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Abstract - In this paper, we prove some fixed point theorems for expansive mappings in metric spaces with the aid of
tri-simulation function.
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1. Introduction

Banach[3] in 1922, manifested unique fixed point of complete metric space. Various contraction conditions were introduced
and there generalization was done by Banach principle(see [9], [14]). And it is obvious that from each new contraction condition
a new theorem rises. Popa [12] in 1997, integrated some such conditions. To support this, the implicit function was introduced
and it was utilized in ([1], [13]).
Wardowski [17], extended the principle introduced by Banach. He also inaugurated F-contraction. Imdad [7] and Piri [11]
explored the f- contraction. Khojasteh et al. [8] integrated some contractions conditions and established the concept of
simulation function.

Theorem 1.1 [17] Let (M, d) be a complete metric space. If h is a mapping of M into itself and if there exists a constant q >
1 such that

d(h®),h(¥)) 2 qd(x,¥)
for each X,y € M and h is onto, then h has a unique fixed point in M.
Definition 1.2 [14] Let W be the family of all functions y: [0, +0) — [0, +00) satisfying the following properties:
1. ZE5WI(t) < +oo forevery t > 0, where |/ is the pth iterate of y;
2.y is nondecreasing.

Definition 1.3 [16] Let (M,d) be a metric space and R:M — M be a given self mapping. R is said to be an (§,v)- expansive
mapping if there exist two functions £ € M and y: M X M — [0, +00) such that

§(d(Mx, My)) = v(x,y)d(x,y) @
forall x,y € M.

Definition 1.4 [14] Let (M,d) be a metric space and R:M — M be a given self mapping. R is said to be an a — y-contractive
mapping if there exist two functions c: M X M — [0,0) and s € ¢ such that
a(%, Y)A(RZ,RY) < Y(d(x,7)), forall X,y € M.

Definition 1.5 [14] Let R:M - M and a: M X M — [0, o). R is said to be a-admissible if
XVEM, a(xX,y) = 1= a(Rx,Ry) > 1.

Theorem 1.6 [14] Let (M,d) be a complete metric space and R: M — M be an o — y-contractive mapping satisfying the
following conditions:

TRl [ his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Preeti Bhardwaj & Manoj Kumar / IIMTT, 68(8), 109-115, 2022

1. R is a-admissible;

2. there exists p, € M such that a(py, Rpy) = 1;

3. R is continuous.

Then R has a fixed point, that is, there exists X € M such that Rk = X.

Theorem 1.7 [14] Let (M,d) be a complete metric space and R: M — M be an o — y-contractive mapping satisfying the
following conditions:
1. R is a-admissible;
2. thereexists p, € M such that a(pg, Rpy) = 1;
3. if p, isasequence in M such that a(p,, pns1) = 1 forall n and p, = p € M as n — oo, then a(p,,p) = 1 forall n.
Then R has a fixed point.
For uniqueness the following condition H is added by Samet et al. [2] to the hypotheses of Theorem 1.5 and Theorem 1.6 : (H)
Forall %,y € M, there exists z € M such that a(%,z) = 1 and a(y,z) = 1.

Shahi etal. [15] introduced new notion of (&, a)expansive mappings. And established different fixed point hypotheses
for such mappings in complete metric spaces. On getting motivation from this we formulated the following result.

Theorem 1.8 [14] Let (M, d) be a complete metric space and F: M x M — M be a given mapping. Suppose that there exists
Y € ¥ and a function y : M2 x M2 — [0, +c0) such that
Y(&¥), (@ ))AFE ), F@,v)) < %Lll(d()_(, 1) +d(y,v)), forall (%,¥),(T,¥v) EM x M.
Suppose also that
(1) forall (x,%),(u,v) €M x M, we have
V(&Y @) =21

= Y(FEY),FF X)), (FUv),FF0)) = 1;
(2) there exists (Xy,V,) € M X M such that
Y((Xo,¥0), (F(Fo,%X0), F(¥0,%0))) = 1 and y((F(¥o,%0), F(X0,¥0)), o, X0)) = 1;
(3) Fiscontinuous. Then F has a coupled fixed point, that is, there exists (x*,y*) € X x X such that x* = F(x*,y*) and y* =
F(y*, x*).

Definition 1.9 [8] Let &R, X R, — R be a mapping. Then & is called a simulation function if it satisfies the following
conditions:
(81): §(0,0) = 0;
(§2): §(y,x) <x —y, forall x,y > 0;
(§3):if y, and x, are sequencesin (0, c0) with lim,_,sup&(yy, x,) < 0.
Argoubi et al. [2] and Lo'pez — de — Hierro et al. [6] sharpened this definition as follows:

Definition 1.10 Argoubi et al. [2] Let &R, X R, — R be a mapping. Then & is called a stimulation function if it satisfies the
following conditions:

(2): &(y,x) < x —y, forall x,y > 0;

(83):if y, and x,, are sequences in (0,c0) with lim,_,,y, = lim,_ X, > 0, then lim,,_,,,sup€(y,, X,) < 0.

Definition 1.11 Lo'pez — de — Hierro et al. [8] sharpened this definition.

Let & R, X R, — R be amapping. Then € is called a stimulation function if it satisfies the following conditions:

(81): §(0,0) = 0;

(§2): &(y,x) <x —y, forall x,y > 0;

(83): if y, and x, are sequences in (0,o) such that lim,_.y, = lim,_.x, >0 and y, <x,, for all n €N, then
lim,,_, o Sup&(yy, X,) < 0.
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Definition 1.12 [8] A self-mapping S on a metric space (M, d) is said to be J-contraction with respect to a stimulation
function ¢ if the following condition is satisfied:

£(d(Su, Sv),d(u,v)) =0, 2)
forall u,v € M.

Theorem 1.13 [14] Let (M, d) be a complete metric space and S:M — M a continuous mapping satisfying a(u, v)d(Su, Sv) <
@(d(u,v)), for all u,v € M, where y:R, - R, is non-decreasing function such that Z}% ¢@"(t) < o, for all t > 0 and
a:M x M — R,. Assume that the following two conditions hold:
(i) there exists u, € M such that a(u,, Su,) = 1;
(i) S isa a —admissible i.e.,
a(u,v) = 1= a(Su,Sv) =1, forall u,veM.
Then S has a fixed point.

Karapinar[10] and Gubran[4] introduced admissible function in stimulation function, without this above theorem
cannot be hold by a stimulation function. Gubran et al.[5] presented a new type of stimulation function.

Definition 1.14 [4] Let T:R,® — R be a mapping. Then T is called a tri-stimulation function if it satisfies the following
conditions:
(T1) T(z,y,x) < x —yz, forall x,y >0,z > 0;
(T2) if z,, y, and x, are sequences in (0,o) such that y, <x,, for all ne N, lim,_ .z, =1 and lim,_,y, =
limp, X, > 0, then

limy, 0 supT(zy, Y, Xn) < 0.
7 denotes the set of all tri-stimulation functions.

Definition 1.15 [4] A self-mapping S on a metric space (M, d) is said to a a7-contraction with respectto T € 7 if
T(a(u,v),d(Su,Sv),d(u,v)) =0, (3)
forall uuve M, a: M XM - R,.
Definition 1.16 [15] Let M be a non-empty set. A self-mapping S is called a-orbital admissible if for all u,v € M,
a(u,Su) = 1 = a(Su,S?v) = 1.
Definition 1.17 [14] S is said to be triangular a-admissible if for all u,v and w € M,
() a(u,v) =21 = a(Su,Sv) = 1;
(i) a(u,v) = landa(w,v) = 1= a(uy,v) > 1.
Definition 1.18 [15] S is said to be triangular a-orbital admissible if for all u,v € M,
(i) a(u,Su) =1 = a(Su,S?u) > 1;
(i) a(u,v) = landa(v,Sv) =1 = a(u,Sv) > 1.
Definition 1.19 [4] S is said to be a-permissible if forall m >n>1 and u,v € M,
a(u,v) = 1= a(S"y, S™v) = 1.
Definition 1.20 [4] S is said to be a- orbital permissible if forall m>n>1 andforall m>n>n>1 and u € M,
a(y,Su) = 1= a(S"uy,S™u) = 1.
Definition 1.21 [4]Let (X,d) be a metric space and a: X X X — [0,00) be a mapping then any map S:X — X is said to be
a —permissible if v m>n>1 and u,v € X.
a(u,v) = 1= a(S"y, S™v) = 1.
Definition 1.22 [4] Let T:R,> - Rbe a mapping. Then T is called Trisimulation function if it satisfies the following
conditions: (Ty) T(z,y,x) <x —yz forall x,y >0, z> 0; (T)If z,, y,, X, are sequences in (0,c0) such that y, < x,, for
all n e N
limy ez, = 1 and lim y, = lim,_,x, > 0, then

n—-»oo
lim,,_, o, limsupT(z,, yn, X,) < 0.
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2. Main Results

In this section, we shall prove some fixed point theorems in metric spaces with the aid of tri-simulation function for
expansive mappings.
Definition 2.1 Let S be a self mapping on a metric space (M, d). Then S is said to be aT expansive mapping with respect to
Tertif

T(a(x,y),d(x,y),d(Sx,Sy)) = 0. (4)

Remark 2.2 Using (T1) one can observe that d(Sx,Sy) > a(x,y)d(x,y).
Theorem 2.3 Let(M,d) be a complete metric space and S:M — M be an aT- expansive bijective with respect to T € t.
Suppose that
(a) S71 is a-permissible;
(b) there exists u, € M such that a(u,, S *u,) = 1;
(c) S is continuous.
Then S has a fixed point, that is, there exists u € S such that Su = u.
Proof. Let u, € M such that a(ug, S~ uy) = 1.
And define u,, = Su,,, Vn,
then a(ugy,uy) = 1.
From condition (a) one can say that

a(Up, Upy) 2 1Vn2m > 1. (5)
Now, if u, = u,,, for some n € N. Then we are done.
So, let u, #u,+1Vn.
Now, taking x = u, and y = u,, inequation (4), we get

T (a(un, Up+1), d(Un, Unt1), d(Sthy, Stpy1) 20
= T(a(un, Uns1), d(Un, Ups1), d(Un-q, Up) 2 0.

Using condition (T1), we get

0< d(un—lﬂun) - a(un'un+1)d(un'un+1)' (6)
this implies

d(unrun + 1) < a(un' un+1)d(un' un+1) < d(un—lrun)-

This implies,
d(uy,, u,41) 1S @ monotonically decreasing sequence of positive real numbers.
So, it is convergent to r > 0(say).
Suppose if possible r > 0. Taking n — oo in (6) and using equation (5) we can say that

Tlli_l;rc}oa(un' Upyp) = 1. (7
Moreover, by using (T2), we have

0 < limsup, o T (a(Up, Uns1), A(Up, Unsq), A(Upq, Uy)) < 0.

Which is a contradiction.
Therefore r = 0.
So,

7P_r)rolod(unrun+1) = 0. ©))
Now, we will prove that {u,} is a bounded sequence.
So, if possible, suppose that {u,} is unbounded. Then there exists a subsequence {u,, } such that n, and foreach k € N, n;,
is the minimum integer such that

d(Up,, Un,,,) > 1 9)
and d(up,, upm) <1 forn<m<mng,, -1
Now by using triangular inequality and equation (9), we get

1< d(u"k’unkﬂ) = d(u"k’unkﬂ—l) + d(unk+1—1’unk+1) <1+ d(u"k+1‘1’ u"k+1)'

Taking k — oo, we get
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Tlli_r)gd(unk,unkﬂ) =1 (10)
By Remark (1), Taking x = u,,_, and y =u,,_,_,. We have
&t Uy ) Qi Umg) F AWy Uy —1)-
Using equation (5) and (9), we get
1< a(unk: unk+1)d(unk: unk+1)

< d(Un,_,, Uny,,-1)

< d(unk_l'unk) + d(unk' unk+1—1)

<d(Up,_, un,) + 1.
Taking k — oo, we get

lim d (uy,_,, up,) = 1 (11)
n—-oo
Tlli_r)gloa(unk,unkﬂ) =1 (12)

Hence, on using (7'2),equations (10), (11) and (12), we have

0 < limsup,, o0 T (& (Uny) Uny,, ,)r AUnys Uy, , ) AUy Uy, —1) < 0.

Which is a contradiction.

So,{u,} is a bounded sequence.

Now, let c,: = sup{d(u; u;):i,j = n}.

By the above discussion, we conclude that {c,} is decreasing sequence of non-negative real numbers which is bounded.
Therefore, there exists ¢ = 0 such that lim,,_,..c,, = c. If ¢ # 0, then by definition of {c,}, for all k € N, there exists m;, and
n, with m;, > n;, > k such that

by taking k — oo, we get
Ili_)rgd(umk,unk) =c. (13)
From equations (4) and (5), we get
d(Upy Umy) < a(Un, U, )d(Uny, Unm,,)
< d(Uny_p Umy_,)
< d(upy_ Uny) + d(Uny, Um,) + (U, U, )-
Taking k — oo and using equation (8), we get

rllgrc}od(unk_l,umk_l) =c (14)
and

lim a(up,, up,) = 1. (15)

n—-oo

As S is aT —contraction, so using equations (13), (14) and (15), we get
0 < limsup,, o T (@ (Uny, Umy ), d(Uny, Uy )y A (Uny_y» Uiy _,) < 0.
Which is a contradiction.
Which shows that ¢ = 0.
So,{u,} is a Cauchy sequence in M and (M, d) is a complete metric space. So, {u,} is convergentin M i.e., there exists w €
M such that
limu, =w. (16)

n—00
Now, continuity of S implies that

lim, ,oUp_1 = lim,,Su, = Sw =w.
So, w is the fixed point.
In the next theorem, we omit continuity.
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Theorem 2.4 In Theorem 2.3, if we replace condition(c) by the following condition:
If {u,} is asequencein M such that a(u,,u,,,) =1 forall n € N and u,, > w as n — oo, then there exists a subsequence
{Un@oy} of {uy} such that a(uyg), w) = 1.
Then still S has a fixed point.
Proof. Following the proof of Theorem 2.3, we obtain that {u,,} is a convergent sequence and converge to w € M.
Now, by the above new defined condition there exists a subsequence {u, )} of {u,} suchthat a(u,y,, w) =1 forall k.
From (4),
0 < T(a(uny, W), d(Uniky, W), dUn(iy-1,SW)) = & (U iy, WA (Un iy W) F d(Un(y-1,SW)
So that

d(Uny, W) < a(Uny W) (Ungey, W)

< d(Un@)-1,SW)-

Taking k — oo, we get d(w, Sw) = 0.
Sw=w.

Theorem 2.5 In theorem 2.3, if we replace condition (c) by any one of the following
1. a(u,v) =1 forall u,v € Fix(S):= {x € M:Sx = x}
2. S is a — permissible and for all u, v € Fix(S) there exists z € M.
such that a(u,z) = 1 and a(v,z) > 1.
Then,also T has a fixed point.
Proof. Let u and v be two distinct point of S. If the condition (1) satisfied, then
0 < T(a(u,v),d(Su,v),d(Su,Sv))
<d(u,v) —a(u,v)d(u,v).
Which is a contradiction. So, u = v. Hence, S has unique fixed point.
If condition (2) holds, there exists w € M such that a(u,w) =1 and a(v,w) = 1. If w = u, then processing as in condition
(1), we can show that w = v and we are done.
Thus we assume that u # v # w. Using a — permissible of S we cansay a(u,w,) =1 and a(v,w,) =1 forall n > 1.
Claim : lim,_,w, = u.
If w,,, = u for some m € N, then claim is followed immediately. otherwise d(u,w,) > 0 for all n € N. Now
0 <T(a(uwy),du,wy),du wn_))
<du,wy_q) —a(u,wy) — au, w,)d(u, wy).
This implies,
d(u,wy) is astrictly decreasing sequence of positive real numbers so convergent to r > 0(say).
If r = 0 then by (T2), we have
0 < limsup, o T (a(u, wy), d(u, wy),d(u, w,_4)) <0.
Which is a contradiction.
Which prove the claim.
Similarly, one can show that lim,,_,w, = v.
It proves the uniqueness of limit pointi.e., u = v.

3. Conclusion
By using tri-simulation function in metric spaces we have proved some fixed point theorems.
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