
$$

Substitute (10) into (9), we have:

$$
J_{1} \leq\left[\begin{array}{cccccc}
\Pi_{1 i} & 0 & 0 & P_{i} A_{1 i} & P_{i} A_{w i} & P_{i} \tag{11}\\
* & -e^{\alpha h_{1}} Q_{1} & 0 & 0 & 0 & 0 \\
* & * & -e^{\alpha h_{2}} Q_{2} & 0 & 0 & 0 \\
* & * & * & \Pi_{2 i} & 0 & 0 \\
* & * & * & * & -\alpha I & 0 \\
* & * & * & * & * & -I
\end{array}\right]=\varpi_{1}^{T}(t) \Pi_{i} \varpi_{1}(t),
$$

where $\prod_{1 i}=A_{0 i} P_{i}+P_{i}^{\top} A_{d i}^{\top}+A_{\mu i} X_{i}+X_{i}^{\top} A_{\mu i}^{\top}-\alpha P_{i}+Q_{i}+Q_{i}+Q_{3 i}+\rho_{i} l, \prod_{2}=-(\mathbf{1}-\dot{\boldsymbol{h}}(\boldsymbol{t})) \boldsymbol{e}^{\alpha \boldsymbol{h}_{1}} \boldsymbol{Q}_{3}$.
Next, pre- and post-multiplying (11) by $\operatorname{diag}\left\{\boldsymbol{P}_{\boldsymbol{i}}^{\boldsymbol{- 1}}, \boldsymbol{P}_{\boldsymbol{i}}^{\boldsymbol{- 1}}, \boldsymbol{P}_{\boldsymbol{i}}^{\mathbf{- 1}}, \boldsymbol{P}_{\boldsymbol{i}}^{\boldsymbol{1}}, \boldsymbol{I}, \boldsymbol{I}\right\}$. Let $\bar{P}_{i}=P_{i}^{-1}, \quad \bar{Q}_{i}=P_{i}^{-1} Q P_{i}^{-1}, \overline{\boldsymbol{Q}}_{2 \boldsymbol{i}}=$ $\boldsymbol{P}_{i}^{-1} \boldsymbol{Q}_{\mathbf{2}} \boldsymbol{P}_{i}^{-1}, \bar{Q}_{3 i}=\boldsymbol{P}_{i}^{-1} \boldsymbol{Q}_{3} P_{i}^{-1}, \bar{I}_{i}=P_{i}^{-1} I P_{i}^{-1}, X_{i}=K_{i} \bar{P}_{i}$, according to the condition (5), we can get $\boldsymbol{\varpi}_{1}^{T}(t) \bar{\Pi}_{i} \varpi_{1}(t)<$ $\mathbf{0}$, that is

$$
\begin{equation*}
\dot{V}_{i}(x(t))-\alpha V_{i}(x(t))-\alpha \omega^{T}(t) \omega(t)<0 . \tag{12}
\end{equation*}
$$

Multiply both sides of this inequality (12) by $e^{-\alpha t}$, and integrating from t_{k} to t, we have

$$
\begin{equation*}
V_{i}(x(t))<e^{\alpha\left(t-t_{k}\right)} V_{i}\left(x\left(t_{k}\right)\right)+\alpha \int_{t_{k}}^{t} e^{\alpha(t-s)} \omega^{T}(s) \omega(s) d s \tag{13}
\end{equation*}
$$

On account of the trajectory $\boldsymbol{x}(\boldsymbol{t})$ is everywhere continuous, we have $\boldsymbol{x}\left(\boldsymbol{t}_{\boldsymbol{k}}^{-}\right)=\boldsymbol{x}\left(\boldsymbol{t}_{\boldsymbol{k}}\right)$. Thus, according to the conditions switching law (7), we can obtain

$$
\begin{equation*}
V_{i}\left(x\left(t_{k}^{-}\right)\right) \geq V_{i}\left(x\left(t_{k}\right)\right) \tag{14}
\end{equation*}
$$

Combining (13) and (14), using the similar iterative method in [25], according to $\boldsymbol{t} \in\left[\mathbf{0}, \boldsymbol{t}_{f}\right], \mathbf{0}<\boldsymbol{e}^{-\alpha s}<\mathbf{1}$ and Assumption 1.1, we have

$$
\begin{equation*}
V_{i}(x(t))<e^{\alpha t} V_{i}(x(0))+\alpha \int_{0}^{t} e^{\alpha(t-s)} \omega^{T}(s) \omega(s) d s \leq e^{\alpha t} f V_{i}(x(0))+\alpha e^{\alpha t_{f}} \delta \tag{15}
\end{equation*}
$$

Moerover, based (8), the condition $0 \leq h_{1} \leq h(t) \leq h_{2}$, and Definition 1.1, we get

$$
\begin{align*}
& \quad V_{i}(x(0)) \leq \beta_{12} x^{T}(0) x(0)+\beta_{2} \int_{-h_{1}}^{0} e^{-\alpha \theta} x^{T}(\theta) x(\theta) d \theta+\beta_{3} \int_{-h_{2}}^{0} e^{-\alpha \theta} x^{T}(\theta) x(\theta) d \theta \\
& \quad+\beta_{4} \int_{-h(t)}^{0} e^{-\alpha \theta} x^{T}(\theta) x(\theta) d \theta \\
& \leq \tag{16}
\end{align*}
$$

Then,

$$
\begin{equation*}
V_{i}(x(t))<e^{\alpha t_{f}}\left\{c_{1}\left[\beta_{12}+\beta_{2} h_{1} e^{\alpha h_{1}}+\left(\beta_{3}+\beta_{4}\right) h_{2} e^{\alpha h_{2}}\right]+\alpha \delta\right\} . \tag{17}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
V_{i}(x(t)) \geq \beta_{11} x^{T}(t) x(t) \tag{18}
\end{equation*}
$$

Therefore, the following result can be obtained

$$
\begin{equation*}
x^{T}(t) x(t)<\frac{e^{\alpha t} f\left\{c_{1}\left[\beta_{12}+\beta_{2} h_{1} e^{\alpha h_{1}}+\left(\beta_{3}+\beta_{4}\right) h_{2} e^{\alpha h_{2}}\right]+\alpha \delta\right\}}{\beta_{11}}<c_{2} \tag{19}
\end{equation*}
$$

According to the condition (6) and Definition 1.1 it is easy to get that the nonlinear switched system (4) is finite-time bounded. This completes the proof.

3. Numerical simulation

In this section, a numerical example is given to certify the correctness of the proposed method. Consider the switched system (4) with two subsystems as following:

$$
\begin{gathered}
A_{01}=\left[\begin{array}{cc}
-1.2 & -0.1 \\
0.2 & -1.5
\end{array}\right], \quad A_{22}=\left[\begin{array}{cc}
-2.1 & 0.5 \\
-1.5 & 0.2
\end{array}\right], \quad A_{1}=\left[\begin{array}{cc}
1 & 0 \\
-0.2 & 0.9
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-1.2 & 0 \\
0.5 & -0.1
\end{array}\right], \quad A_{\mu 1}=\left[\begin{array}{cc}
1 & 0 \\
-0.2 & 0.8
\end{array}\right], \\
A_{\mu 2}=\left[\begin{array}{cc}
3 & 0 \\
0.7 & -1
\end{array}\right], A_{w 1}=\left[\begin{array}{cc}
-0.9 & 0 \\
0.2 & -1
\end{array}\right], A_{w 2}=\left[\begin{array}{cc}
0.5 & -0.2 \\
0 & 0.1
\end{array}\right], F_{1}=\left[\begin{array}{c}
-5 \cos \left(x_{2}\right) \\
\sin \left(x_{1}\right)
\end{array}\right], F_{2}=\left[\begin{array}{c}
0 \\
0.1 \cos \left(x_{2}\right)
\end{array}\right], \\
\omega(t)=\left[\begin{array}{c}
0.05(1+1.5 t) \\
\frac{-5}{(5+t)}
\end{array}\right], h(t)=0.15+0.1 \sin (t) .
\end{gathered}
$$

Theorem 2.1 shows that the switched system (4) is finite-time bounded when the switching law (7) is satisfied. The corresponding parameter selected are $c_{1}=0.01, t_{f}=3, \delta=0.1, h_{1}=0.05, h_{2}=0.25, \dot{h}(t)=0.1, \alpha=$ $0.2, \rho_{1}=\rho_{2}=0.5$. Using the LMI toolbox of MATLAB to solve conditions (5) and (6), the following feasible solutions can be obtained. Meanwhile, the state trajectories of the closed-loop system (4) are also given below when the initial condition $x_{0}=[-1.5,0.5]^{T}$ in Figure1. Figure 2 shows the value of $x^{T}(t) x(t)$. Obviously, this is less than the value of c_{2} that we get.

$$
\begin{gathered}
\bar{P}_{1}=\left[\begin{array}{cc}
14.2456 & 0.2993 \\
0.2993 & 14.6538
\end{array}\right], \bar{Q}_{11}=\left[\begin{array}{cc}
28.2684 & -0.0000 \\
-0.0000 & 28.2684
\end{array}\right], \bar{Q}_{21}=\left[\begin{array}{cc}
27.6653 & -0.0000 \\
-0.0000 & 27.6653
\end{array}\right], \\
\bar{Q}_{31}=\left[\begin{array}{cc}
25.6779 & -0.9632 \\
-0.9632 & 24.4462
\end{array}\right], X_{1}=\left[\begin{array}{cc}
-37.1076 & 0.2929 \\
0.2929 & -31.4437
\end{array}\right], \bar{I}_{1}=\left[\begin{array}{cc}
-6.4873 & -7.3235 \\
-7.3235 & -27.2802
\end{array}\right], \\
\bar{P}_{2}=\left[\begin{array}{ll}
0.6280 & 0.0251 \\
0.0251 & 1.3963
\end{array}\right], \bar{Q}_{12}=\left[\begin{array}{cc}
1.4102 & -0.0000 \\
-0.0000 & 1.4102
\end{array}\right], \bar{Q}_{22}=\left[\begin{array}{cc}
1.3819 & -0.0000 \\
-0.0000 & 1.3819
\end{array}\right], \\
\bar{Q}_{32}=\left[\begin{array}{cc}
1.6003 & -0.0049 \\
-0.0049 & 1.4862
\end{array}\right], X_{2}=\left[\begin{array}{cc}
-8.4760 & 0.6372 \\
0.6372 & 18.5956
\end{array}\right], \bar{I}_{2}=\left[\begin{array}{cc}
92.3011 & 10.2407 \\
10.2407 & 58.7988
\end{array}\right], \\
\beta_{11}=0.0675, \beta_{12}=1.5945, \beta_{2}=3.5854, \beta_{3}=3.5133, \beta_{4}=4.0691, c_{2}=12.2765 .
\end{gathered}
$$

And the controller gain: $K_{1}=\left[\begin{array}{cc}-2.6064 & 0.0732 \\ 0.0657 & -2.1471\end{array}\right], K_{2}=\left[\begin{array}{cc}-13.5252 & 0.6992 \\ 0.4834 & 13.3088\end{array}\right]$.

Fig. 1 The time response of the state variables.

Fig. 2 The time response of $x^{T}(t) x(t)$ for the closed-loop system (4).

4. Conclusion

In this paper, the boundedness and control of nonlinear switched time-varying delay systems in finite time are studied. By combining LKF with switching rules, a new switching law is obtained, and the boundedness and controller gain of the system in finite time are obtained. Finally, a numerical example is given to prove the feasibility of the proposed method.

References

[1] F. Zhu and P. J. Antsaklis, "Optimal Control of Hybrid Switched Systems: A Brief Survey," Discrete Event Dynamic Systems, vol. 25, no. 3, pp. 345-364, 2015.
[2] F. Xiao and L. Wang, "State Consensus for Multi-Agent Systems with Switching Topologies and Time-Varying Delays," International Journal of Control, vol. 79, no. 10, pp. 1277-1284, 2006.
[3] J. Yu and L. Wang, "Group Consensus in Multi-Agent Systems with Switching Topologies and Communication Delays," Systems and Control Letters, vol. 59, no. 6, pp. 340-348, 2010.
[4] W. Ni and D. Cheng, "Leader-Following Consensus of Multi-Agent Systems Under Fixed and Switching Topologies," Systems and Control Letters, vol. 59, no. 3-4, pp. 209-217, 2010.
[5] D. Zheng, H. Zhang, J. Andrew Zhang, et al, "Consensus of the Second-Order Multi-Agent Systems Under Asynchronous Switching with a Controller Fault," International Journal of Control, Automation and Systems, vol. 17, no. 1, pp. 136-144, 2019.
[6] Zhendong Sun, "Stabilization and Optimization of Switched Linear Systems," Automatica., vol. 42, no. 5, pp. 783-788, 2006.
[7] Gholami. Hadi andBinazadeh, Tahereh, "Sliding-Mode Observer Design and Finite-Time Control of One-Sided Lipschitz Nonlinear Systems with Time-Delay," Soft Computing, vol. 23, no. 15, pp. 6429-6440, 2018.
[8] Zhao. JM, Zhang. LJ and Qi. X, "A Necessary and Sufficient Condition for Stabilization of Switched Descriptor Time-Delay Systems Under Arbitrary Switching,"Asian Journal of Control, vol. 18, no. 1, pp. 266-272, 2016.
[9] Xiangze. Lin, Haibo. Du andShihua. Li, "Finite-time Boundedness and L2-Gain Analysis for Switched Delay Systems with NormBounded Disturbance," Applied Mathematics and Computation, vol. 217, no. 12, pp. 5982-5993, 2011.
[10] Zhang. Xu, Wang. Jianfeng, Wu. Meixi andXu. Zhe, "Robust Quasi-Time Dependent Control for Switched Time-Delay Systems with Performance Guarantee," Optimal Control Applications and Methods, vol. 41, no. 6, pp. 1831-1843, 2020.
[11] H. Gholami and M. H. Shafiei, "Finite-Time Boundedness and Stabilization of Switched Nonlinear Systems using Auxiliary Matrices and Average Dwell Time Method," Trans. Inst. Meas. Control, vol. 42, no. 7, pp. 1406-1416, 2019.
[12] X. Zhao, Y. Yin, B. Niu and X. Zheng, "Stabilization for a Class of Switched Nonlinear Systems With Novel Average Dwell Time Switching by T-S Fuzzy Modeling," IEEE Transactions on Cybernetics, vol. 46, no. 8, pp. 1952-1957, 2015.
[13] Zheng. Qunxian and Zhang. Hongbin, "Robust Stabilization of Continuous-Time Nonlinear Switched Systems without Stable Subsystems via Maximum Average Dwell Time," Circuits, Systems, and Signal Processing, vol. 36, no. 4, pp. 1654-1670, 2017.
[14] Liu. Xingwen, Zhong. Shouming, Zhao. Qianchuan, "Dynamics of Delayed Switched Nonlinear Systems with Applications to Cascade Systems," Automatica, vol. 87, pp. 251-257, 2018.
[15] Xingwen. Liu, "Stability Analysis of a Class of Nonlinear Positive Switched Systems with Delays," Nonlinear Analysis: Hybrid Systems, vol. 16, pp. 1-12, 2015.
[16] T. C. Lee and Z. P. Jiang, "Uniform Asymptotic Stability of Nonlinear Switched Systems with an Application to Mobile Robots," IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1235-1252, 2008.
$[17]$ B. D. O. Anderson, T. Brinsmead, D. Liberzon, et al, "Multiple Model Adaptive Control with Safe Switching," International Journal of Adaptive Control and Signal Processing, vol. 15, no. 5, pp. 445-470, 2001.
[18] W. Gao andJ. C. Hung, "Variable Structure Control of Nonlinear Systems: A New Approach," IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 45-55, 1993.
[19] Lijun. Gao andYuqiang. Wu, "A Design Scheme of Variable Structure -Infinity Control for Uncertain Singular Markov Switched Systems Based on Linear Matrix Inequality Method," Nonlinear Analysis-Hybrid Systems, vol. 1, no. 3, pp. 306-316, 2007.
[20] He. S and Liu. F, "Finite-Time Fuzzy Control of Nonlinear Jump Systems with Time Delays via Dynamic Observer-Based State Feedback," IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 605-614, 2012.
[21] Daizhan. Cheng, Lei. Guo, Yuandan. Lin and Yuan. Wang, "Stabilization of Switched Linear Systems," IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 661-666, 2005.
[22] Gholami. Hadi and Shafiei. Mohammad Hossein, "Finite-Time H-Infinity Static and Dynamic Output Feedback Control for a Class of Switched Nonlinear Time-Delay Systems," Applied Mathematics and Computation, vol. 389, pp. 125557, 2021.
[23] Gholami. H and Binazadeh. T, "Design Finite-Time Output Feed Back Controller for Nonlinear Discrete-Time Systems with TimeDelay and Exogenous Disturbances," Systems Science and Control Engineering, vol. 6, no. 1, pp. 20-27, 2018.
[24] J. Song, Y. Niu and Y. Zou, "Finite-Time Stabilization via Sliding Mode Control," IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1478-1483, 2017.
[25] H. Gholami and M. H. Shafiei, "Finite-Time Boundedness and Stabilization of Switched Nonlinear Systems using Auxiliary Matrices and Average Dwell Time Method," Trans. Inst. Meas. Control, vol. 42, no. 7, pp. 1406-1416, 2019.

