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1. Introduction 

 Banach[3] in 1922, manifested unique fixed point of complete metric space. Various contraction conditions were introduced 

and there generalization was done by Banach principle(see [9], [14]). And it is obvious that from each new contraction condition 

a new theorem rises. Popa [12] in 1997, integrated some such conditions. To support this, the implicit function was introduced 

and it was utilized in ([1], [13]). 

Wardowski [17], extended the principle introduced by Banach. He also inaugurated F-contraction. Imdad [7] and Piri [11] 

explored the f- contraction. Khojasteh et al. [8]  integrated some contractions conditions and established the concept of 

simulation function. 

  

Theorem 1.1 [17] Let (M, d) be a complete metric space. If h is a mapping of M into itself and if there exists a constant q >

1 such that 

d(h(x̅), h(y̅)) ≥ qd(x̅, y̅) 
 

for each x̅, y̅ ∈ M and h is onto, then h has a unique fixed point in M. 
 

Definition 1.2 [14] Let Ψ be the family of all functions ψ: [0, +∞) → [0, +∞) satisfying the following properties: 

1.  Σj=1
+∞ψj(t) < +∞ for every t > 0, where ψj is the pth iterate of ψ; 

2.  ψ is nondecreasing. 

 

Definition 1.3 [16] Let (M, d) be a metric space and R: M → M be a given self mapping. R is said to be an (ξ, γ)- expansive 

mapping if there exist two functions ξ ∈ M and γ: M × M → [0, +∞) such that 

ξ(d(Mx, My)) ≥ γ(x, y)d(x, y)                                                                          (1) 

for all x, y ∈ M. 
 

Definition 1.4 [14] Let (M, d) be a metric space and R: M → M be a given self mapping. R is said to be an α − ψ-contractive 

mapping if there exist two functions α: M × M → [0, ∞) and ψ ∈ φ such that 

α(x̅, y̅)d(Rx̅, Ry̅) ≤ ψ(d(x̅, y̅)), for all x̅,  y̅ ∈ M. 
 

Definition 1.5 [14] Let R: M → M and α: M × M → [0, ∞). R is said to be α-admissible if 

x̅, y̅ ∈ M, α(x̅, y̅) ≥ 1 ⇒ α(Rx̅, Ry̅) ≥ 1. 
 

Theorem 1.6 [14] Let (M, d) be a complete metric space and R: M → M be an α − ψ-contractive mapping satisfying the 

following conditions: 
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1.  R is α-admissible; 

2.  there exists p0 ∈ M such that α(p0, Rp0) ≥ 1; 

3.  R is continuous. 

Then R has a fixed point, that is, there exists ẍ ∈ M such that Rẍ = ẍ. 

 

Theorem 1.7 [14] Let (M, d) be a complete metric space and R: M → M be an α − ψ-contractive mapping satisfying the 

following conditions: 

1.  R is α-admissible; 

2.  there exists p0 ∈ M such that α(p0, Rp0) ≥ 1; 

3.  if pn is a sequence in M such that α(pn, pn+1) ≥ 1 for all n and pn → p ∈ M as n → ∞, then α(pn, p) ≥ 1 for all n. 

Then R has a fixed point. 

For uniqueness the following condition H̆ is added by Samet et al. [2] to the hypotheses of Theorem 1.5 and Theorem 1.6 : (H̆) 

For all x̅, y̅ ∈ M, there exists ż ∈ M such that α(x̅, ż) ≥ 1 and α(y̅, ż) ≥ 1. 

Shahi et al. [15] introduced new notion of (ξ, α)expansive mappings. And established different fixed point hypotheses 

for such mappings in complete metric spaces. On getting motivation from this we formulated the following result. 

 

Theorem 1.8 [14] Let (M, d) be a complete metric space and F: M × M → M be a given mapping. Suppose that there exists 

ψ ∈ Ψ and a function γ ∶ M2 × M2 → [0, +∞) such that 

γ((x̅, y̅), (u̅, v̅))d(F(x̅, y̅), F(u̅, v̅)) ≤
1

2
ψ(d(x̅, u̅) + d(y̅, v̅)), for all (x̅, y̅), (u̅, v̅) ∈ M × M.  

Suppose also that 

(1) for all (x̅, y̅), (u̅, v̅) ∈ M × M, we have 

γ((x̅, y̅), (u̅, v̅)) ≥ 1 

⇒ γ((F(x̅, y̅), F(y̅, x̅)), (F(u̅, v̅), F(v̅, u̅))) ≥ 1; 

(2) there exists (x̅0, y̅0) ∈ M × M such that 

γ((x̅0, y̅0), (F(y̅0, x̅0), F(y̅0, x̅0))) ≥ 1 and γ((F(y̅0, x̅0), F(x̅0, y̅0)), (y̅0, x̅0)) ≥ 1; 

(3) F is continuous. Then F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X × X such that x∗ = F(x∗, y∗) and y∗ =

F(y∗, x∗). 

 

Definition 1.9 [8] Let ξ: R+ × R+ → R be a mapping. Then ξ is called a simulation function if it satisfies the following 

conditions: 

(ξ1): ξ(0,0) = 0; 

(ξ2): ξ(y, x) < 𝑥 − y, for all x, y > 0; 

(ξ3): if yn and xn are sequences in (0, ∞) with limn→∞supξ(yn, xn) < 0. 

Argoubi et al. [2] and Lo′pez − de − Hierro et al. [6] sharpened this definition as follows: 

 

Definition 1.10 Argoubi et al. [2] Let ξ: R+ × R+ → R be a mapping. Then ξ is called a stimulation function if it satisfies the 

following conditions: 

(ξ2): ξ(y, x) < 𝑥 − y, for all x, y > 0; 

(ξ3): if yn and xn are sequences in (0, ∞) with limn→∞yn = limn→∞xn > 0, then limn→∞supξ(yn, xn) < 0. 

 

Definition 1.11 Lo′pez − de − Hierro et al. [8] sharpened this definition. 

Let ξ: R+ × R+ → R be a mapping. Then ξ is called a stimulation function if it satisfies the following conditions: 

(ξ1): ξ(0,0) = 0; 

(ξ2): ξ(y, x) < 𝑥 − y, for all x, y > 0; 

(ξ3) : if yn  and xn  are sequences in (0, ∞)  such that limn→∞yn = limn→∞xn > 0  and yn < xn , for all n ∈ N , then 

limn→∞supξ(yn, xn) < 0. 
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Definition 1.12 [8] A self-mapping S on a metric space (M, d) is said to be ℨ-contraction with respect to a stimulation 

function ξ if the following condition is satisfied: 

                ξ(d(Su, Sv), d(u, v)) ≥ 0,                                                                        (2) 

for all u, v ∈ M. 

 

Theorem 1.13 [14] Let (M, d) be a complete metric space and S: M → M a continuous mapping satisfying α(u, v)d(Su, Sv) ≤

φ(d(u, v)), for all u, v ∈ M, where ψ: R+ → R+  is non-decreasing function such that Σn=1
+∞ φn(t) < ∞, for all t > 0 and 

α: M × M → R+. Assume that the following two conditions hold: 

(i) there exists uo ∈ M such that α(uo, Suo) ≥ 1; 

(ii) S is a α −admissible i.e., 

α(u, v) ≥ 1 ⇒ α(Su, Sv) ≥ 1, for all u, v ∈ M. 

Then S has a fixed point. 

Karapinar[10] and Gubran[4] introduced admissible function in stimulation function, without this above theorem 

cannot be hold by a stimulation function. Gubran et al.[5] presented a new type of stimulation function. 
 

Definition 1.14 [4] Let T: R+
3 → R be a mapping. Then T is called a tri-stimulation function if it satisfies the following 

conditions: 

(T1) T(z, y, x) < 𝑥 − yz, for all x, y > 0, 𝑧 ≥ 0; 

(T2)  if zn , yn  and xn  are sequences in (0, ∞)  such that yn < xn , for all n ∈ N , limn→∞zn ≥ 1  and limn→∞yn =

limn→∞xn > 0, then 

limn→∞supT(zn, yn, xn) < 0. 

ℸ denotes the set of all tri-stimulation functions. 
 

Definition 1.15 [4] A self-mapping S on a metric space (M, d) is said to a αℸ-contraction with respect to T ∈ ℸ if 

T(α(u, v), d(Su, Sv), d(u, v)) ≥ 0,                                                                      (3) 

for all u, v ∈ M, α ∶ M × M → R+. 

Definition 1.16 [15] Let M be a non-empty set. A self-mapping S is called α-orbital admissible if for all u, v ∈ M, 

α(u, Su) ≥ 1 ⇒ α(Su, S2v) ≥ 1. 

Definition 1.17 [14] S is said to be triangular α-admissible if for all u, v and w ∈ M, 

(i) α(u, v) ≥ 1 ⇒ α(Su, Sv) ≥ 1; 

(ii) α(u, v) ≥ 1andα(w, v) ≥ 1 ⇒ α(u, v) ≥ 1. 

Definition 1.18 [15] S is said to be triangular α-orbital admissible if for all u, v ∈ M, 

(i) α(u, Su) ≥ 1 ⇒ α(Su, S2u) ≥ 1; 

(ii) α(u, v) ≥ 1andα(v, Sv) ≥ 1 ⇒ α(u, Sv) ≥ 1. 

Definition 1.19 [4] S is said to be α-permissible if for all m ≥ n ≥ 1 and u, v ∈ M, 

α(u, v) ≥ 1 ⇒ α(Snu, Smv) ≥ 1. 

Definition 1.20 [4] S is said to be α- orbital permissible if for all m ≥ n ≥ 1 and for all m ≥ n ≥ n ≥ 1 and u ∈ M, 

α(u, Su) ≥ 1 ⇒ α(Snu, Smu) ≥ 1. 

Definition 1.21 [4]Let (X, d) be a metric space and α: X × X → [0, ∞) be a mapping then any map S: X → X is said to be 

α −permissible if ∀ m ≥ n ≥ 1 and u, v ∈ X. 

α(u, v) ≥ 1 ⇒ α(Snu, Smv) ≥ 1. 

Definition 1.22 [4]  Let T: ℝ+
3 → ℝbe a mapping. Then T  is called Trisimulation function if it satisfies the following 

conditions: (T1) T(z, y, x) < 𝑥 − yz for all x, y > 0, z ≥ 0; (T2)If zn, yn, xn are sequences in (0, ∞) such that yn < xn, for 

all n ∈ ℕ 

limn→∞zn ≥ 1 and lim
n→∞

yn = limn→∞xn > 0, then 

limn→∞limsupT(zn, yn, xn) < 0. 

 

 



Preeti Bhardwaj & Manoj Kumar / IJMTT, 68(8), 109-115, 2022 

 

112 

2. Main Results 

 In this section, we shall prove some fixed point theorems in metric spaces with the aid of tri-simulation function for 

expansive mappings. 
Definition 2.1 Let S be a self mapping on a metric space (M, d). Then S is said to be αT expansive mapping with respect to 

T ∈ τ if 

𝑇(𝛼(𝑥, 𝑦), 𝑑(𝑥, 𝑦), 𝑑(𝑆𝑥, 𝑆𝑦)) ≥ 0.                                                                         (4) 

Remark 2.2 Using (T1) one can observe that d(Sx, Sy) > α(x, y)d(x, y). 

Theorem 2.3 Let(M, d) be a complete metric space and S: M → M be an αT- expansive bijective with respect to T ∈ τ. 

Suppose that 

(𝑎) 𝑆−1 is 𝛼-permissible; 

(𝑏) there exists 𝑢0 ∈ 𝑀 such that 𝛼(𝑢0, 𝑆−1𝑢0) ≥ 1; 

(𝑐) 𝑆 is continuous. 

Then 𝑆 has a fixed point, that is, there exists 𝑢 ∈ 𝑆 such that 𝑆𝑢 = 𝑢. 

Proof. Let 𝑢0 ∈ 𝑀 such that 𝛼(𝑢0, 𝑆−1𝑢0) ≥ 1. 

And define 𝑢𝑛 = 𝑆𝑢𝑛+1 ∀𝑛, 

then 𝛼(𝑢0, 𝑢1) ≥ 1. 

From condition (a) one can say that 

𝛼(𝑢𝑛, 𝑢𝑚) ≥ 1∀𝑛 ≥ 𝑚 ≥ 1.                                                                                     (5) 

Now, if 𝑢𝑛 = 𝑢𝑛+1 for some 𝑛 ∈ ℕ. Then we are done. 

So, let 𝑢𝑛 ≠ 𝑢𝑛 + 1 ∀ n. 

Now, taking 𝑥 = 𝑢𝑛 and 𝑦 = 𝑢𝑛+1 in equation (4), we get 

𝑇(𝛼(𝑢𝑛, 𝑢𝑛+1), 𝑑(𝑢𝑛, 𝑢𝑛+1), 𝑑(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) ≥ 0 

⇒ 𝑇(𝛼(𝑢𝑛, 𝑢𝑛+1), 𝑑(𝑢𝑛, 𝑢𝑛+1), 𝑑(𝑢𝑛−1, 𝑢𝑛) ≥ 0. 

Using condition (T1), we get 

0 < 𝑑(𝑢𝑛−1, 𝑢𝑛) − 𝛼(𝑢𝑛, 𝑢𝑛+1)𝑑(𝑢𝑛, 𝑢𝑛+1),                                                                     (6) 

this implies 

𝑑(𝑢𝑛, 𝑢𝑛 + 1) ≤ 𝛼(𝑢𝑛, 𝑢𝑛+1)𝑑(𝑢𝑛, 𝑢𝑛+1) < 𝑑(𝑢𝑛−1, 𝑢𝑛). 

This implies, 

𝑑(𝑢𝑛, 𝑢𝑛+1) is a monotonically decreasing sequence of positive real numbers. 

So, it is convergent to 𝑟 ≥ 0(say). 

Suppose if possible 𝑟 > 0. Taking 𝑛 → ∞ in (6) and using equation (5) we can say that 

lim
𝑛→∞

𝛼(𝑢𝑛, 𝑢𝑛+1) = 1.                                                                                            (7) 

Moreover, by using (𝑇2), we have 

0 ≤ limsup𝑛→∞𝑇(𝛼(𝑢𝑛, 𝑢𝑛+1), 𝑑(𝑢𝑛, 𝑢𝑛+1), 𝑑(𝑢𝑛−1, 𝑢𝑛)) < 0. 

Which is a contradiction. 

Therefore 𝑟 = 0. 

So, 

lim
𝑛→∞

𝑑(𝑢𝑛, 𝑢𝑛+1) = 0.                                                                                            (8) 

Now, we will prove that {𝑢𝑛} is a bounded sequence. 

So, if possible, suppose that {𝑢𝑛} is unbounded. Then there exists a subsequence {𝑢𝑛𝑘
} such that 𝑛1 and for each 𝑘 ∈ ℕ, 𝑛𝑘+1 

is the minimum integer such that 

𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

) > 1                                                                                               (9) 

and 𝑑(𝑢𝑛𝑘
, 𝑢𝑚) ≤ 1 for 𝑛𝑘 ≤ 𝑚 ≤ 𝑛𝑘+1 − 1. 

Now by using triangular inequality and equation (9), we get 

1 < 𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

) ≤ 𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1−1) + 𝑑(𝑢𝑛𝑘+1−1, 𝑢𝑛𝑘+1

) < 1 + 𝑑(𝑢𝑛𝑘+1−1, 𝑢𝑛𝑘+1
). 

Taking 𝑘 → ∞, we get 
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lim
𝑛→∞

𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

) = 1.                                                                                         (10) 

By Remark (1), Taking 𝑥 = 𝑢𝑛𝑘−1
 and 𝑦 = 𝑢𝑛𝑘−1−1. We have 

𝛼(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

)𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

) ≨ 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑛𝑘+1−1). 

Using equation (5) and (9), we get 

1 < 𝛼(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

)𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

)

    < 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑛𝑘+1−1)

    < 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑛𝑘

) + 𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1−1)

    < 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑛𝑘

) + 1.

 

Taking 𝑘 → ∞, we get 

lim
𝑛→∞

𝑑(𝑢𝑛𝑘−1
, 𝑢𝑛𝑘

) = 1                                                                                          (11) 

lim
𝑛→∞

𝛼(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

) = 1.                                                                                         (12) 

 

Hence, on using (𝑇2),equations (10), (11) and (12), we have 

0 ≤ limsup𝑛→∞𝑇(𝛼(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

), 𝑑(𝑢𝑛𝑘
, 𝑢𝑛𝑘+1

), 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑛𝑘+1−1) < 0. 

Which is a contradiction. 

So,{𝑢𝑛} is a bounded sequence. 

Now, let 𝑐𝑛: = sup{𝑑(𝑢𝑖 , 𝑢𝑗): 𝑖, 𝑗 ≥ 𝑛}. 

By the above discussion, we conclude that {𝑐𝑛} is decreasing sequence of non-negative real numbers which is bounded. 

Therefore, there exists 𝑐 ≥ 0 such that lim𝑛→∞𝑐𝑛 = 𝑐. If 𝑐 ≠ 0, then by definition of {𝑐𝑛}, for all 𝑘 ∈ ℕ, there exists 𝑚𝑘 and 

𝑛𝑘 with 𝑚𝑘 > 𝑛𝑘 ≥ 𝑘 such that 

𝑐𝑘 −
1

𝑘
≤ 𝑑(𝑢𝑚𝑘

, 𝑢𝑛𝑘
) ≤ 𝑐𝑘, 

by taking 𝑘 → ∞, we get 

lim
𝑘→∞

𝑑(𝑢𝑚𝑘
, 𝑢𝑛𝑘

) = 𝑐.                                                                                           (13) 

From equations (4) and (5), we get 

𝑑(𝑢𝑛𝑘
, 𝑢𝑚𝑘

) ≤ 𝛼(𝑢𝑛𝑘
, 𝑢𝑚𝑘

)𝑑(𝑢𝑛𝑘
, 𝑢𝑚𝑘

)

≤ 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑚𝑘−1

)

≤ 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑛𝑘

) + 𝑑(𝑢𝑛𝑘
, 𝑢𝑚𝑘

) + 𝑑(𝑢𝑚𝑘
, 𝑢𝑚𝑘−1

).

 

Taking 𝑘 → ∞ and using equation (8), we get 

lim
𝑛→∞

𝑑(𝑢𝑛𝑘−1
, 𝑢𝑚𝑘−1

) = 𝑐                                                                                       (14) 

and 

lim
𝑛→∞

𝛼(𝑢𝑛𝑘
, 𝑢𝑚𝑘

) = 1.                                                                                           (15) 

As 𝑆 is 𝛼𝑇 −contraction, so using equations (13), (14) and (15), we get 

0 ≤ limsup𝑛→∞𝑇(𝛼(𝑢𝑛𝑘
, 𝑢𝑚𝑘

), 𝑑(𝑢𝑛𝑘
, 𝑢𝑚𝑘

), 𝑑(𝑢𝑛𝑘−1
, 𝑢𝑚𝑘−1

) < 0. 

Which is a contradiction. 

Which shows that 𝑐 = 0. 

So,{𝑢𝑛} is a Cauchy sequence in 𝑀 and (𝑀, 𝑑) is a complete metric space. So, {𝑢𝑛} is convergent in 𝑀 i.e., there exists 𝑤 ∈

𝑀 such that 

lim
𝑛→∞

𝑢𝑛 = 𝑤.                                                                                                    (16) 

Now, continuity of 𝑆 implies that 

lim𝑛→∞𝑢𝑛−1 = lim𝑛→∞𝑆𝑢𝑛 ⇒ 𝑆𝑤 = 𝑤. 

So, 𝑤 is the fixed point. 

In the next theorem, we omit continuity. 
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Theorem 2.4 In Theorem 2.3, if we replace condition(c) by the following condition: 

If {𝑢𝑛} is a sequence in 𝑀 such that 𝛼(𝑢𝑛, 𝑢𝑛+1) ≥ 1 for all 𝑛 ∈ ℕ and 𝑢𝑛 → 𝑤 as 𝑛 → ∞, then there exists a subsequence 

{𝑢𝑛(𝑘)} of {𝑢𝑛} such that 𝛼(𝑢𝑛(𝑘), 𝑤) ≥ 1. 

Then still 𝑆 has a fixed point. 

Proof. Following the proof of Theorem 2.3, we obtain that {𝑢𝑛} is a convergent sequence and converge to 𝑤 ∈ 𝑀. 

Now, by the above new defined condition there exists a subsequence {𝑢𝑛(𝑘)} of {𝑢𝑛} such that 𝛼(𝑢𝑛(𝑘), 𝑤) ≥ 1 for all k. 

From (4), 

0 ≤ 𝑇(𝛼(𝑢𝑛(𝑘), 𝑤), 𝑑(𝑢𝑛(𝑘), 𝑤), 𝑑(𝑢𝑛(𝑘)−1, 𝑆𝑤)) ⇒ 𝛼(𝑢𝑛(𝑘), 𝑤)𝑑(𝑢𝑛(𝑘), 𝑤) ≨ 𝑑(𝑢𝑛(𝑘)−1, 𝑆𝑤) 

So that 

𝑑(𝑢𝑛(𝑘), 𝑤) ≤ 𝛼(𝑢𝑛(𝑘), 𝑤)𝑑(𝑢𝑛(𝑘), 𝑤)

≤ 𝑑(𝑢𝑛(𝑘)−1, 𝑆𝑤).
 

Taking 𝑘 → ∞, we get 𝑑(𝑤, 𝑆𝑤) = 0. 

𝑆𝑤 = 𝑤. 

 

Theorem 2.5 In theorem 2.3, if we replace condition (c) by any one of the following 

1.  𝛼(𝑢, 𝑣) ≥ 1 for all 𝑢, 𝑣 ∈ 𝐹𝑖𝑥(𝑆): = {𝑥 ∈ 𝑀: 𝑆𝑥 = 𝑥} 

2.  𝑆 is 𝛼 − permissible and for all 𝑢, 𝑣 ∈ 𝐹𝑖𝑥(𝑆) there exists 𝑧 ∈ 𝑀. 

such that 𝛼(𝑢, 𝑧) ≥ 1 and 𝛼(𝑣, 𝑧) ≥ 1. 

Then,also 𝑇 has a fixed point. 

Proof. Let 𝑢 and 𝑣 be two distinct point of 𝑆. If the condition (1) satisfied, then 

0 ≤ 𝑇(𝛼(𝑢, 𝑣), 𝑑(𝑆𝑢, 𝑣), 𝑑(𝑆𝑢, 𝑆𝑣)) 

< 𝑑(𝑢, 𝑣) − 𝛼(𝑢, 𝑣)𝑑(𝑢, 𝑣). 

Which is a contradiction. So, 𝑢 = 𝑣. Hence, 𝑆 has unique fixed point. 

If condition (2) holds, there exists 𝑤 ∈ 𝑀 such that 𝛼(𝑢, 𝑤) ≥ 1 and 𝛼(𝑣, 𝑤) ≥ 1. If 𝑤 = 𝑢, then processing as in condition 

(1), we can show that 𝑤 = 𝑣 and we are done. 

Thus we assume that 𝑢 ≠ 𝑣 ≠ 𝑤. Using 𝛼 − permissible of 𝑆 we can say 𝛼(𝑢, 𝑤𝑛) ≥ 1 and 𝛼(𝑣, 𝑤𝑛) ≥ 1 for all 𝑛 ≥ 1. 

Claim : lim𝑛→∞𝑤𝑛 = 𝑢. 

If 𝑤𝑚 = 𝑢 for some 𝑚 ∈ ℕ, then claim is followed immediately. otherwise 𝑑(𝑢, 𝑤𝑛) > 0 for all 𝑛 ∈ ℕ. Now 

0 ≤ 𝑇(𝛼(𝑢, 𝑤𝑛), 𝑑(𝑢, 𝑤𝑛), 𝑑(𝑢, 𝑤𝑛−1))

< 𝑑(𝑢, 𝑤𝑛−1) − 𝛼(𝑢, 𝑤𝑛) − 𝛼(𝑢, 𝑤𝑛)𝑑(𝑢, 𝑤𝑛).
 

This implies, 

𝑑(𝑢, 𝑤𝑛) is a strictly decreasing sequence of positive real numbers so convergent to 𝑟 ≥ 0(say). 

If 𝑟 ≠ 0 then by (𝑇2), we have 

0 ≤ limsup𝑛→∞𝑇(𝛼(𝑢, 𝑤𝑛), 𝑑(𝑢, 𝑤𝑛), 𝑑(𝑢, 𝑤𝑛−1)) < 0. 

Which is a contradiction. 

Which prove the claim. 

Similarly, one can show that 𝑙𝑖𝑚𝑛→∞𝑤𝑛 = 𝑣. 

It proves the uniqueness of limit point i.e., 𝑢 = 𝑣. 

 

3. Conclusion 

 By using tri-simulation function in metric spaces we have proved some fixed point theorems. 

 

References 
[1] J. Ali, and M. Imdad,"An Implicit Function Implies Several Contraction Conditions", Sarajevo J. Math., vol. 4, pp. 269-285, 2008. 

[2] H. Argoubi, B. Samet, and C. Vetro, "Nonlinear Contractions Involving Simulation Functions in a Metric Space with a Partial Order", J. 

Nonlinear Sci. Appl., vol. 8, no. 6, pp. 1082-1094, 2015.  

[3] S. Banach, "On Operations in Abstract Sets and their Application to Integral Equations," Fund. Math., vol. 3, pp. 133-181,  1922. 

[4] R. Gubran, A. Waleed and I. Mohammad, "Fixed Point Results via Tri-Simulation Function", vol. 45, pp. 419-430. 



Preeti Bhardwaj & Manoj Kumar / IJMTT, 68(8), 109-115, 2022 

 

115 

[5] R. Gubran, W. M. Alfaqieh, and M. Imdad, "Common Fixed Point Results for α-Admissible Mappings via Simulation Function", The 

Journal of Analysis, vol. 25, pp. 281-290, 2017. 

[6] A. F. R. Hierro, E. Karaprinar, C. R. Hierro, and J. M. Moreno, "Coincifence Point Theorems on Metric Spaces via Simulation Functions", 

J. Comput. Appl. Math, vol. 275, pp. 345-355, 2015. 

[7] M. Imdad, R. Gubran, M. Arif, and D. Gopal, "An Observation on α-type F-Contractions and Some Ordered-Theoretic Fixed Point 

Results", Mathematical Sciences,vol. 11, pp. 247-255, 2017. 

[8] F. Khojasteh, S. Shukla, and S. Radenovie, "A New Approach to the Study of Fixed Point Theory for Simulation Functions", Filomat, vol. 

29, pp. 1189-1194, 2015. 

[9] E. Karapinar, P. Kumam, and P. Salimi, "On α − ψ - Meir-Keeler Contractive Mappings ", Fixed Point Theory Appl., no. 94, 2013. 

[10] E. Karapinar,"Fixed Points Results via Simulation Functions," Filomat, vol. 30, pp. 2343-2350, 2016. 

[11] H. Piri, and P. Kumam, "Wardowski Type Fixed Point Theorems in Complete Metric Spaces", Fixed Point Theory Appl., no. 45, 2016. 

[12] V. Popa, "Fixed Point Theorems for Implicit Contractive Mappings," Stud. Cerc. St. Ser. Mat. Univ. Bacau, vol. 7, pp. 127-133, 1997. 

[13] V. Popa, M. Imdad, and J. Ali, "Using Implicit Relations to Prove Unified Fixed Point Theorems in Metric and 2-Metric Spaces," Bull. 

Malays. Math. Sci. Soc., vol. 33, pp. 105-120, 2010.  

[14] B. Samet,C. Vetro, and P. Vetro, "Fixed Point Theorems for α − ψ −Contractive Type Mappings," Nonlinear Anal., 2011. 

[15] P. Shahi, J. Kaur, and S. Bhatia, "Fixed Point Theorems for (ξ, α)-Expansive Mappings in Complete Metric Spaces," Fixed Point. Theory 

Appl., pp. 157, 2012. 

[16] S. Z. Wang, B. Y. Li, Z. M. Gao, and K. Iseki, "Some Fixed Point Theorems on Expansion Mappings", Math. Jpn., vol. 29, pp. 631-636, 

1984. 

[17] D. Wardowski," Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces", Fixed Point Theory Appl., no. 94, 

2012. 

 

  


