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Abstract - We formulate the conditions for discreteness Dirichlet spectrum of Schrödinger operator 𝐻 = −𝛥 + 𝑉(𝑥) on 

Riemannian Manifold. Its formulated by using Lebesgue measure instead of harmonic capacity. We also provide the recent 

related results. 
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1. Introduction 

Assume that 𝑀is connected manifold, let 𝑔 = 𝑔𝑖𝑗is Riemannian metric structure on𝑀and𝑑𝑖𝑚 𝑀 = 𝑛.We introduce self-

adjoint Schrödinger operator𝐻 in 𝐿2(𝑀, 𝑑𝑀). 

𝐻 = −𝛥 + 𝑉(𝑥).                                                               (1)  
 

Let 𝑢be a scalar functions on𝑀, 𝛥is the Laplace-Beltrami operator . 

By using usual summation, we have 

𝛥𝑢 =
1

√𝑔

𝜕

𝜕𝑥𝑖 (√𝑔𝑔𝑖𝑗 𝜕𝑢

𝜕𝑥𝑗).                                                            (2) 

 

where𝑔𝑖𝑗is the inverse matrix to 𝑔𝑖𝑗,𝑔 = 𝑑𝑒𝑡(𝑔𝑖𝑗) and (𝑥1, 𝑥2, . . . , 𝑥𝑛)be a local system of coordinates in𝑀.  

The potential𝑉(𝑥)in equation (1)is real measurable function in 𝐿2,semi-bounded below such that for 𝑥 ∈ 𝑀 and 𝑐 ∈ ℝ 

 

𝑉(𝑥) ≥ −𝑐.                                                                           (3) 
 

Let 𝐵(𝑥, 𝑟) denote the open ball with radius 𝑟and center at𝑥in𝑀, 𝐵(𝑥, 𝑟)the closure of𝐵(𝑥, 𝑟). 

In order to perform boundary geometry on a Riemannian manifold, the following conditions must be met: 

  

1) The radius of injectiuity of 𝑀 is positive i.e.𝑟𝑖𝑛𝑗(𝑀) > 0 . 

 

2) |𝛥𝑚𝑅| < 𝐶𝑚where 𝛥𝑚𝑅 is a m-covariant derivative of curvature tensor. 

It is clear that the first condition reads as 

𝑟𝑖𝑛𝑗(𝑀) = 𝑖𝑛𝑓{𝑟𝑖𝑛𝑗(𝑥)|𝑥 ∈ 𝑀}. 

 

𝑟𝑖𝑛𝑗(𝑥) can be defined as the biggest 𝑟 > 0 such that 𝑒𝑥𝑝: 𝐵 (𝑥, 𝑟) → 𝑀 is diffeomorphism. References [3,7] provides further 

information on Riemannian manifolds. 

 

Now, for Dirichlet spectral problem : Suppose a Riemannian manifold (𝑀, 𝑔)has a boundary. Find all real numbers𝜆such that 

there exists a function 𝑢 ∈ 𝐶∞(𝑀)for which 

 

{
𝐻𝑢 = 𝜆𝑢
𝑢 = 0on boundary of 𝑀

 

 

In spectral terms, we are interested in finding the spectrum of 𝐻on the set of smooth functions with compact support on 𝑀. 

Indeed, the discrete spectrum 𝜎𝑑(𝐻)  is comprised of all eigenvalues with finite multiplicity. For a pure algebraic approach 

see [16]. 

http://www.internationaljournalssrg.org/
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In this paper, we define the Sobolev space 

𝐻1(𝑀) = 𝐶∞(𝑀). 
with respect to the norm 

‖𝑢‖1 = √‖𝑢‖
𝐿2
2 + ‖𝛻𝑢‖

𝐿2
2 . 

𝐻1(𝑀) is a Hilbert space induced by the inner product 

⟨𝑢, 𝑣⟩𝐻1 = ⟨𝑢, 𝑣⟩𝐿2 + ⟨𝛻𝑢, 𝛻𝑣⟩𝐿2 . 
In addition, we include the following 

𝐻0
1(𝑀) = 𝐶𝑐

∞(𝑀). 
 As a result, we have 

𝐶𝑐
∞(𝑀) ⊂ 𝐻0

1(𝑀) ⊂ 𝐻1(𝑀) ⊂ 𝐿2(𝑀). 
 

In order to measure the smallness part𝐴of manifold 𝑀we need to define the concept of capacity : 

𝑐𝑎𝑝(𝐴) = 𝑖𝑛𝑓 {∫ |𝛻𝑢|2𝑑𝑀|
𝑀

𝑢 ∈ 𝐻1(𝑀), ∫ 𝑢
𝑀

𝑑𝑀 = 0, 𝑢 − 1 ∈ 𝐻0
1(𝑀 − 𝐴)}. 

Where 𝐻0
1(𝑀 − 𝐴) = 𝐶𝑐

∞(𝑀 − 𝐴). 
 

In this paper, the second section states the main theorem. In the third section ,we give a general review of literature, and we 

focus on recent results. The capacity condition is replaced by the Lebesgue measure in the fourth section, resulting in discrete 

spectrum. 

 

2. Main theorem  
Theorem 2.1. Assume that (𝑀, 𝑔)is a Riemannian manifold of bounded geometry,𝐻is Schrödinger operator with potential 

satisfying  equation (3) .There exists 𝑐 > 0 , such that spectrum of 𝐻 is discrete if and only if : For any (𝑥𝑘) ⊂ 𝑀,𝑘 = 1,2, . .. 

such that 𝑥𝑘 → ∞ as 𝑘 → ∞ and for compact subset 𝐹𝑘 ⊂ 𝐵(𝑥𝑘, 𝑟) 

where 

𝑐𝑎𝑝(𝐹𝑘) ≤ 𝑐𝑟𝑛−2𝑖𝑓𝑛 ≥ 3, 

𝑐𝑎𝑝(𝐹𝑘) ≤ 𝑐 (𝑙𝑜𝑔
1

𝑟
)

−1

𝑖𝑓𝑛 = 2. 

Then the following condition holds  

∫ 𝑉(𝑥)𝑑𝜇(𝑥) → ∞
𝐵(𝑥𝑘,𝑟)/𝐹𝑘

𝑎𝑠𝑘 → ∞                                                       (4)  

The proof is announced in [13]. 

3. Literature surveys  
For one-dimensional Schrödinger operator in𝐿2(0,∞)), Weyl [5] gave the condition for the discreteness of 𝐻. He proved 

that if 𝑉(𝑡)is monotone i.e. 𝑉(𝑥) → ∞as 𝑥 → ∞then the spectrum of 𝐻is discrete. 

 

For 𝐿2(ℝ)space ,the condition (4) of  the main theorem is sufficient for discrete spectrum  you can follow [8] by I.M. 

Glazman. After that Molchanov results in 𝐿2(ℝ) and I.B rink [7] replaced the semi-bounded condition (3) by the condition  

 

∫𝑉(𝑥)𝑑𝑥 ≥ −𝑐
𝐽

 

Where 𝐽 the interval of length ≤ 1. 

Further improvements in ℝ𝑛 of discreteness spectrum for multidimensional operator is established by K.Friedrich [10] who 

used the condition 𝑉(𝑥) → ∞ as 𝑥 → ∞ whereas A.M. Molchanov [2] revealed two cases in 
n (𝑛 ≥ 3)and (𝑛 = 2), he used  

the capacity in spectral theory.  

Also V. G Mazya worked for same result [14]and other examples of discreteness of spectrum of Multidimsional Schrödinger 

operator by using concept of capacity in [9] . 
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The credited of studding spectrum of Schrödinger operator on Riemannian manifold due to G.Courtois [4] who treated the 

particular case when he applied perturbation type of Laplace −𝛥 on closed compact Riemannian manifold 𝑀 − 𝐴, he proved 

that   

0 ≤ 𝜆𝑘(𝑀 − 𝐴) − 𝜆𝑘 ≤ 𝐶𝑘√𝑐𝑎𝑝(𝐴). 
 

where𝐴is a compact subset of 𝑀 and 𝜆𝑘the 𝑘𝑡ℎeigenvalue of −𝛥on 𝑀. 

 

For more details in spectrum of Schrödinger operator𝐻on Riemannian manifold see [1] . In addition,[11,12] R.Brooks 

expressed in geometric terms the discreteness of spectrum of𝐻by boundary estimates for the bottom of essential spectrum of 

Laplace . 

 

4. Main Result 
In this section, we will replace the capacity in theorem2.1by Lebesgue measure, we will prove that using Lebesgue 

measure lead us to equivalent condition for the spectrum of 𝐻to be discrete. 

Theorem 4.1. Assume that(𝑀, 𝑔)is Riemannian manifold of bounded geometry. Consider 𝐻as in equation (1) with semi-

bounded  potential𝑉(𝑥). 

(1) In the case of𝑛 ≥ 3 there exists 𝑐 > 0 for any sequence {𝑥𝑘|𝑘 = 1,2, . . . } ⊂ 𝑀and𝑥𝑘 → ∞ as 𝑘 → ∞for any𝑟 <
𝑟0

2
 and 

compact subsets 𝐹𝑘 ⊂ 𝐵(𝑥𝑘, 𝑟) ⊂ 𝑀such that 

𝑚𝑒𝑠𝐹𝑘 ≤ 𝑐𝑟𝑛.                                                                              (5) 

 

where 𝑚𝑒𝑠𝐹𝑘is a  Lebesgue measure in normal geodesic coordinates center at 𝑥𝑘.If the condition  

 

∫ 𝑉(𝑥)𝑑𝜇 → ∞
𝐵(𝑥𝑘,𝑟)\𝐹𝑘

 as𝑘 → ∞.                                                                (6)  

 

is satisfied then the spectrum of Schrödinger operator 𝜎𝑑(𝐻) is discrete . 

(2) In the case of𝑛 = 2,there exist𝑁 > 0,𝑐 > 0 and 𝑟1 > 0 such that the condition (6) holds for 𝑟 ∈ (0, 𝑟1) 

 and  

𝑚𝑒𝑠𝐹𝑘 ≤ 𝑐𝑟𝑁.                                                        (7)  
Then the spectrum of 𝐻 is discrete. 

 

Proof. We will demonstrate that Lebesgue condition in equation  (5) is equivalent to capacity condition in theorem2.1with 

different constants, and we use  the reference [15] to compare capacity with the use of Lebesgue measure inℝ𝑛 . 

 

𝑐𝑎𝑝(𝐹𝑘) ≥ 𝑤𝑛
2/𝑛

𝑛(𝑛−2)/𝑛(𝑛 − 2)(𝑚𝑒𝑠𝐹𝑘)(𝑛−2)/𝑛𝑖𝑓𝑛 ≥ 3,                                           (8)  
 

𝑐𝑎𝑝(𝐹𝑘) ≥ 4𝜋 (𝑙𝑜𝑔
𝑚𝑒𝑠𝑤𝑛

𝑚𝑒𝑠𝐹𝑘
)

−1

𝑖𝑓𝑛 = 2                                                              (9)   

 

By using equation  (8) , it is clear that 

𝑚𝑒𝑠𝐹𝑘 ≤ 𝐴𝑛(𝑐𝑎𝑝(𝐹𝑘))
𝑛/(𝑛−2)

 

Therefore, 

𝐵𝑛
1

𝑚𝑒𝑠𝐹𝑘
≥ (𝑐𝑎𝑝(𝐹𝑘))

(𝑛−2)/𝑛
  

Where 𝐵𝑛 = 1/ 𝐴𝑛 we get,  

 

𝑐𝑎𝑝(𝐹𝑘) ≤ 𝑐1(𝑚𝑒𝑠𝐹𝑘)(𝑛−2)/𝑛 ≤ 𝑐1(𝑟𝑛𝑐)(𝑛−2)/𝑛 

This implies that for𝐶 > 0  

𝑐𝑎𝑝(𝐹𝑘) ≤ 𝐶𝑟(𝑛−2)  

 

It is obvious by  using  the main theorem2.1that spectrum of 𝐻is discrete .Similarly, for the case 𝑛 = 2 

 

showing that condition𝑐𝑎𝑝(𝐹𝑘) ≤ 𝑐̃ (𝑙𝑜𝑔
1

𝑟
)

−1

satisfies the condition 𝑚𝑒𝑠𝐹𝑘 ≤ 𝑐𝑟𝑁 

where 𝑟 ∈ (0, 𝑟1) and the constants 𝑟1, 𝑐. In order to establish this, we can use the equation (9) 
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we note that 

𝑚𝑒𝑠𝐹𝑘 ≤ 𝑚𝑒𝑠𝛺. 𝑒𝑥𝑝 (−4𝜋(𝑐𝑎𝑝(𝐹𝑘))
−1

) ≤ 𝑚𝑒𝑠𝛺. 𝑒𝑥𝑝 (−4𝑐̃−1 𝑙𝑜𝑔
1

𝑟
) 

= 𝑚𝑒𝑠𝛺. 𝑟4𝜋𝑐̃−1
≤ 𝑐. 𝑟𝑁  

Provided 𝑐̃, 𝑟1are sufficiently small. 

Proposition 4.1. Assume that for any𝐴 > 0 and any𝑟 ∈ (0, 𝑟0/2)  

 

𝑚𝑒𝑠{𝑦|𝑦 ∈ 𝐵(𝑥, 𝑟), 𝑉(𝑦) ≤ 𝐴} → 0as 𝑥 → ∞                                           (10)   
 

Prove that under the conditions of theorem2.1,the spectrum of 𝐻is discrete. 

 

Proof.  we denote 𝑚𝑒𝑠the Lebesgue measure in geodesic coordinates. We have to  prove that (10)  implies 𝑚𝑒𝑠𝐹𝑘 ≤ 𝑐𝑟𝑛 

Indeed, we can obviously obtain 

𝑚𝑒𝑠(𝐵(𝑥𝑘, 𝑟)\𝐹𝑘) ≥
1

2
𝑚𝑒𝑠𝐵(𝑥𝑘, 𝑟) 

for𝑐 to be arbitrarily small. 

 

we get 

𝑚𝑒𝑠({𝑦|𝑉(𝑦) ≥ 𝐴} ∩ (𝐵(𝑥𝑘, 𝑟)\𝐹𝑘)) ≥
1

4
𝑚𝑒𝑠𝐵(𝑥𝑘, 𝑟) 

hence 

∫ 𝑉(𝑥)𝑑𝑥 ≥
1

4
𝐴. 𝑚𝑒𝑠𝐵(𝑥𝑘, 𝑟)

𝐵(𝑥𝑘,𝑟)\𝐹𝑘

 

which implies 

∫ 𝑉(𝑥)𝑑𝑥 → ∞
𝐵(𝑥𝑘,𝑟)\𝐹𝑘

 as 𝑥 → ∞ 

Therefore by theorem 4.1we have 𝜎(𝐻) = 𝜎𝑑 . 

 

Example 4.2. Consider the Schrödinger operator 𝐻 = −𝛥 + 4𝑥2𝑦2inℝ2with the standard metric. 

We will note a short supply in the set {(𝑥, 𝑦)|4𝑥2𝑦2 ≥ 𝐴} at infinity. Therefore the condition (10) is satisfied , where the 

intersections with a ball of a fixed radius 𝑟have zero measure as the ball tends to infinity so𝜎(𝐻) = 𝜎𝑑 . 

Example 4.3. The spectrum of  𝐻 = −𝛥 + 𝑥2𝑦2 + 𝑥2𝑧2 + 𝑦2𝑧2 in ℝ3, is discrete spectrum. 

Similarly the proof of this example can be followed immediately by use (10) . 

 

5. Conclusion 
We investigated the discrete spectrum in theorem 4.1 employing  the Lebesgue condition instead of capacity. We also  

reviewed all previous results in the  study of discrete spectrum .Finally application examples were given to illustrate the main 

results. 
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