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Abstract−This paper proposes a four-parameterized distribution, namely an extended

Kumaraswamy-Gull Alpha Power Exponential distribution. The proposed distribution

gives rise to some well-known sub-models. Some basic properties of the distribution are

derived. The method of maximum likelihood estimation was employed to estimate the pa-

rameters of the distribution. A Monte Carlo simulation study was conducted to evaluate

the performance of the MLE estimates. From the simulation results, it is observed that with

an increase in sample size the average estimates approach the true value of the parame-

ters, and the average bias, MSE, and RMSE decrease, in general. The proposed K-GAPE

distribution is fitted to two real data sets and compared to its sub-models. A conclusion can

be made that the purposed distribution performs better than its underlying sub-models.

Keywords−Exponential distribution, Gull Alpha Power Family, Kumaraswamy distribu-

tion, Maximum likelihood estimation
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1. INTRODUCTION

Probability distributions are a fundamental statistical concept that is mostly used in the-

ory as well as practice. Data from various fields of study may show characteristics such as

skewness, kurtosis, monotonic hazard rates such as increase or decrease hazard rates, and

non-monotonic failure rates such as bathtub or modified bathtub hazard rates, such data

are handled with distributions that are more flexible. Most of the classical distributions and

some of the family of distributions cannot handle two or more of these data characteristics

at the same time due to the single shape parameter of their cumulative density function.

To offer additional location, scale, and shape parameters to distributions variety of

techniques have been used such as the variable transformation, exponentiation method,

Quantile method, the combination of two or more distributions/models method, etc.

Therefore due to the availability of the above methods several new distributions and

family of distributions have been developed and extended which include the exponenti-

ated exponential family by [1], the Generalized exponentiated exponential family by [2],

the Lomax exponential distribution by [3], the Modi exponential distribution by [4], The

exponentiated generalized class of distributions by [5], The generalized odd half-Cauchy

family of distributions: properties and applications by [6], On some further properties and

application of Weibull-R family of distributions by [7], the odd generalized exponential

family of distributions with applications by [8], the Kumaraswamy Marshall-Olkin family

by [9], the Kumaraswamy Transmute-G family of distributions by [10], the generalized

Marshall-Olkin Kumaraswamy-G family by [11], the Kumaraswamy alpha power-G fam-

ily by [12], the Gull Alpha power Weibull distribution by [13], a variant of the Gull Alpha

Power distribution by modifying the Chen-G type by [14], the Gull Alpha Power Ampadu-

G type by [15] the exponentiated generalized gull alpha power Rayleigh (EGGAPR) dis-
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tribution by [16], the exponentiated generalized gull alpha power exponential (EGGAPE)

distribution by [17], the exponentiated gull alpha power exponential (EGAPE) distribution

by [18] among others.

A four-parameterized model called K-GAPE has been introduced in this paper.

Two years ago, [13] defined the Gull Alpha Power family of distributions with CDF,

F (x) and PDF, f(x) respectively as:

F (x) =

{
αF (x)

αF (x) , if α > 0, α 6= 1
F (x), if α = 1

(1)

f(x) = log(α)α1−F (x)(−f(x)F (x)) + f(x)α1−F (x), α > 0, α 6= 1 (2)

The CDF and PDF of GAPF are used as a baseline in the Kumaraswamy-G family of

distributions introduced by [19] in which the new family called Kamuraswamy-Gull Al-

pha Power Family is developed. The main aim of extending this family is to develop a

distribution that is characterized by different shapes (including hazard rate shapes), have

heavy-tailed in order to model different real data sets, and provides a distribution that of-

fers a better fit compared to other competing models with the same baseline distribution.

The exponential distribution is used as a baseline in the new family of distributions to

developed the Kumaraswamy-Gull Alpha Power Exponential distribution abbreviated as

K-GAPE.

The proposed distribution has some special sub-models shown in Table 1.

The rest of the article is structured as follows: the new family and its proposed distribution

is presented in Section “Proposed distribution”, some statistical properties are presented

in Section “Statistical properties”, Parameters estimation, and the Monte Carlo simulation

study results are presented in Section “Parameters Estimation”. The proposed distribution

3

admin
Text Box
74

admin
Text Box
Mohamed Kpangay et al. / IJMTT, 68(8), 72-104, 2022



is then applied to real data sets with its competing sub-models in Section “Application to

real data”, and in Section “conclusion” the concluding remarks are presented.

Table 1: Summary of special sub-models of K-GAPE distribution.

α a b Sub-model comment
1 1 1 The E distribution Exist
1 a 1 Th EE distribution Exist
α 1 1 The GAPE distribution New
α a 1 The EGAPE distribution Exist
1 a b The KE distribution Exist

2. PROPOSED DISTRIBUTION

2.1. Kumaraswamy-Gull Alpha Power Family of Distributions

According to [19] the CDF, F(x) and PDF, f(x) of Kumaraswamy-G family distribu-

tions, respectively, are given by

FK−G(x) = 1− {1− [F (x)]a}b,a > 0, b > 0 (3)

and

fK−G(x) = abf(x)[F (x)]a−1{1− [F (x)]a}b−1 (4)

where x > 0, a > 0, and b > 0

In order to develop the new family of distributions called K-GAPF, we insert Eqs. (1)

and (2) of GAPF into Eqs. (3) and (4). Then the new family will have a CDF defined by

FK−GAPF (x) = 1−
{

1−
[
αF (x)

αF (x)

]a}b
(5)
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and PDF as

fK−GAPF (x) = ab(log(α)α1−F (x)(−f(x)F (x)) + f(x)α1−F (x))×
[
αF (x)

αF (x)

]a−1

×{
1−

[
αF (x)

αF (x)

]a}b−1

(6)

for a > 0, b > 0.

The survival function and hazard rate function of the new family, respectively, are

given by

SF (x) = 1− F (x) =

{
1−

[
αF (x)

αF (x)

]a}b
(7)

and

HRF (x) =
f(x)

1− F (x)
=
fK−GAPF (x)

SF (x)
(8)

2.2. K-GAP Exponential distribution

To exhaustively define the K-GAPE distribution, CDF, F (x) and PDF, f(x) of the

exponential distribution are first defined

F (x) = 1− e−βx

and
f(x) = βe−βx

for x > 0, and β > 0 is scale parameter.

Therefore, the proposed distribution, K-GAPE (a, b, α, β) distribution has the CDF,

PDF, and HRF defined as:

F (x) = 1−
{

1−
[
α(1− e−βx)
α1−e−βx

]a}b
(9)
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f(x) = ab(βαe
−βx

e−βx − αe−βxlog(α)β(1− e−βx)e−βx)
[
(1− e−βx)αe−βx

]a−1

{
1−

[
(1− e−βx)αe−βx

]a}b−1

(10)

HRF (x) =
J
[
α(1−e−βx)
αe
−βx

]a−1 {
1−

[
α(1−e−βx)
α1−e−βx

]a}b−1

{
1−

[
(1− e−βx)αe−βx

]a}b (11)

for J = ab(βαe
−βx

e−βx − αe−βxlog(α)β(1− e−βx)e−βx), x > 0.

Figure 1 shows the plots of an extended K-GAPE PDF which can be unimodal, reversed

J-shaped, right-skewed, almost symmetric (approximately symmetric), left-skewed, with

a fat tail, and a highly flexible kurtosis, making it suitable for a wide range of data.
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x

f(
x)

α=0.3β=0.9a=2.5b=3.2

α=0.1β=0.5a=9.5b=2.9

α=0.4β=0.9a=35.5b=9.5

α=0.1β=0.5a=55.5b=40.5

α=2β=0.9a=2.7b=2

Figure 1: K-GAPE density function for some parameters values

As observed in Figure 2 the plot of the hazard rate function for different parameter val-

ues shows a variety of shapes, including bathtub shapes, increasing, and decreasing shapes.
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These are very appealing characteristics that make the extended K-GAPE distribution suit-

able for modeling monotonic and non-monotonic hazard behaviors that are more likely to

be encountered in practical situations such as reliability analysis, human mortality, and

biomedical applications, thereby increasing its adaptability to fit diverse survival data.

Figure 2: K-GAPE hazard rate function shapes

3. STATISTICAL PROPERTIES

This section investigate and gives the shapes/plots and numerical values of some of the

basic statistical properties of K-GAPE distribution.

3.1. Quantile function

The quantile function has been used to calculate median, skewness, kurtosis, conduct-

ing simulation study etc. Using Mathematica software, the quantile function is obtained

as:

QFx(µ) =
log
[

log(α)
W (z)[−G]+log(α)

]
β

, α > 0, 6= 1 (12)
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whereG =

(
1−(1−µ)

1
b

) 1
a
log(α)

α and the
productLog function W (z) is defined as

W (z) =

∑∞
n=1(−1)n−1nn−2

(n− 1)!
zn

For the median, put µ = 0.5 in Eq. (12).
Table 2 shows some values for the quantile function for different parameter
values.

Table 2: Summary of some Quantile values of K-GAPE distribution.

µ α = 0.6, β = 0.5, a = 3.5, b = 2.5 α = 0.6, β = 0.5, a = 4.5, b = 2.7
0.1 1.448188 1.809884
0.2 1.860773 2.235246
0.3 2.194995 2.573243
0.4 2.505562 2.88346
0.5 2.817362 3.191967
0.6 3.150815 3.519253
0.7 3.532745 3.891365
0.8 4.014819 4.357621
0.9 4.751236 5.06406

3.2. The rth Moments

Given the rth Moments as

ω
′

r =

∫ ∞
0

xrfK−GAPE(x)dx (13)

where f(x) is the PDF and r = 1, 2, 3, ..., n

by substituting the K-GAPE PDF as in Eq. (10) into Eq. (13) we have:
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ω
′

r =

∫ ∞
0

xrab(βαe
−βx
e−βx−αe−βxlog(α)β(1−e−βx)e−βx)

[
(1− e−βx)αe−βx

]a−1

{
1−

[
(1− e−βx)αe−βx

]a}b−1

dx (14)

Useful binomial expansion representations

(m−n)n−1 =
∞∑
t=0

(
n− 1
t

)
mn−1−t(−n)t =

∞∑
t=0

(−1)t
(
n− 1
t

)
(m)n−1−t(n)t

(1−x)n−1 =
∞∑
t=0

(−1)t
(
n− 1
t

)
(1)n−1−txt =

∞∑
t=0

(−1)t
(
n− 1
t

)
xt

Using the binomial expansion representations in Eq. (14),
then[

(1− e−βx)αe−βx
]a−1

=
(
αe
−βx − αe−βxe−βx

)a−1

=
∞∑
c=0

(−1)c
(
a− 1
c

)(
αe
−βx
)a−c−1 (

αe
−βx
e−βx

)c
{

1−
[
(1− e−βx)αe−βx

]a}b−1

=
∞∑
d=0

(−1)d
(
b− 1
d

)[
(1− e−βx)αe−βx

]ad
[
(1− e−βx)αe−βx

]ad
=
(
αe
−βx − αe−βxe−βx

)ad
=

∞∑
g=0

(−1)g
(
ad

g

)(
αe
−βx
)ad−g (

αe
−βx
e−βx

)g
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By using the three relations above, Eq. (14) can be written as;

ω
′

r = abβ
∞∑
c=0

∞∑
d=0

∞∑
g=0

∫ ∞
0

xr(−1)c+d+g

(
a− 1
c

)(
b− 1
d

)(
ad
g

)
(
αe
−βx
)a−c−g+ad−1 (

αe
−βx
e−βx

)c+g+1

[
(1− e−βx)αe−βx

]ad (
1− log(α)(1− e−βx)

)
dx (15)

From observation, we notice that Eq. (15) is not in closed form, hence, the
moments are obtained by numerical integration.
Table 3 shows the first five values for the moments of the K-GAPE dis-
tribution for different parameter values. I: α = 0.1, β = 1.9, a = 10.7,
b = 15.9; II: α = 0.7, β = 1.9, a = 10.7, b = 15.9; III: α = 0.1, β = 2.5,
a = 10.7, b = 15.9; VI: α = 0.1, β = 1.9, a = 14.5, b = 15.9; V: α = 0.1,
β = 1.9, a = 10.7, b = 2.10.

Table 3: Summary of rth moments, skewness(B), and kurtosis(M)

ω
′
r I II III IV V
ω
′
1 1.27813 0.84823 0.97138 1.43591 1.79874
ω
′
2 1.66815 0.74810 0.96352 2.09669 3.41301
ω
′
3 2.22030 0.68578 0.97466 3.11060 6.83049
ω
′
4 3.01033 0.64901 1.00431 4.68523 14.42011
ω
′
5 4.15356 0.63322 1.05315 7.15977 32.12425

Var. 0.034523 0.029505 0.019941 0.034840 0.177531
SD 0.18580 0.17177 0.14121 0.18665 0.42134
CV 0.14537 0.20251 0.14537 0.12999 0.23424
B -0.01170 0.08003 -0.01170 -0.01757 0.70453
M 3.01186 2.97860 3.01186 3.01560 4.00557

From Table 3 it is observed that K-GAPE distribution is versatile in
terms of means and variance. Also from Table 3, based on the values of
the skewness, the K-GAPE distribution can be left-skewed (i.e. B < 0) and
right-skewed (i.e. B > 0) when compared to the normal distribution (i.e.
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B = 0). The K-GAPE distribution can also be platykurtic (i.e. M < 3),
almost mesokurtic (i.e. almost M = 3), and leptokurtic (i.e M > 3) based
on the values of the kurtosis.

3.3. Skewness and Kurtosis

To show the influence or effect of the additional shape parameters on
the measure of shape skewness and kurtosis, the Bowley skewness coef-
ficients and the Moors kurtosis are computed using quartiles and octiles,
respectively. Both Bowley skewness and Moors kurtosis are insensitive to
outliers, and their existence is guaranteed even for distributions with no
moment. [20] defined the Bowley skewness based on quartiles as:

B =
Q(3

4) +Q(1
4)− 2Q(1

2)

Q(3
4)−Q(1

4)

and [21] defined the Moors kurtosis based on octiles as

M =
Q(7

8)−Q(5
8) +Q(3

8)−Q(1
8)

Q(3
4)−Q(1

4)

where Q is the quantile function.
With Eq. (12) the Bowley skewness and the Moors kurtosis are obtained.

Figure 3 shows a 3D visualization of Bowley’s skewness for fixed base-
line parameter values of α = 0.5 and β = 0.8. The shapes of the skewness
coefficient are affected by the additional parameters, as observed. This en-
hances the K-GAPE distribution’s flexibility and reinforces the importance
of the additional parameters.

Figure 4 shows a 3D visualization of Moors’s kurtosis for fixed baseline
parameter values of α = 0.5 and β = 0.8. The shapes of the kurtosis coeffi-
cient are affected by the additional parameters, as observed. This enhances
the K-GAPE distribution’s flexibility and reinforces the importance of the
additional parameters.
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(a) (b)

Figure 3: Plots of Bowley’s skewness for K-GAPE distribution for fixed baseline parameter values of
α = 0.5 and β = 0.8.

(a) (b)

Figure 4: Plots of Moors kurtosis for K-GAPE distribution for fixed baseline parameter values of
α = 0.5 and β = 0.8.

3.4. Entropy of K-GAPE Distribution

Entropy has been used as a measure of variation or uncertainty of a ran-
dom variable in various circumstances or situations in science, engineering,
and probability theory.
[22] defined the Rényi Entropy for a random variable X with any distribu-
tion and order δ as

Rδ(X) =
1

1− δ
log

{∫ ∞
0

[f(x)]δ dx

}
(16)
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for δ > 0, δ 6= 1.
Substituting PDF of K-GAPE distribution as in Eq. (10) into Eq. (16), we
have

Rδ(X) =
1

1− δ
log{

∫ ∞
0

(ab(βαe
−βx
e−βx−αe−βxlog(α)β(1−e−βx)e−βx)×[

(1− e−βx)αe−βx
]a−1 [

1−
(

(1− e−βx)αe−βx
)a]b−1

)δdx} (17)

Employing the useful binomial expansions in Eq. (17), we can now write
the Rényi entropy as

Rδ(X) =
1

1− δ
×log{(abβ)δ

∞∑
c=0

∞∑
d=0

∞∑
g=0

∫ ∞
0

[(−1)c+d+g

(
a− 1
c

)(
b− 1
d

)
(
ad

g

)(
αe
−βx
)a−c−g+ad−1 (

αe
−βx
e−βx

)c+g+1 [
(1− e−βx)αe−βx

]ad
(
1− log(α)(1− e−βx)

)
]δdx} (18)

The K-GAPE distribution entropy values are obtained through numeri-
cal integration and are shown in Table 4 for various parameter values
I: α = 0.6, β = 1.3, a = 1.5, b = 1.6;
II: α = 0.9, β = 1.7, a = 2.5, b = 1.3;
III: α = 2.4, β = 0.7, a = 2.1, b = 1.7;
IV: α = 2.5, β = 0.5, a = 0.9, b = 1.1;
V: α = 1.1, β = 2.0, a = 2.2, b = 1.1.
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Table 4: Some values of the Rényi entropy for K-GAPE distribution.

Rδ I II III IV V
R(0.2) 1.46917 1.40774 1.57952 2.17575 1.34036
R(0.5) 0.99666 0.93090 0.89879 1.26013 0.82013
R(0.7) 0.86412 0.79490 0.71454 0.97610 0.66969
R(1.5) 0.63281 0.55439 0.41099 0.45783 0.40279
R(1.7) 0.60261 0.52257 0.37301 0.38635 0.36768
R(2.5) 0.52091 0.43610 0.27207 0.18433 0.27278

3.5. Order Statistic

If the general ith order statistic is given by

f(i:n)(x) =
n!

(i− 1)!(n− i)!
[F (x)]i−1[1 − F (x)]n−if(x) (19)

Then by substituting Eqs. (9) and (10) into Eq. (19), the PDF of the ith

order statistic of the K-GAPE distribution is given by:

f(i:n)(x) =
n!

(i− 1)!(n− i)!
ab(βαe

−βx
e−βx−αe−βxlog(α)β(1−e−βx)e−βx)

×
[
(1− e−βx)αe−βx

]a−1 {
1−

[
(1− e−βx)αe−βx

]a}b−1

×
{

1−
[
1−

(
(1− e−βx)αe−βx

)a]b}i−1{[
1−

(
(1− e−βx)αe−βx

)a]b}n−i
(20)
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while the PDF of the smallest order statistic, f(1:n)(x) is given by

f(1:n)(x) = n·abβe−βxαe−βx
(
1− log(α)(1− e−βx)

) [
(1− e−βx)αe−βx

]a−1

×{
1−

[
(1− e−βx)αe−βx

]a}b−1
{[

1−
(

(1− e−βx)αe−βx
)a]b}n−1

(21)

and the PDF of the largest order statistic, f(n:n)(x) is given by

f(n:n)(x) = n·abβe−βxαe−βx
(
1− log(α)(1− e−βx)

) [
(1− e−βx)αe−βx

]a−1

×{
1−

[
(1− e−βx)αe−βx

]a}b−1
{

1−
[
1−

(
(1− e−βx)αe−βx

)a]b}n−1

(22)

4. PARAMETERS ESTIMATION

In order to determine the MLEs of the given parameter estimation, we
utilize the log-likelihood function, for the model parameters a, b, α, β, which
can be written as

log(`) = nlog(ab)+2nlog(β)−2β
n∑
i=1

xi+log(log(α))+
n∑
i=1

log(1−e−βxi)+

(a−1)
n∑
i=1

log

(
α(1− e−βxi)
α1−e−βxi

)
+(b−1)

n∑
i=1

log

[
1−

(
α(1− e−βxi)
α1−e−βxi

)a]
(23)

For the parameters a, b, α, and β, the maximum likelihood estimates â , b̂,
α̂, β̂ are the values that maximize the log-likelihood function given in Eq.
(23). The first partial derivatives of the log-likelihood function in Eq. (23)
with respect to a, b, α, β are given by:
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For easy differentiation,
first, let

t = nlog(ab)+2nlog(β)−2β
n∑
i=1

xi+log(log(α))+
n∑
i=1

log(1−e−βxi),

v = (a− 1)
n∑
i=1

log

(
α(1− e−βxi)
α1−e−βxi

)
and

z = (b− 1)
n∑
i=1

log

[
1−

(
α(1− e−βxi)
α1−e−βxi

)a]
Eq. (23) is now reduced to

log(`) = t+ v + z (24)

Then we express the log-likelihood in terms of t, v, and z and perform their
derivatives w.r.t. a, b, α, β as shown.

∂t

∂a
=
n

a
,
∂t

∂b
=
n

b

∂t

∂α
=

1

α logα
,

∂t

∂β
=

2n

β
− 2

n∑
i=1

xi +
n∑
i=1

e−βxixi
(1− e−βxi)

∂v

∂a
=

n∑
i=1

log

(
α(1− e−βxi)
α1−e−βxi

)
∂v

∂b
= 0
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∂v

∂α
= (a− 1)

n∑
i=1

e−βxiα−1

∂v

∂β
= (a− 1)

n∑
i=1

e−βxixi
[
1− log(1− e−βxi)

]
∂z

∂a
= (b− 1)

n∑
i=1

(
α(1−e−βxi)
α1−e−βxi

)a
log
(
α(1−e−βxi)
α1−e−βxi

)
[(

α(1−e−βxi)
α1−e−βxi

)a
− 1
]

∂z

∂b
=

n∑
i=1

log

[
1−

(
α(1− e−βxi)
α1−e−βxi

)a]

∂z

∂α
= a(b− 1)

n∑
i=1

e−βxi
(

(1− e−βxi)αe−βi
)a

α
[(
αe
−βxi(1− e−βxi)

)a − 1
]

∂z

∂β
= a(b−1)

n∑
i=1

e−βxixi

(
α(1−e−βxi)
α1−e−βxi

)a (
e−βxi(log(α)− 1)− log(α)

)[(
αe
−βxi(1− e−βxi)

)a − 1
]

(eβxi − 1)
= z

′

β

Hence, the partial derivatives of log(`) with respect to each parameter and
equating each to zero are as follows:

∂log(`)

∂a
=
n

a
+
∂v

∂a
+
∂z

∂a
= 0 (25)

∂log(`)

∂b
=
n

b
+
∂z

∂b
= 0 (26)

∂log(`)

∂α
=

1

α logα
+
∂v

∂α
+
∂z

∂α
= 0 (27)
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∂log(`)

∂β
=

2n

β
− 2

n∑
i=1

xi +
n∑
i=1

e−βxixi
(1− e−βxi)

+
∂v

∂β
+
∂z

∂β
= 0 (28)

From observation, we notice that Eqs. (25)-(28) do not have a closed form
solution and hence, a numerical optimization method is required to find
their solutions.
In this paper, the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm
was used to estimate the parameters of K-GAPE distribution, and both the
log-likelihood function gradient vector and Hessian matrix are required.
The Hessian Matrix is a square matrix of second-ordered partial derivatives
of the log-likelihood function with respect to the parameters.

The observed information matrix of the K-GAPE distribution is given
by

J−1(θ) =


∂2log(`)
∂α2

∂2log(`)
∂α∂β

∂2log(`)
∂α∂a

∂2log(`)
∂α∂b

∂2log(`)
∂β2

∂2log(`)
∂β∂a

∂2log(`)
∂β∂b

∂2log(`)
∂a2

∂2log(`)
∂a∂b

∂2log(`)
∂b2


evaluated at θ̂ = (α̂, β̂, â, b̂)′. On request, the expressions of the observed
information matrix will be provided.

4.1. Monte Carlo simulation study

A Monte Carlo simulation study was conducted to investigate the av-
erage biases (ABs), mean square errors (MSEs), root mean square errors
(RMSEs), and the average estimates (AEs) of the maximum likelihood es-
timators for the parameters of the K-GAPE distribution.
A random sample of sizes n=50, 100, 150, 200, ..., 500 with 1000 itera-
tions in each n value was generated from the K-GAPE distribution using
the quantile function given in Eq. (12) and selected initial values for pa-
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rameters set I: (α, β, a, b)=(0.6, 0.3, 1.6, 1.3) and set II: (α, β, a, b)=(0.4,
0.5, 1.4, 1.5). In each set, the average estimates (AEs), average biases
(ABs), mean square errors (MSEs), and root mean square errors (RMSEs)
are recorded shown in Tables 5 and 6.

To compute the Average Biases (ABs), the Mean Squared Error (MSEs),
and the Root Mean Squared Error (RMSEs) the following equations were
used

AB(Φ) =
1

G

G∑
i=1

(Φ̂i − Φ) (29)

MSE(Φ) =
1

G

G∑
i=1

(Φ̂i − Φ)2 (30)

and

RMSE(Φ) =

√√√√ 1

G

G∑
i=1

(Φ̂i − Φ)2 (31)

Where G is the number of iterations, and Φ̂i is an estimator of Φ.
Simulation results for AEs, ABs, MSEs, and RMSEs are displayed in

Table 5 for the values of parameters in set I and Table 6 for the values of
parameters in set II.
From Tables 5 and 6 the simulation results for the K-GAPE distribution
show that the average estimates (AEs) approach the true values of the pa-
rameters as the sample size increases. The ABs, MSEs, and RMSEs for the
estimators of the parameters decrease, in general, as the sample size pre-
sented increases.
Summary remarks on simulation results

i. As sample size increases, parameter estimates’ values get closer/converge
to the true values.

ii. With an increase in sample size, the AB, MSE, and RMSE of the
parameters decrease generally.
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Table 5: Monte Carlo simulation study results for set I parameters

(α, β, a, b)=(0.6, 0.3, 1.6, 1.3)
AEs ABs

n α̂ β̂ â b̂ α̂ β̂ â b̂
50 0.83159 0.39242 2.19337 3.36111 0.23159 0.09242 0.59337 2.06111
100 0.73711 0.34228 1.77443 3.37362 0.13711 0.04228 0.17443 2.07362
150 0.69701 0.33233 1.63980 2.87373 0.09701 0.03233 0.03980 1.57373
200 0.67916 0.30865 1.58639 2.95123 0.07916 0.00865 -0.01361 1.65123
250 0.65111 0.31824 1.57744 2.94126 0.05111 0.01824 -0.02246 1.64126
300 0.63047 0.31713 1.55362 2.61595 0.03047 0.01713 -0.04638 1.31595
350 0.64710 0.31208 1.57508 2.54004 0.04710 0.01208 -0.02492 1.24004
400 0.65016 0.30820 1.56076 2.54372 0.05016 0.00820 -0.03924 1.24372
450 0.62282 0.30421 1.54136 2.61883 0.02282 0.00421 -0.05864 1.31883
500 0.62464 0.30094 1.54391 2.64077 0.02464 0.00094 -0.05609 1.34077

MSEs RMSEs
n α̂ β̂ â b̂ α̂ β̂ â b̂
50 0.53013 0.07608 3.64306 142.10708 0.72810 0.27583 1.90868 11.92087
100 0.33974 0.05077 0.85825 125.91265 0.58287 0.22532 0.92642 11.22108
150 0.28972 0.04552 0.46360 25.21725 0.53826 0.21336 0.68088 5.02168
200 0.23480 0.03750 0.27228 31.15187 0.48456 0.19365 0.52180 5.58129
250 0.18723 0.04062 0.23190 25.50512 0.43270 0.20154 0.48156 5.05026
300 0.17550 0.03542 0.18945 14.65920 0.41893 0.18820 0.43526 3.82674
350 0.16388 0.03277 0.16762 13.49265 0.40482 0.18104 0.40941 3.67323
400 0.15025 0.03498 0.14657 11.58580 0.38761 0.18704 0.38284 3.40379
450 0.12603 0.03144 0.11614 15.09647 0.35501 0.17730 0.34079 3.88542
500 0.12060 0.03198 0.11375 13.48112 0.34728 0.17883 0.33727 3.67166

Table 6: Monte Carlo simulation study results for set II parameters

(α, β, a, b)=(0.4, 0.5, 1.4, 1.5)
AEs ABs

n α̂ β̂ â b̂ α̂ β̂ â b̂
50 0.65771 0.62402 1.94034 4.15786 0.25771 0.12402 0.54034 2.67786
100 0.56063 0.59321 1.57915 3.83829 0.16063 0.09321 0.17915 2.33829
150 0.50655 0.55663 1.44440 3.14680 0.10655 0.05663 0.04440 1.64680
200 0.47637 0.54061 1.39799 3.20796 0.07637 0.04061 -0.00201 1.70796
250 0.48086 0.52579 1.41101 3.19389 0.08086 0.02579 0.01101 1.69389
300 0.46230 0.50107 1.37346 3.27715 0.06230 0.00107 -0.02654 1.77715
350 0.45955 0.49930 1.39433 3.20008 0.05955 -0.00070 -0.00567 1.70008
400 0.44027 0.50815 1.37191 3.11285 0.04027 0.00815 -0.02809 1.61285
450 0.43960 0.50981 1.36331 2.72725 0.03960 0.00981 -0.03559 1.22725
500 0.43455 0.49888 1.36823 2.97168 0.03455 -0.00112 -0.03177 1.47168

MSEs RMSEs
n α̂ β̂ â b̂ α̂ β̂ â b̂
50 0.48051 0.17978 3.78942 112.82177 0.69319 0.42401 1.94664 10.62176
100 0.31261 0.15631 0.81812 79.80760 0.55912 0.39536 0.90450 8.93351
150 0.22665 0.11500 0.41197 26.30607 0.47680 0.33911 0.64185 5.12894
200 0.17371 0.10813 0.24718 35.52417 0.41679 0.32883 0.49717 5.96022
250 0.16238 0.09592 0.20755 28.50664 0.40296 0.30972 0.45558 5.33916
300 0.13829 0.08324 0.16169 24.03832 0.37187 0.28852 0.40210 4.90289
350 0.11485 0.07386 0.13184 26.41472 0.33890 0.27178 0.36310 5.13953
400 0.09951 0.08003 0.11480 20.30341 0.31545 0.28290 0.33883 4.50593
450 0.09799 0.06965 0.10193 13.51624 0.31303 0.26392 0.31926 3.67644
500 0.08911 0.06861 0.09176 17.26409 0.29851 0.26194 0.30292 4.15501
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iii. The performance of each estimator is good, and they all yield low
AB, MSE, and RMSE values, this makes it very evident that the method of
parameter estimation using maximum likelihood method works well.

5. APPLICATION TO REAL DATA

In this section, the importance and flexibility of K-GAPE distribution are
studied by analyzing two real data sets. By employing the goodness-of-fit
test and information criteria techniques, the data sets are used to compare
the fits of the K-GAPE distribution and other competing models (i.e. its
sub-models).
These sub-models include:
(a) The Exponential (E) distribution
When α = a = b = 1 the CDF of the K-GAPE is reduced to the Exponen-
tial (E) distribution with CDF given as

FE(x) = (1− e−βx), for β > 0, x > 0

(b) The Exponentiated Exponential (EE) distribution
When α = b = 1 the CDF of the K-GAPE is reduced to the Exponentiated
Exponential (EE) distribution introduced by [23] with CDF given as

FEE(x) =
(
1− e−βx

)a
, for a > 0, 6= 1, β > 0, x > 0

(c) The Kumaraswamy Exponential (KE) distribution
When α = 1 the CDF of the K-GAPE is reduced to the Kumaraswamy
Exponential (KE) distribution introduced by [24] with CDF given as

FKE(x) = 1−
[
1−

(
1− e−βx

)a]b, for a, b > 0, 6= 1, β, x > 0

(d) The Exponentiated Gull Alpha Power Exponential (EGAPE)
distribution
When b = 1 the CDF of the K-GAPE is reduced to the Exponentiated Gull
Alpha Power Exponential (EGAPE) distribution introduced by [18] with
CDF given as
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FEGAPE(x) =
[
α(1−e−βx)

α1−e−βx

]a
, for α, a > 0, 6= 1, β > 0, x > 0

(e) The Gull Alpha Power Exponential (GAPE) distribution
When a = b = 1 the CDF of the K-GAPE is reduced to the Gull Alpha
Power Exponential (GAPE) distribution with CDF given as

FGAPE(x) =
[
α(1−e−βx)

α1−e−βx

]
, for α > 0, 6= 1, β > 0, x > 0

Table 1 displays a summary of these sub-models.

5.1. Data set 1: Sierra Leone COVID-19 daily confirmed cases data.

The first data set consists of 62 COVID-19 daily confirmed cases in
Sierra Leone ranging from 7th December 2021 to 24th February 2022,
which are shown in Table 7 . Sierra Leone COVID-19 daily confirmed
cases data was retrieved from https://covid19.who.int.

Table 7: Sierra Leone COVID-19 daily confirmed cases data.

3 15 1 1 1 11 18 19 34 5 15 48 86
160 72 92 81 50 65 41 48 40 44 30 23 43
6 7 32 7 13 16 13 2 14 4 5 5 12
6 3 14 1 3 1 3 7 1 2 2 1 9
1 10 2 2 7 2 1 1 1 1

Table 8 provides a summary of the most important descriptive statis-
tics of Sierra Leone COVID-19 daily confirmed cases data. The value of
the kurtosis is greater than 3 which implies that the data is leptokurtosis
(i.e. greater than that of a normal distribution) and right-skewed due to the
positive sign in the skewness value.

From Figure 5 the TTT plot shows that the data has a monotonic de-
creasing (or convex) hazard rate shape defined by [25] and with a minimum
amount of outliers.
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Table 8: Descriptive statistics for Sierra Leone COVID-19 data.

Statistic min. max. mean median mode var. sd. skewness kurtosis

Value 1 160 20.37097 7 1 860.3683 29.33204 2.458649 10.25769
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Figure 5: (a) TTT plot, (b) Histogram, and (c) Boxplot for data set 1

In Table 9, the estimates for the parameters of the fitted models are
presented along with their standard errors in parentheses. At the 5% level
of significance, most of the parameters of the fitted models are significant
according to the standard error test which state that a parameter is said to
be significant at a 5% level of significance if the standard error is less than
half the parameter value. Hence, the K-GAPE distribution offers a better
fit to the Sierra Leone COVID-19 daily confirmed cases data than its sub-
models.

As observed in Tables 10 and 11, the K-GAPE distribution has the
smallest values of negative log-likelihood, A∗, K − S, W ∗, and the in-
formation criteria statistics compare to its sub-models. This shows that
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Table 9: Summary of the estimates and SEs(in parentheses) for data set 1

Model α̂ β̂ â b̂
K-GAPE 2.6208(0.7899) 0.2039(0.0021) 0.8915(0.2783) 0.1628(0.0238)
EGAPE 1.7929(0.5529) 0.0023(0.0087) 0.7403(0.1293) -
GAPE 1.5450(0.4581) 0.0377(0.0099) - -
KE - 0.0255(0.0217) 0.6688(0.0994) 1.3696(0.9808)
EE - 0.0355(0.0068) 0.6272(0.0977) -
E - 0.0490(0.0062) - -

the K-GAPE distribution provides a better fit in modeling the Sierra Leone
COVID-19 daily confirmed cases data than its sub-models, although its
sub-models also fit the data except for exponential distribution which has a
p− value < 0.05.

Table 10: The −log(`) and goodness-of-fit results for data set 1.

Model −log(`) A∗ K − S p− value W ∗

K-GAPE(proposed) 240.126 1.022 0.128 0.2597 0.131
EGAPE(exist) 242.761 1.288 0.129 0.2571 0.180
GAPE(new) 244.837 1.286 0.137 0.2009 0.192
KE(exist) 243.632 1.410 0.133 0.2253 0.206
EE(exist) 243.945 1.450 0.129 0.2540 0.213
E(exist) 248.875 1.443 0.226 0.0036<.05 0.212

Table 11: Summary of information criteria results for data set 1

Model AIC BIC CAIC HQIC
K-GAPE(proposed) 488.252 496.761 488.954 491.593
EGAPE(exist) 491.522 497.904 491.936 494.028
GAPE(new) 493.674 497.896 493.881 495.329
KE(exist) 493.263 499.645 493.677 495.769
EE(exist) 491.889 497.144 492.093 493.560
E(exist) 499.750 501.877 499.817 500.585

Figure 6 displays a fitted densities plot for the K-GAPE distribution
and its sub-models for Sierra Leone COVID-19 daily confirmed cases data
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and it is seen that the K-GAPE distribution shows a promising fit over its
sub-models.

Histogram and fitted densities
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Figure 6: The fitted densities for Sierra Leone COVID-19 daily confirmed cases data

5.2. Data set 2: Tunisia COVID-19 daily death cases data.

The second data set consists of 61 COVID-19 daily death cases in Tunisia
ranging from 1st September 2021 to 31st October 2021, which are shown
in Table 12. Tunisia COVID-19 daily death cases data was retrieved from
https://covid19.who.int.

Table 13 provides a summary of the most important descriptive statistics
of Tunisia COVID-19 daily death cases data. The value of the kurtosis is
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Table 12: Tunisia COVID-19 daily death cases data.

87 109 63 63 44 29 55 92 48 45 72 47 39
30 63 46 32 27 48 37 26 81 20 22 29 27
56 6 48 26 22 11 20 13 5 27 5 16 9
21 11 11 7 7 13 16 3 13 2 3 18 11
7 10 6 5 53 8 6 4 7

greater than 3 which implies that the data is leptokurtosis (i.e. greater than
that of a normal distribution), bimodal (i.e. having two modes), and right-
skewed due to the positive sign in the skewness value.

Table 13: Descriptive statistics for Tunisia COVID-19 data.

Statistic min. max. mean median mode var. sd. skewness kurtosis

Value 2 109 29.29508 22 7&11 635.2781 25.20472 1.147799 3.748942

From Figure 7 the TTT plot shows that the data has a non-monotonic or
modified bathtub hazard rate shape defined by [25] and with a single out-
lier.
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Figure 7: (a) TTT plot, (b) Histogram, (c) Boxplot for data set 2
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Table 14 displays the estimates for the parameters of the fitted models
along with their standard errors in parentheses. At the 5% significance
level, the parameters of the fitted models are significant according to the
standard error test (i.e the standard error is less than half the parameter
value).

Table 14: Summary of the estimates and SEs(in parentheses) for data set 2

Model α̂ β̂ â b̂
K-GAPE 2.4248(0.0305) 0.3098(0.0019) 6.7446(0.1139) 0.1099(0.0141)
EGAPE 1.3854(0.6031) 0.0379(0.0091) 1.5902(0.4072) -
GAPE 0.5945(0.2731) 0.6418(0.0079) - -
KE - 0.3256(0.0039) 2.6928(0.5275) 0.1098(0.0142)
EE - 0.0419(0.0065) 1.3685(0.2425) -
E - 0.0341(0.0044) - -
In Tables 15 and 16, the K-GAPE distribution has the smallest values of

negative log-likelihood, A∗, K−S, W ∗, and the information criteria statis-
tics compare to its sub-models. This implies that the K-GAPE distribution
also provides a better fit in modeling the Tunisia COVID-19 daily death
cases data than its sub-models, although its sub-models also fit the data set
i.e. their p − values > 0.05. Figure 8 displays a fitted densities plot for

Table 15: The −log(`) and goodness-of-fit results for data set 2.

Model −log(`) A∗ K − S p− value W ∗

K-GAPE(proposed) 262.855 0.251 0.078 0.8541 0.041
EGAPE(exist) 265.253 0.485 0.090 0.7083 0.076
GAPE(new) 266.393 0.588 0.083 0.7925 0.091
KE(exist) 264.283 0.391 0.095 0.6456 0.063
EE(exist) 265.480 0.509 0.089 0.7224 0.079
E(exist) 267.023 0.508 0.091 0.6895 0.079
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Table 16: Summary of information criteria results for data set 2

Model AIC BIC CAIC HQIC
K-GAPE(proposed) 533.710 538.153 534.424 535.019
EGAPE(exist) 536.507 542.839 536.928 538.989
GAPE(new) 536.786 541.007 536.992 538.440
KE(exist) 534.566 540.899 534.987 537.048
EE(exist) 534.961 539.153 535.168 536.615
E(exist) 536.045 538.156 536.113 536.873

Tunisia COVID-19 daily death cases data and it is also observed that the
K-GAPE distribution is the best-fitted compared to its sub-models.

Histogram and fitted densities
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Figure 8: The fitted densities for Tunisia COVID-19 daily death cases data
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Concluding statements on the data application
i. For the two data sets, a conclusion can be made that the K-GAPE

provides the lowest values for the information criteria,−log(`), K−S, the
W ∗, and, A∗ and the highest p value compared to its competing models (i.e.
sub-models).

ii. The best-fitting model for the two data sets, from Figures 6 and 8 was
K-GAPE distribution.

iii. The Exponential (E) distribution offers a poor fitting for the data set
I, as seen in Table 10.

iv. From the results of the two data applications, a conclusion can be
made that the K-GAPE distribution gives the best fitting among its sub-
models which means that the K-GAPE distribution has a greater edge in
fitting this kind of data.

6. CONCLUSION

The Exponential distribution has been frequently employed in statisti-
cal research, particularly in engineering, financial science, and reliability.A
new four-parameter model called an extended Kumaraswamy-Gull Alpha
Power Exponential distribution, abbreviated as K-GAPE distribution has
been proposed in this study. Some statistical properties such as survival
function, hazard rate function, quantile function, moments, entropy, and
order statistic are investigated. The parameters’ maximum likelihood esti-
mators of the K-GAPE are determined, and a Monte Carlo simulation study
was conducted. The Average Estimates, the Average Biases, the Mean
Square Errors, and the Root Mean Square Errors were computed. As the
sample size increases the maximum likelihood estimates approach the true
value, and the Average Biases, the Root Mean Square Errors, and the Root
Mean Square Errors decrease with an increase in the sample size. Finally,
the K-GAPE distribution was applied to two real data sets, COVID-19 data
and the data show that the K-GAPE distribution gives the best fit for the
data sets when compared to its competing models (sub-models).
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