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Abstract - In this paper, some results relating to Fermat’s last theorem and beyond this theorem, have been presented. The
expression of the form (x + y)™ — (x — y)™, where x, y are variable positive integers and x > y, has been analyzed to derive
some results relating to the Diophantine equation a™ = af + a} + -+ af, where a,a,, a,, --+, a, are positive integers. An
attempt has been made to give a simple proof of Fermat’s last theorem and further this theorem has been extended to the case
of s = 3 relative to the equation a®=at+a} +--+al. A result as a theorem 2.1 has been given to find the least
positive integral value of s in the equation a*=al+a}+--+al?. A solution of each of the equations
a’?=a?+a3+--+a2 and a®=a}+a}+ai+a; has been obtained. It has been proved that the equation
a=al +al +--+alcan be expressed as (u+v)"—(u—v)" = (2ay)" + -+ (2a,)", where u+v=2q,
u+ v =2a,. It will also be shown that the Diophantine equation a™ = af' + a} + ---+ al' is a particular case of the
equation
n, if nis odd
@y =G—yr+2(]) ety +2(5) a3y + o+ 20, a= {(y n

_ 1) xy™ 1, ifniseven
as it is obtained by putting some positive integral values w,v (u>v) of x,y respectively. Finally equation

a® = at + a} + -+ + a} has been analyzed to conclude this paper.
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1. Introduction

If we study carefully the expression (x + y)™ — (x — y)™, where x, y are variable positive integers and x > y, we can
derive various results relating to the Diophantine equation a™ = af + a} + -+ ay , where a,aq,a,, -, as are positive
integers. Fermat’s last theorem is one of these results whose proof has been a great challenge to the mathematicians for about
three centuries. As for as this theorem concerned, consider the Diophantine equation

a*+ bt =c" @)
where a, b, ¢, n are all positive integers.

Fermat’s last theorem states that Equation 1 holds only whenn < 2 and it does not hold for n > 2 whatever may be the
values of the positive integers a, b, c. Wiles [1], and Wiles and Taylor [2] proved this theorem through two papers in 1995 by
applying elliptic curves approach.

There are many studies relating to the Fermat’s last theorem. Roy [3], discuses the proof of this theorem for the case of

n = 4, Rychlik[4], considered its proof for the case n = 5 and Breusch [5], considered the cases of n = 6,10. Adleman,
Heath brown [6], discuss the first case of Fermat’s Last Theorem. Edwards [7], studies this theorem in relation to number
theory. Bennett, Glass, Szekely, Gabar [8], study this theorem for rational exponents. Jennifer [9], studies it in relation to
Pythagorean theorem. Van der Poortan [10], gives notes on Fermat’s last theorem. Ribenboim [11], delivered 13 lectures on
Fermat’ s last theorem, Singh [12], describes Fermat’s enigma, Charles [13], describes about Fermat’s Diary, Cornell,
Silverman and Stevens [14], study about modular forms and Fermat’s last theorem, Buzzard [15], presents the review of
modular forms and Fermat’s last theorem, Faltings [16], discuses about the proof of Fermat’s last theorem by R. Taylor and
A. Wiles and Aczel [17] gives the details of Fermat’s last theorem.

Again, Fermat’s last theorem states that Diophantine equation a™ = af + a3 + -+ + af does not hold if s = 2,n > 2 and
Euler extended this conjecture to the values of s = 3,4, :--,n — 1.

Demjanenko [18], describes the Euler’s conjecture and Lander and Parkin [19], present the counter examples to Euler’s
conjecture.
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By Elkies [20], 20615673* = 2682440* + 15365639* + 18796760* and similar result given by Roger Frye,
422481* = 95800* + 217519* + 414560%, these results show that Euler conjecture is false for s=3,n=4. Also
from [21], 144° = 275 + 84° + 110° + 1335 shows that Euler conjecture is false for s = 4,n = 5.

There are various results on the Diophantine equations . Werebrusow [22], discuses on the equation x> + y®° = Az5,
Frey [23], studies the links between elliptic curves and certain Diophantine equations, Michel Waldschmidt [24] discuses on
open Diophantine problems , Carmichael [25], presents the study on the impossibility of certain Diophantine equations and
systems of equations, Newman [26], studies about radical Diophantine equations , Dickson [27], presents the History of theory
of numbers with Diophantine analysis, Roger [28], studies the integral solution of a=2 + b=2 = d~2 and Zagier [29] studies the
equation w* + x* + y* = z*.

In this article, Fermat’s last theorem and Diophantine equation a™ = a}' + a¥ + ---+ aZ will be discussed in relation to
the expression (x + y)™ — (x — y)™

2. Analysis of the Expression (x+y)"—(x—y)", x>y >0
If n = 1, then expression (x + ¥y)* — (x —y)" becomes(x + Y)! - (x —y) ! =(@x+y)—(x—y) =x+y—x+y=2y
Therefore, if n = 1, then the expression (x + y)™ — (x — y)™ has one term 2y.
If n=2, then expression (x +y)"® — (x — y)" becomes (x +y)? — (x —y)? = 4xy, therefore if n =2, then the
expression (x + y)"* — (x —y)" has 1 term 4xy. If x = u?,y = v?,then (u? +v?)? — (u? — v?)? = 4u?v? = Quv)?
> (W+v?)?2=wW?-v)?+ Quv)? > a?=a?+a3wherea=u?+7v?%a, =u?—v?%a, =2uv
If n = 3, then expression (x + ¥)* — (x — y)™ becomes (x + y)® — (x — y)3 = 6x%y + 2y3, therefore if n = 3, then the
expression (x + y)™ — (x — y)™ has 2 terms 6x2y, 2y3. Expressions 2y3, 6x2y + 2y3 cannot be expressed as cube of some
positive integers. If x = 6u®,y = v3, then
(6ud +v3)3 — (6u® — v3)3 = 216uv3 + 2v° = (6u?v)3 + 2(v3)3 = (6ud + v3)3 = (6u® — v3)3 + (6u?v)3 + 2(v3)3
From the above equation, we find that there exist positive integers a, a,, a,, as, a, which satisfy the equation
a®=ad +a3+ad+ad wherea = 6ud +v3a; =6u®—v3a, =6uv, a;=v3=aq,

Ilustration:Takeu = 1,v = I, thena=6u+v3=6x13+13=7,a, =6u® —v3=6x13-13 =5,
a,=6ulv=6x12x1=6,a; =v3=13=1=aqa, Therefore,7° =53+63+ 13+ 13 = a®> =a} + a3 + a3 + a}.

If x = 5u,y = 4u, then (5u + 4u)3 — (5u — 4u)3® = 600us + 128u3 = 728u3 = (6u?®)3 + (8us)3

= (9u)?® = (w)® + (6u)® + (8u)?

From the above equation, we find that there exist positive integers a, a,, a,, a; which satisfy the equation
a® =ad +a3 + a3, wherea = 9u,a, = u,a, = 6u, a; = 8u.
If n = 4, then expression (x + y)™ — (x — y)™ becomes (x + y)* — (x — y)* = 8x3y + 8xy3, therefore if n = 4, then the

expression (x + y)™ — (x — y)™ has two terms 8x3y, 8xy3.If x = u?, y = 2v?, then

W? + 2v9)* — (u? — 2v9)* = 16usv? + 64u?v® = (4u3v)? + (Buv?)?,

ie. (U?+2v3)* — (W? - 2v3)* = (4uv)? + (Buv?)?
If a; = u? + 2v2%, a, = u? — 2v?, a3 = 4u3v, a, = 8uv?, then af —aj = a2 + a2

Hlustration: If uw=3,v=1, thena, =32+2x12=11,a,=32-2x12=7, a; =4x33x1=108,a, =
8 X 3 x 13 = 24. Therefore 11* — 7* = 1082 + 242,

If x = u® and y = v3, then

W +v3)* — (W3 —v3)* = 8u’v3 + 8u3v® = 2udv)3 + Quv3)3, ie. (W +v3)* — (W —v3)* = (2u3v)® + Quvd)?
Ifa, =ud+v3 a, =ud—7v3 a;=2uv, a, =2uv? thenat —a} =ad+a.

Hiustration: If uw = 3,v = 2, then a; = 33 +23 = 35,4, =33 — 23 = 19, a; = 2 x 3% x 2 = 108,
a, =2 X 3x2%=48. Therefore 35%—19* = 108% + 483
If x = u*and y = 2v*%, then (u* + 2v*)* — (u* — 2v*)* = 16u'?v* + 64u*v1? = Quiv)* + 4Quv3)*
ie. (u*+2vH)* — (u* - 2vH)* = Qudv)* + 4Qurd)t = (Wt + 2vH* = (ut — 2vH)* + Qulv)* + 4Quvd)*
Ifa =u*+2v* a; = u* — 2v*, a, = 2udv,a; = 2uv?, then a* = af + a3 + 4ai.
ie. a*=at+a}+al+a}+ad+at wherea; =a,=as=a,.

Ilustration: Ifu = 3,v =1,thena=3*+2x1*=83,a, =3*—2%x1* =79, a, =2x33x 1 =54,
as; =2 %X 3% 13 = 6. Therefore 83* = 79* + 54* + 4 x 6* = 79* + 54* + 6* + 6* + 6* + 6*
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If x = u*and y = 4v*, then (u* + 4v*)* — (u* — 4v*)* = 32u!?v* + 512u*v?? = 2QQuiv)* + 2(4uv3)*

ie. (ut+4vH* — (ut —4vH* = 22u3v)* + 2(4ur®)* = (Wt + 4vH* = (Ut — 4vH* + 22uv)* + 2(4uvd)?
If a=u*+4v* a; =u*—4v* a, =2udv, a, = 4uvd thena* = af + 2a3 + 2a}

ie. a*=af+a}+al+a}l+al wherea,=a;, a, =as.

Ilustration: Let u =3, v =1.Thena=3*+4x1*=85,a, =3*—4x1*=77,a, =2 x 33 x 1 = 54,

a, =4 X3 %13 =12.Therefore 85% = 77* + 2 x 54* + 2 x 12* = 77* + 54* + 54* + 12* + 12*
Continuing like this, we can analyze (x + y)" — (x —y)" forn = 5,6, -

From the above analysis, we note the following important result:

Theorem-2.1

fu= ku11 u® __ulrlr‘ = l171 32 . ﬁs OF U= kluauulzhz .. 1r + kzu““ azz . Ulzr 4ot kmufml lzlmz --uf’"r,
v=Lv f” f“ B“ +1, vﬁ21 ﬁzz st +- 41 vﬁ“ Btz . f“, where k, [, k;, [; are flxed integers, integers a;, B;, a;j,
Bij = 0V i,j; then number of terms in (u + )" —(u-— v)“ as a function of uy, uy, -+, u, , v4, vy, -+, vg cannot be less than the
number of terms in (x + y)™ — (x — y)™ as a function of x, y.

In particular if (u + v)* — (u — v)™ = a} + af + ---, then number of terms in (x + y)™ — (x — y)™ as a function of x, y

< number of ;s in af +a} + -

Moreover if there are m terms in (x + y)™ — (x — y)™ as a function of x, y; then there exist at least m positive integers
a,, 04z, , Apyq SUChthat w + V)" — (u —v)" =af +af + -+ all,q.

Proof: First Part: we have

x+y)"—(x—-y)=2 (711) x" "ty +2 (3) "By 44 2a - (2)
y", if nis odd
where  a = {(n i 1) xy™ 1 ifniseven’
Therefore number of terms in (x + y)" —(x —y)" as a function of x,y is the number of terms in the right hand side of
Equation 2. If we put x = kul*u%2 - ul" = u, y = lwf1vf2.. = v in Equation 2, then it becomes
(u+v)"—(u—v)"=2(rll)u”‘1v+2(3) n-3 3+ -+ 2a ..(3)
v, if nis odd
where a = {(n z 1) uv™ 1, ifnis even

From the Equation 3, we find that number of terms in (u + v)" — (u — v)™ as a function of uy, uy, -+, Uy , V1, Vp, +++, Vs IS
equal to number of terms in (x + y)™ — (x — y)™ as a function of x, y.

If we put x = kyug ' ug ™ - up™ + koul?tug?? e ul e 4 kpul™uy ™ e uy ™ =y,
_ llvﬁn Bz . Sﬁls_i_lzvfn 5322._ st+ +ltvl3’t1 Btz “vfts =y

in Equation 2, then it again becomes Equation 3 with changed values of u and v. Then from the Equation 3, we find that
number of terms in (u +v)™ — (u —v)™ as a function of uy,uy, -, U, , vy, vy, ++, Vs IS greater than number of terms in
(x +y)™ — (x —y)™as a function of x, y.

This proves that number of terms in  (x + y)™ — (x — y)™ as a function of x,y < number of terms in (u + v)" — (u — V)"
as a function of uy, uy, -+, U, , v, vy, -+, Us.

Second Part:
Let(u+v)"—(u—v)"=a} +af + -
Now by first part, number of terms in (x + y)™ — (x — ¥)™ as a function of x, y < number of terms in (u + v)" — (u — V)"
as a function of uy, uy, -+, u,. , vq, vy, -+, Vg
=  number of terms in (x + y)™ — (x — y)"as a function of x,y < number of terms in a} + a} + --- as a function
of ug, uy, -+, Uy, 04,05, Vg
=  number of terms in (x + y)™ — (x — y)™ as a function of x,y < number of al's in a} +a} + -
[+ a%,a},---aretheterms of a} + af + -]
= number of terms in (x + y)™ — (x — y)™ as a function of x,y < number of a;s in a} +af + -
This implies if there are m terms in (x + y)™ — (x — y)™ as a function of x, y; then there exist at least m positive integers
a,,0as,, Ay SUCh that (u+v)" —(u—v)"=af +af + - +ap,q.
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3. Solution of Diophantine Equations
a?=a?+a3+--+a2and a® =ad+ a3 +ad+a3
We have (x + y)? = x2 + 2xy + y2.Putx = u?,y = 2v?, we have
(W? + 2v%)? = u* + 4u?v? + 4v* = (W?)? + Quv)? + 2v?)? = W?)? + (2v?)? + Quv)?
Putd = u? + 2v?,a = u? b = 2v?% ¢ = 2uv, we have d? = a? + b? + ¢?
ustration: Letu = 1,v = 2.Then (12 +2x22)2 =1*4+4x 12 x 22+ 4 x2* = 92 =12+482 + 42

(i) To find positive integers a, a,, -+, a, satisfying the equation a? = a? + aZ + --- + a2.
Consider the identity
gttt X+ )%= (X + o+ Xy — x0)% = 4xy2, + 4%, + o + dXp_ 1 Xy
Now put x; = y2,x, = y2,-++,x, = yZ,we have
OF +yi+ -+ yaa+ ) —OF +yi+ -+ yaa —¥)? = 4v1yi +4yiyn + -+ 4yi i
= (Zylyn)z + (ZYZyn)Z +- (Zyn—l:)/n)z

Takea=yf +y; +-+yi1+yi, ar =y +yi+-+yi, -y

ay = 2Y1Yn, A3 = 2Y2Yn, s Gn = 2Yn_1Yn,We have a? —af = a3 + -+ a}
Therefore, for suitable choice of integers y,, y,, ***, ¥,; there exist positive integers a, a4, :**, a,, satisfying the equation
a’?=a?+as+ -+ a2
As anillustration: (72 +32 4+ 12)2 — (72 +32-12)? =(2x7x1)?+ (2x3%x1)? > 592 =572 +14% + 6

(ii) To find positive integers a, a,, a,, as, a, satisfying the equation a® = a3 + a3 + a3 + d3.
Consider the identity
Oep 23 —23)3 + (g — x5 +23)3 + (—x; + x5 +23)% — (7 + x5 +x3)3 = —24x,x,%5
Put x; = 3y3,x, = 3y3,x; = y3, we have
Byi +3y3 —¥3)° + Byi —3y3 +¥)® + (=3yf +3y3 +¥3)° — Byi +3y3 +¥3)° = —216y{yiyi
= Byi +3y3 +¥9)° = Byi +3y3 —¥3)° + Byi — 3y +¥3)° + (=3y] +3y3 +¥3)° + 216y{y3y3
= By +3y3 —¥3)® + Byi — 3y3 +¥3)° + (=3y7 + 35 + ¥3)* + (6y1Y.¥5)°
Take a = 3y7 +3y3 +¥3,a; = 3y7 +3y3 — 3, a; =3y{ —3y3 +yi,as = =3y7 +3y3 +y3, as = 6y1y2ys,
Therefore, for suitable choice of integers y;, y,, y3; there exist positive integers a, a;, a,, as, a, satisfying the equation
a>=a}+a;+a+di.

llustration: Takey; = 1,y, = 2,y; = 3,thena = 3y5 + 3y + y3 =3 x 13 + 3 x 23 + 33 = 54,
a, =3y3+3y3 —y3=3x13+3x23-33=0, a, =3y -3y +y3 =3x13-3x2%+3% =6,
a;=-3y3 +3y5 +y3 =-3x134+3x23+33=48,a, =6y,y,y; =6X1x2x3=36
543 =63 +483+363> 93=13+8%+6°
Similarly, if y; = 2,v, = 3,y; = 4,then 1693 = 413 + 73 + 1213 + 1443
Also from [21], the formula of expressing cube of a positive integer as a sum of three cubes is given by
a®=ad +a3+ad, wherea =9u*,a; = 9u* — 3uv?, a, = %ulv —vta; = vt

lHlustration: If we putu = v = 1, then we get 9% = 13 + 8% + 63
Again from [21], Ramanujan gave the solution of the equation
a® = a3 + a3 + a3 as follows:
a= 6u?—4uv + 4v?,a, = 4u® — 4uv + 6v?,a, = 5u® — 5uv — 3v?, a; = 3u? + Suv — 5v2.

Hlustration: If u = 3,v = 1, thena = 46,a, = 30,a, = 27,a; = 37. Therefore, 463 = 303 + 273 + 373.

4. Main Results

We observe that the expression 132 = 52 + 122 can be written as (9 + 4)? — (9 — 4)% = 122
=  26% = 10% + 242 can be written as (18 + 8)% — (18 — 8)? = 242,
the expression 92 = 12 + 82 + 42 can be written as (5 + 4)? — (5 — 4)2 = 82 + 42

> 182 = 22 + 162 + 82 can be written as (10 + 8)% — (10 — 8)% = 162 + 82,
the expression 93 = 13 + 83 + 63 can be written as (5 + 4)3 — (5 —4)3 =83 + 63
= 183 = 23 + 163 + 123 can be written as (10 + 8)3 — (10 — 8)3 = 163 + 123,

the expression 63 = 3% + 43 + 53 can be writtenas (5 +1)3 - (5—-1)3=33+53
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= 123 = 63 + 8% + 103 can be written as (10 + 2)3 — (10 — 2)3 = 63 + 103,
the expression 1693 = 413 + 73 + 1213 + 1443 can be written as (88 + 81)3 — (88 — 81)% = 413 + 1213 + 1443
= 3383 =823 + 143 + 2423 + 2883 can be written as (176 + 162)3 — (176 — 162)3 = 823 + 2423 + 2883,

the expression 20615673* = 2682440* + 15365639* + 18796760* (due to Elkies [20]) can be written as
(17990656 + 2625017)* — (17990656 — 2625017)* = 2682440* + 18796760*
= 41231346* = 5364880* + 30731278* + 37593520* can be written as
(35981312 + 5250034)* — (35981312 — 5250034)* = 5364880* + 375935204,
the expression 422481* = 95800* + 217519* + 414560* (due to Roger Frye) can be written as
(320000 + 102481)* — (320000 — 102481)* = 95800* + 414560*
= 844962* = 191600* + 435038* + 829120* can be written as
(640000 + 204962)* — (640000 — 204962)* = 191600* + 8291204,
the expression 353* = 30* + 120* + 272* + 315* (from [21]) can be written as
(334 + 19)* — (334 — 19)* = 30* + 120* + 2724
= 706* = 60* + 240* + 544* + 630* can be written as
(688 + 38)* — (668 — 38)* = 60* + 240* + 5444,
the expression 1445 = 275 + 845 + 110° + 133> (from [21]) can be written as
(127 4+ 17)5 — (127 — 17)° = 275 + 845 + 133°
= 2885 = 545 + 1685 + 220° + 2665 can be written as
(254 + 34)5 — (254 — 34)5 = 545 + 1685 + 266° etc.
From the above analysis, we have the following results:

Theorem-4.1

Every Diophantine equation a™ = af + a} + --- + al can be expressed as (u + v)" — (u —v)" = al + -+ al or

w+v)"—(u—v)"=2ay)" + -+ (2a,)™, where a, ay, a,, as, -+, a, are positive integers.

Proof: a" =al+a} +--+all=> a"—al =a} + -+ al

Case-1 If ais odd.

If a is odd positive integer, then one of the positive integers a,, a,, as, -, a; must be odd. So suppose that a, is odd. Now

a,a,are 0odd so a + a,,a — a, are even.

a+a a—aq
2 U7

cat—al=aj+-+al > wWH+v)"—-(u—-v)"=al+--+al

This implies a™ = a" + a} + --- + al can be expressed as (u + v)" — (u — v)™ = a} + ---+ a¥ in this case.

Take u = , thena=u+v, gy =u—-v

Case-11 If a is even and one of the positive integers a,, a,, as, -*+, as IS even.
If one of the positive integers a,, a,, as, -+, asis even, then suppose that a, is even. Now a, a,are even so a + a,,a — a, are
even.
a+a, a—a,
’ v =

2 2
~at—at=af+-+ay =2 WHv)"-(@wW-v)"=al+-+al
This implies a™ = af + a} + --- + af can be expressed as (u + v)" — (u — v)™ = a + --- + a¥ in this case.

Take u = , thena=u+v, a,=u—-v

Case-111 If a is even but none of the positive integers a,, a,, as, -+, a, is even.
Then equation a™ = al + a¥ + -+ + a can be expressed as (2a)™ = (2a,)™ + 2a,)™ + -+ (2ay)"
and 2a)™ = 2a)" + ay))" + -+ ay)" = 2a)" — 2a)™ = QRay)" + -+ (2a,)"
2a+2a4 2a—2a4
Takeu =——=a+a,, v=——-—"=a—a,, then 2a=u+v, 2a, =u—.
So 2a)" — (2a)" = Ra)"+ -+ Qa)" = (W+v)"—(w—-v)" = Qay)" + -+ (2ay)"
This implies (2a)™ = (2a;)™ + (2a,)™ + --- + (2a,)™ can be expressed as (u + v)™ — (u — V)™ = (2ay)™ + -+ + Lay)™
This implies a™ = af + a} + -+ af can be expressed as (u + v)" — (u —v)" = (2a,)™ + -+ + (2a,)™ in this case.

Theorem-4.2 Every Diophantine equation (2a)™ = (2a;)"™ + (2a,)™ + --- + (2a,)™ can be expressed as
w+v)"—w—v)" = 2ay)™ + -+ (2a,)™, where a, a,, a,, as, -, as are positive integers.
Proof: (2a)" = (2a))™ + Ra,)" + -+ 2ay )" = 2a)" — 2a)™ = (2a,)™ + -+ 2a)™

2a+2a; 2a—2a;

Take u = > =a+a, v= > =a—a,, then 2a=u+v, 2a; =u—v.
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So 2a)" — (2a)" = Ra)"+ -+ Ra)" = (wW+v)"—(u—v)" = QRay)"+ -+ (Lay )"
This implies (2a)™ = (2a,)™ + (2a,)™ + ---+ (2a,)™ can be expressed as (v + v)™ — (u — v)" = 2ay)™ + -+ (2a,)™

Theorem-4.3 Every Diophantine equation a™ = af + a + -+ + al can be expressed as

w+v)" = (u—v)" = (2ay)" + -+ (2a,)™, where a, a,, a,, as, -+, a, are positive integers.

Proof: Equation a™ = af" + a} + ---+ af can be expressed as (2a)™ = (2a,)™ + (2a)™ + -+ (2a,)"

and by theorem-4.2, (2a)™ = (2a,)™ + (2a,)™ + -+ (2a,)™ can be expressed as
w+v)"—(wu—v)"=Qay))" + -+ a,)", whereu + v =2q,u — v = 2a, .

Hence a™ = a} + a} + -+ + al can be expressed as (u + v)" — (u — v)" = 2ay)" + -+ (2a,)"

Theorem-4.4 Every Diophantine equation a™ = af + a + -+ + aZ can be obtained by putting some positive integral values of
x,y in the equation

(x+y)"=x-y)"+2 (111) x"ly +2 (g) x"3y3 + -+ 2a,

{y”, if nis odd
a= (

where n

xy™ 1 ifnis even
n—l) y !

Or
Equation a™ = af + a + ---+ a¥ is the particular case of the equation
n n
x+y)t=x—-y)"+2 (1) x"ly +2 (3) x"3y3 4 2a
where a, a,, a,, as, -+, a, are positive integers.
Proof: By theorem-4.3, equation a™ = al + a} + --- + a¥ can be expressed as (u + v)" — (u — v)" = (2a,)™ + - + ay )"

But wu+v)"—(u—v)" =2 (711) u" v+ 2 (;l) u 33 + -+ 2q, o (4)
v, if nis odd
where a= {(n _ 1) uv™ 1 if nis even’

Therefore, by Equation 4,

a® = al' + al + - + a® can be expressed as (u + V)" — (u — V)" = 2 (n) uly +2 (g) ut3v3 4+ -+ 2a

1

>a"=al +al + -+ al can be expressed as (u + v)* = (u — V)™ + 2 (711) u"ly +2 (Tgl) u"3v3 4+ -+ 2a

In other words, equation a™ = a' + a} + --- + al is the particular case of the equation
x+y)"=x—y)"+2 (111) x"ly +2 (g) x"3y3 + .-+ 2a, because a™ = al + al + .-+ a® is obtained from it by
putting x = u, y = v. This proves the theorem.

Further for some positive integersu, v (u > v), if (u+v)" — (u—v)" =aj + af + -+ al},, and m is the number of
terms in (x + y)™ — (x — y)™ as a function of x, y; then by theorem-2.1, m < r always.

Let 2 (711) uvly + 2 (;l) u 33 + -+ 2a = B.

Therefore, we notice that proofs of Fermat’s last theorem and its extensions are given by the expression

(u+v)" = (u—v)" =a™ —af = B completely. Because if there exists a positive integer a, such that § = a7, then a™ —

alt = ay and this implies a™ = af + a}.

By using expression (u + v)" — (u — v)™ = a™ — af = B, this theorem can be proved as follows.
Theorem-4.5 (Fermat’s Last Theorem): Equation a™ = af + a} is possible for n = 1,2 and it is not possible for any n >
2 where a, a;, a, are positive integers.
Proof: To prove a™ = al' + a} holds forn = 1, it is easy to see that every positive integer a > 2 can be expressed as a =
a, + a,, where a,, a, are positive integers and a; = a, may be possible
Also a=a, +a, = a'=al +a}
Therefore, a™ = a} + a} holds forn = 1.

To prove a™ = at + a} holds for n = 2, consider the equation
(x+y)? = (x —y)* = 4xy
Putx = u?,y = v?, then, (u? + v2)? — (u? — v?)? = 4u?v? = (2uv)?
We can choose integers u, v in such a way that u? + v2,u? — v2, 2uv are all positive.
Nowputx +y=u?+v?=q, x—y=u?—-v?=qa,, 2uv=a,
Then,a? —a? = a2 = a? =a? + a3
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So there exist positive integers a, a,, a, satisfying the equation a? = a? + a3.
Therefore, a™ = af + a} holds forn = 2.

For n > 2, if equation a™ = af + aJis possible = (2a)" = (2a,)™ + (2a,)™ is possible = b™ = bl + b} is possible,
where b = 2a, b, = 2a,,b, = 2a,..
By theorem-4.2, (2a)™ = (2a,)™ + (2a,)™ can be expressed as (u + v)" — (u — v)™ = (2a,)™, where u + v = 2q,
u—1v=2a,, i.e. b™ = b]' + b} can be expressed as (u + v)" — (u — v)" = b}, where u+v =b,u—v =b,.
If it is possible to express (u + v)™ — (u — v)™ = b} + b} + ---, then by theorem-2.1, number of terms in
(x +y)™ — (x — y)™ as a function of x,y < number of b;s in b} + b} + ---.
Now for n > 2, there are at least 2 terms in the expression (x + y)™ — (x — y)™ as a function of x,y; so the number of
b;s in the expression b} + b} + --- cannot be less than 2(=least number of terms in (x + y)™ — (x — y)™), i.e. there exist at
least 2 positive integers b,, b; such that
wu+v)"—(u—v)" =b} +bl.
This implies there exists no positive integer b, suchthat (u+v)" — (u —v)" = b}
= b"™— by = b} isnotpossible = (2a)" — (2a,)™ = (2a,)™ is not possible = a™ — a = a} is not possible
= a" = af + a7} is not possible for n > 2.
Therefore, a™ = af + a} does not hold for n > 2. This proves the theorem.

Theorem-4.6 Equation a™ = af + a} + a¥ is possible for n=1,2,3,4 and it is not possible for any n > 4 where
a,a,, a,, as are positive integers.
Proof: To prove a™ = af + a} + a¥ holds for n = 1, it is easy to see that every positive integer a > 3 can be expressed as
a = a, + a, + az, where a,, a,, a; are positive integers and a; = a, = a; may be possible or any two of a;, a,, a; may be
equal. Also a=a;+a,+a; = at=a}l +al+adl
Therefore, a™ = af' + a} + a¥ holds forn = 1.

To prove a™ = af' + a} + a¥ holds for n = 2, consider the equation
(x+y+2)°2—(x+y—2)?%=4xz+ 4yz.

Putx = u?,y = v2,z = w?, then

W? + v2 + w?)? — (u? + v? = w?)? = 4u’w? + 4v?w? = Quw)? + Qvw)?
We can choose integers u, v, w in such a way that u? + v? + w?,u? + v? — w?, 2uw, 2vw are all positive.
Putu? +v2+w?2=aqa, u> +v:i—w?=aqa,, 2uw =a,,2vw = a3
Then,a? —a? = a% + a2 = a® = a? + a3 + a?
So there exist positive integers a, a,, a,, a; satisfying the equation a? = a? + a2 + a3.
Therefore, a™ = a} + a% + af holds forn = 2.

To prove a™ = at + aj + a¥ holds for n = 3, consider the identity given by Ramanujan in [21],
(6u? — 4uv + 4v?)3 = (4u? — 4uv + 6v?)3® + (5u? — 5uv — 3v?)3 + (3u? + 5uv — 5v?)3

We can choose integers u, v, w in such a way that 6u? — 4uv + 4v?, 4u? — 4uv + 6v?, 5u? — 5uv — 3v?,

3u? + 5uv — 5v? are all positive.
Put 6u? —4uv + 4v? = a, 4u? — 4uv + 6v? = a; , 5u® — 5uv — 3v? = a,, 3u® + 5uv — 5v% = a;,then
a®=al+a3+adl.
So there exist positive integers a, a;, a,, a; satisfying the equation a® = a + a3 + a3.
Therefore, a™ = at + a} + a¥ holds forn = 3.

To prove a™ = at + a} + a¥f holds for n = 4, by Roger Frye, we have the equation
(422481t)* = (217519t)* + (95800t)* + (414560t)*, where t be any positive integer.
Put 422481t = q, 217519t = a,,95800t = a, ,414560t = a;,then

a*=af +aj3+ai.
So there exist positive integers a, a,, a,, a; satisfying the equation a* = af + a} + at.

Therefore, a™ = af + a} + a% holds forn = 4.

Forn >4, if a® = al + a} + a} is possible = (2a)™ = (2a,;)™ + (2a,)™ + (2a3)™ is possible = b™ = bl' + b} + b} is
possible, where b = 2a,b; = 2a,,b, = 2a, ,b; = 2a; .
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By theorem-4.2, (2a)™ = (2a,)™ + (2a,)™ + (2a3)™ can be expressed as (u + v)" — (u — V)" = (2a,)™ + 2az)",
where  u+v=2aqu—v=2a,, ie. b"=>b+b}+b} canbeexpressedas (u+v)"—(u—v)" =by}+ b},
where u+v =>b,u—v=b,.
If it is possible to express (u + v)™ — (u — v)™ = b} + b} + -, then by theorem-2.1, number of terms in

(x +y)™ — (x — y)™ as a function of x,y < number of b;s in b} + b} + ---.

Now for n > 4, there are at least 3 terms in the expression (x + y)™ — (x — y)™ as a function of x,y; so the number of
b;s in the expression b + b% + --- cannot be less than 3(=least number of terms in (x + y)™ — (x —y)™), i.e. there exist at
least 3 positive integers b,, b3, b, such that

(wu+v)"—(u—v)" =b} + b} +b}.
This implies there exist no positive integers b,, b; suchthat  (u + v)" — (u — v)" = b} + b¥
= b™— bl =bY + b} is not possible = (2a)™ — (2a,)™ = (2a,)™ + (2a;)™ is not possible = a™ —al =aj} + af is
not possible
= a" = al + a} + af is not possible for n > 4.
Therefore, a™ = af + a} + af does not hold for n > 4. This proves the theorem.

5. Analysis of the Diophantine Equation a™ = a} + aj + ---+ a¥
Every Diophantine equation a™ = af + a3 + --- 4+ a can be expressed as (2a)"™ = (2a;)™ + (2a,)™ + - + (2a,)", and by
theorem-4.2, 2a)™ = (2a,)™ + (2a,)™ + - + (2a,)™ can be expressed as (u + v)" — (u — v)" = 2a,)" + -+ (2ay)",
where u+ v =2a,u—v = 2a,, i.e. b™ = b} + b} + --- + b} can be expressed as (u + v)" — (u — v)" = b} + --- + b7,
where b =u+v =2a,b; =u—v=2a,, b, =2a,,,bs = 2a.
From the above illustration, a™ = af + a} + -+ + a can be expressed as (u + v)" — (u — v)™ = (2a,)" + -+ (2ay)"™,
where u +v = 2a,u — v = 2qa,.
Let m = number of terms in (x + y)™ — (x — y)™ as a function of x, y; thens = m + 1.
Also by using theorem-2.1, there exist least number of positive integers a,, as, --- such that
ay +a% + -+ anss if nis odd
n _ —_ n — 2
w+o)" = -v) = ay +a% + -+ ane2ifniseven’
2
It is easy to check that every positive integer a > 1 can be expressed as a = a; + a,, wWhere a,, a, are positive integers
and a; = a, may be possible. Also a =a; +a, = a' =al +al
Or
If n = 1, the expression,c™ — d™ = ¢* — d! = ¢ — d has at least 1 term for any variable positive integral substitutions of
the form c=u, +u, + - +u, d=v, + v, +--+v, and c =x+y,d = x —y, where x,y (x > y) are variable positive
integers for which ¢! — d! = ¢ — d has 1 term because

cl—dl=c—-d=x+y) - (x—y) =2y .. (5)

From the Equation 5, we find that there is 1 term 2y in the expression (x + y)* — (x — y)* . Therefore by theorem-2.1, for
positive integers x = u,y = v (u > v), there exists at least 1 positive integer a, such that

wu+v)-@w-v)t=dl ..(6)
= 2v=al=a,
Therefore there exists positive integer a, = 2v which satisfies the Equation 6.
Also Equation 6 can be written as
w+v)'t=@w-v)+al (7
Putu + v =a, u— v = a, in Equation 7, we get the equation
a' =ai +a} ..(8)

From the Equation 8, we find that every positive integer> 1, can be expressed as a sum of at least 2 positive
integers.
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Again let m be the number of terms in  (x + y)* — (x — y)! as a function of x, y. Since (x + y)! — (x — y)* = 2y, there is
1term 2yin (x + y)* — (x — y)?!, therefore m = 1. Therefore by theorem-2.1, any positive integer > 1, can be expressed as
asumofatleastm+ 1 =1+ 1 = 2 positive integers.

From the above illustration, we find that the equation a' = ai + al + ---+ al holds only when s >2, where
a,a;,a,, -, a are positive integers.

If n=2, the expression ¢" —d"™ = c? —d? has at least 1 term for any variable positive integral substitutions
of the form c=u +u,++u, d=v,+v,+--+v,andc=x+y,d =x—y, where x,y (x > y) are variable
positive integers for which ¢ — d? has 1 term because

ct—d?=(@x+y)?—(x—y)? =4xy .. (9)

From the Equation 9, we find that there is 1 term 4xy in the expression (x + y)? — (x — y)? . Therefore by theorem-2.1, for
positive integers x = u?,y = v2 (u > v), there exists at least 1 positive integer a, such that

W? +v)?2— (W2 -v?)?=ad3 .. (10)
= v? =a2= Quv)!=a? = a, =2uv

Therefore there exists positive integer a, = 2uv which satisfies the Equation 10.
Also Equation 10 can be written as

W? +v?)?=W?-v?)?+ad3 . (11D
Putu? + v? = a, u? — v? = a, in Equation 11, we get the equation
aZ — a% + a% (12)

From the Equation 12, we find that square of every positive integer> 1, can be expressed as a sum of squares of at
least 2 positive integers.
Again let m is the number of terms in  (x + y)? — (x — y)? as a function of x,y. Since (x + y)? — (x — y)? = 4xy, there is
1term 4xyin (x + y)? — (x —y)?, thenm = 1. Therefore by theorem-2.1, square of every positive integer > 1 can be
expressed as a sum of squares of at leastm + 1 = 1 4+ 1 = 2 positive integers.

From the above illustration, we find that the equation a? = a? + a2 + --- + a2 holds only when s > 2, where a, a,, a,, -+, as
are positive integers.

If n=23, the expression c"—d" = c3>—d® has at least 2 terms for any variable positive integral
substitutions of the form a =u; +u, +--+u,.,b=v;+v,+-+v, andc =x+y,d =x —y, wherex,y (x > y) are
variable positive integers for which ¢3 — d3 has 2 terms because

A-dB=x+y)>3—-(x—y)>3=6x2y+2y3 ..(13)

From the Equation 13, we find that there are 2 terms 6x2y, 2y in the expression (x + y)3 — (x — y)3. Therefore by theorem-
2.1, for positive integers x = u,y = v (u > v), there exist at least 2 positive integers a,, a; such that

u+v))-(u-v)®=a3+ad} . (14)

Now equation (6t)3 = (5t)3 + (4t)3 + (3t)3, where t is any positive integer.
=  (5t+1t)® = (5t —1t)% = (5t)% + (3t)3
Take u = 5t,v = t. Then (u + v)3 — (u — v)® = (5¢t)3 + (3t)3
By Equation 14, as + a3 = (5t)% + (3t)® = a, =5t,a; =3t
Therefore there exist positive integers a, = 5t, a; = 3t which satisfy the Equation 14 atu = 5t,v = 3t.
Also Equation 14 can be written as

u+v)*=@w-v)*+a3+add ..(15)
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Putu+v =6t =a, u—v =4t = a, inEquation 15, we get the equation
ad=a}+aj+a3 ..(16)

From the Equation 16, we find that cube of every positive integer> 1, can be expressed as a sum of cubes of at least
3 positive integers.

Again let m is the number of terms in  (x + y)3 — (x — y)® as a function of x, y. Since (x + y)® — (x — y)3 = 6x%y +
2y3, there are 2 terms  6x2%y,2y3 in (x + y)® — (x — y)3, thenm = 2. Therefore by theorem-2.1, cube of every positive
integer > 1 can be expressed as a sum of cubes of at leastm + 1 = 2 + 1 = 3 positive integers.

From the above illustration, we find that the equation a® = a3 + a3 + --- + a2 holds only when s > 3, where a, a;, a,, -, a,
are positive integers.

If n= 4, the expression ¢"—d" = c*—d* has at least 2 terms for any variable positive integral
substitutions of the form c=u; +u, +-+u,, d=v; +v, +-+v; andc=x+y,d =x—y, wherex,y (x > y) are
variable positive integers for which c¢* — d* has 2 terms because

ct—dt=(x+ )= (x—y)* =8x3y + 8xy3 - (17)

From the Equation 17, we find that there are 2 terms 8x3y, 8xy3 in the expression (x + y)* — (x — y)* . Therefore by
theorem-2.1, for positive integers x = u,y = v (u > v), there exist at least 2 positive integers a,, a; such that

wu+v)*—(w—-v)*=aj+aj ..(18)

Due to Roger Frye, equation
(4224816)* = (958001)* + (217519t)* + (414560t)*, where t is any positive integer.
= (320000t + 102481t)* — (320000t — 102481t)* = (95800¢)* + (414560¢t)*
Take u = 320000t, v = 102481t. Then (u + v)* — (u — v)* = (95800t)* + (414560t)*
By Equation 18, as + ai = (95800t)* + (414560t)* = a, = 95800t,a; = 414560t
Therefore there exist positive integers a, = 95800¢, a; = 414560t which satisfy the Equation 18 at u = 320000¢,
v = 102481¢t.
Also Equation 18 can be written as
w+v)*=@w—-v)*+aj+aj; ..(19)

Putu 4+ v = 422481t = a, u —v = 217519t = a, in Equation 19, we get the equation
a*=at +al+a} .. (20)

From the Equation 20, we find that biquadrate of every positive integer> 1, can be expressed as a sum of biquadrates
of at least 3 positive integers.

Again let m is the number of terms in  (x + y)* — (x — y)* as a function of x,y. Since (x + y)* — (x — y)* = 8x3y +
8xy3, there are 2 terms  8x3y,8xy3in (x + y)* — (x — y)*, thenm = 2. Therefore by theorem-2.1, biquadrate of every
positive integer > 1 can be expressed as a sum of biquadrates of at leastm + 1 = 2 + 1 = 3 positive integers.

From the above illustration, we find that the equation a* = af + a3 + -+ + a? holds only when s > 3, where a, a,, a,, -, aq
are positive integers.
Ifn =5, the expression ¢™ — d™ = ¢® — d° has at least 3 terms for any variable positive integral substitutions of the
foom c=u; +u, ++u.,d=v;+v,+--+v,and c=x+y,d=x—y, where x,y (x >y) are variable positive
integers for which ¢5 — d> has 3 terms because

> —d®=(x+v)°—(x—y)° =10x*y + 20x%y> + 2y° (2D

From the Equation 21, we find that there are 3 terms 10x*y, 20x2y3, 2y5 in the expression (x + y)> — (x — y)®. Therefore
by theorem-2.1, for positive integers x = u,y = v (u > v), there exist at least 3 positive integers a,, as, a, such that

u+v)’—(u-v)=a3+a3+ a} ..(22)
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From [21], equation
(144t)° = (27t)° + (84t)° + (110¢t)5 + (133t)>, where t is any positive integer.
= (127t + 17t)° — (127t — 17t)° = (27t)° + (84t)° + (133t)°
Takeu = 127t,v = 17t. Then (u + v)° — (u — v)® = (27t)° + (84t)° + (133¢t)°
By Equation 22, a3 + a3 + a3 = (27t)° + (84t)° + (133t)° = a, = 27t,a; = 84t,a, = 133t
Therefore there exist positive integers a, = 27t, a; = 84t, a, = 133t which satisfy the Equation 22 atu = 127t,v = 17¢t.
Also Equation 22 can be written as

u+v)’=@W-v)°+a5+al+ a} ..(23)
Putu 4+ v = 144t = a, u —v = 110t = a, in Equation 23, we get the equation
a>=a; +a3+aj+a .. (24)

From the Equation 24, we find that the fifth power of every positive integer> 1, can be expressed as a sum of the fifth
powers of at least 4 positive integers.

Again let m is the number of terms in  (x + y)°> — (x — y)® as a function of x,y. Since (x + ¥)° — (x — y)° = 10x*y +
20x2y3 + 2y5, there are 3 terms  10x*y,20x2%y3,2y5in  (x + y)5 — (x — y)5, then m = 3. Therefore by theorem-2.1, the
fifth power of every positive integer > 1 can be expressed as a sum of the fifth powers of atleastm+1=3+1=4
positive integers.

From the above illustration, we find that the equation a® = aj + a5 + -+ a2 holds only when s >4, where
a,a, a,, -, a are positive integers.

Further on the basis of the above discussion in this section, if n = 6, the expression ¢ — d™ = ¢® — d° has at least 3 terms
for any variable positive integral substitutions of the form c =u; +u, + -+ u, , d=v; +v, +--+v; andc=x+y,d =
x — vy, where x,y (x > y) are variable positive integers for which c® — d® has 3 terms because

c®—db=(x+y)°—(x—y)° = 12x°y + 40x3y> + 12xy° ..(25)
From the Equation 25, we find that there are 3 terms 12x°y, 40x3y3, 12xy5 in the expression (x + ¥)® — (x — y)°.
Therefore by theorem-2.1, for positive integers x = u,y = v (u > v), there exist at least 3 positive integers a,, as, a, such
that
w+v)°—(w—-v)=a+al+ as ..(26)
Also Equation 26 can be written as
u+v)=@w-v)°+al+as+ a - (27)
Putu + v =a, u— v = a, in Equation 27, we get the equation

a®=al +aS+al+ al ..(28)

From the Equation 28, we find that the sixth power of every positive integer> 1, can be expressed as a sum of the sixth
powers of at least 4 positive integers.

Again let m is the number of terms in (x + y)® — (x — y)® as a function of x,y. Since (x + y)® — (x — y)® = 12x°y +
40x3y® + 12xy°>, thereare 3terms  12x5y, 40x3y3, 12xy%in  (x +y)® — (x —y)®, then m = 3. Therefore by
theorem-2.1, sixth power of every positive integer > 1 can be expressed as a sum of sixth powers of at leastm +1 =3 +
1 = 4 positive integers.

From the above illustration, we find that the equation a® =a® + a$+--+a$ holds only when s >4, where
a,aq,a,,+,ag are positive integers.

Continuing like this, in general, the equation a™ = af + a} + ---+ a¥ holds only when
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n+3

if n is odd

>
$= n+2

if nis even

Ifitis so, then a™ = af + a} + --- + a definitely holds for all s > n, where a, a,, a,, -+, a, are positive integers.
Also if m is the number of terms in (x + y)™ — (x — y)™ as a function of x, y; then

n+1
ifnis odd n+1
m= TLZ or m= [ 2 ]
= if nis even
2
Therefore, by theorem-2.1, equation a™ = af + a} + -+ + al},,, holds forn =1,2,---, 2mand it does not hold if n >

2m, where a,, a,, -+, a4, are positive integers.

6. Conclusion

From the above discussion, we draw the following conclusions:

It is possible to find positive integers a, a,, a,, -+, as such that

the equation a™ = af + a} holds for n = 1, 2; and it does not hold for n > 2,

the equation a™ = a + a} + a¥ holds for n = 1, 2, 3, 4; and it does not hold for n > 4,

the equation a™ = af + a} + a% + aj holds for n = 1,2, 3,4, 5, 6; and it does not hold for n > 6,

Further on the basis of validity of the above equations and analysis in the section-5, there is possibility that
the equation a™ = af + a} + a} + af + af holds for n =1, 2,3,4,5,6,7,8; and it does not hold for n > 8,
the equation a™ = af + a} + a} + af + af + aZ holdsfor n=1,2,3,4,5,6,7,8,9,10; and it does not hold for n > 10,
Continuing like this,

the equation a™ = af' + a} + -+ aZ holds forn = 1,2,3,:--,2s — 2 and it does not hold for n > 2s — 2.
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