Results Beyond Fermat's Last Theorem

Jagjit Singh Patyal
Department of Mathematics, Govt. College Bhoranj (Tarkwari), District Hamirpur, Himachal Pradesh, India.

Received: 05 July 2022
Revised: 07 August 2022
Accepted: 19 August 2022
Published: 27 August 2022

Abstract

In this paper, some results relating to Fermat's last theorem and beyond this theorem, have been presented. The expression of the form $(x+y)^{n}-(x-y)^{n}$, where x, y are variable positive integers and $x>y$, has been analyzed to derive some results relating to the Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers. An attempt has been made to give a simple proof of Fermat's last theorem and further this theorem has been extended to the case of $s=3$ relative to the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$. A result as a theorem 2.1 has been given to find the least positive integral value of s in the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$. A solution of each of the equations $a^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}$ and $a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}$ has been obtained. It has been proved that the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, where $u+v=2 a$, $u+v=2 a_{1}$. It will also be shown that the Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ is a particular case of the equation $$
(x+y)^{n}=(x-y)^{n}+2\binom{n}{1} x^{n-1} y+2\binom{n}{3} x^{n-3} y^{3}+\cdots+2 \alpha, \quad \alpha=\left\{\begin{array}{cc} y^{n}, & \text { if } n \text { is odd } \\ \binom{n}{n-1} x y^{n-1}, & \text { if } n \text { is even } \end{array}\right.
$$ as it is obtained by putting some positive integral values $u, v(u>v)$ of x, y respectively. Finally equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ has been analyzed to conclude this paper.

Keywords- Diophantine equation, expression, function, number of terms, positive integer

1. Introduction

If we study carefully the expression $(x+y)^{n}-(x-y)^{n}$, where x, y are variable positive integers and $x>y$, we can derive various results relating to the Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers. Fermat's last theorem is one of these results whose proof has been a great challenge to the mathematicians for about three centuries. As for as this theorem concerned, consider the Diophantine equation

$$
\begin{equation*}
a^{n}+b^{n}=c^{n} \tag{1}
\end{equation*}
$$

where a, b, c, n are all positive integers.
Fermat's last theorem states that Equation 1 holds only when $n \leq 2$ and it does not hold for $n>2$ whatever may be the values of the positive integers a, b, c. Wiles [1], and Wiles and Taylor [2] proved this theorem through two papers in 1995 by applying elliptic curves approach.

There are many studies relating to the Fermat's last theorem. Roy [3], discuses the proof of this theorem for the case of $n=4$, Rychlik[4], considered its proof for the case $n=5$ and Breusch [5], considered the cases of $n=6,10$. Adleman, Heath brown [6], discuss the first case of Fermat's Last Theorem. Edwards [7], studies this theorem in relation to number theory. Bennett, Glass, Szekely, Gabar [8], study this theorem for rational exponents. Jennifer [9], studies it in relation to Pythagorean theorem. Van der Poortan [10], gives notes on Fermat's last theorem. Ribenboim [11], delivered 13 lectures on Fermat' s last theorem, Singh [12], describes Fermat's enigma, Charles [13], describes about Fermat's Diary, Cornell, Silverman and Stevens [14], study about modular forms and Fermat's last theorem, Buzzard [15], presents the review of modular forms and Fermat's last theorem, Faltings [16], discuses about the proof of Fermat's last theorem by R. Taylor and A. Wiles and Aczel [17] gives the details of Fermat's last theorem.

Again, Fermat's last theorem states that Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ does not hold if $s=2, n>2$ and Euler extended this conjecture to the values of $s=3,4, \cdots, n-1$.

Demjanenko [18], describes the Euler's conjecture and Lander and Parkin [19], present the counter examples to Euler's conjecture.

By Elkies [20], $\quad 20615673^{4}=2682440^{4}+15365639^{4}+18796760^{4}$ and similar result given by Roger Frye, $422481^{4}=95800^{4}+217519^{4}+414560^{4}$, these results show that Euler conjecture is false for $s=3, n=4$. Also from [21], $144^{5}=27^{5}+84^{5}+110^{5}+133^{5}$ shows that Euler conjecture is false for $s=4, n=5$.

There are various results on the Diophantine equations. Werebrusow [22], discuses on the equation $x^{5}+y^{5}=A z^{5}$,
Frey [23], studies the links between elliptic curves and certain Diophantine equations, Michel Waldschmidt [24] discuses on open Diophantine problems, Carmichael [25], presents the study on the impossibility of certain Diophantine equations and systems of equations, Newman [26], studies about radical Diophantine equations, Dickson [27], presents the History of theory of numbers with Diophantine analysis, Roger [28], studies the integral solution of $a^{-2}+b^{-2}=d^{-2}$ and Zagier [29] studies the equation $w^{4}+x^{4}+y^{4}=z^{4}$.

In this article, Fermat's last theorem and Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ will be discussed in relation to the expression $(x+y)^{n}-(x-y)^{n}$.

2. Analysis of the Expression $(x+y)^{\boldsymbol{n}}-(x-y)^{\boldsymbol{n}}, \boldsymbol{x}>\boldsymbol{y}>0$

If $n=1$, then expression $(x+y)^{n}-(x-y)^{n} \operatorname{becomes}(x+y)^{1}-(x-y)^{1}=(x+y)-(x-y)=x+y-x+y=2 y$ Therefore, if $n=1$, then the expression $(x+y)^{n}-(x-y)^{n}$ has one term $2 y$.

If $n=2$, then expression $(x+y)^{n}-(x-y)^{n}$ becomes $(x+y)^{2}-(x-y)^{2}=4 x y$, therefore if $n=2$, then the expression $(x+y)^{n}-(x-y)^{n}$ has 1 term $4 x y$. If $x=u^{2}, y=v^{2}$, then $\left(u^{2}+v^{2}\right)^{2}-\left(u^{2}-v^{2}\right)^{2}=4 u^{2} v^{2}=(2 u v)^{2}$

$$
\Rightarrow \quad\left(u^{2}+v^{2}\right)^{2}=\left(u^{2}-v^{2}\right)^{2}+(2 u v)^{2} \Rightarrow \quad a^{2}=a_{1}^{2}+a_{2}^{2}, \text { where } a=u^{2}+v^{2}, a_{1}=u^{2}-v^{2}, a_{2}=2 u v
$$

If $n=3$, then expression $(x+y)^{n}-(x-y)^{n}$ becomes $(x+y)^{3}-(x-y)^{3}=6 x^{2} y+2 y^{3}$, therefore if $n=3$, then the expression $(x+y)^{n}-(x-y)^{n}$ has 2 terms $6 x^{2} y, 2 y^{3}$. Expressions $2 y^{3}, 6 x^{2} y+2 y^{3}$ cannot be expressed as cube of some positive integers. If $x=6 u^{3}, y=v^{3}$, then
$\left(6 u^{3}+v^{3}\right)^{3}-\left(6 u^{3}-v^{3}\right)^{3}=216 u^{6} v^{3}+2 v^{9}=\left(6 u^{2} v\right)^{3}+2\left(v^{3}\right)^{3} \Rightarrow\left(6 u^{3}+v^{3}\right)^{3}=\left(6 u^{3}-v^{3}\right)^{3}+\left(6 u^{2} v\right)^{3}+2\left(v^{3}\right)^{3}$
From the above equation, we find that there exist positive integers $a, a_{1}, a_{2}, a_{3}, a_{4}$ which satisfy the equation $a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}$, where $a=6 u^{3}+v^{3}, a_{1}=6 u^{3}-v^{3}, a_{2}=6 u^{2} v, a_{3}=v^{3}=a_{4}$

Illustration:Take $u=1, v=1$, then $a=6 u^{3}+v^{3}=6 \times 1^{3}+1^{3}=7, a_{1}=6 u^{3}-v^{3}=6 \times 1^{3}-1^{3}=5$, $a_{2}=6 u^{2} v=6 \times 1^{2} \times 1=6, a_{3}=v^{3}=1^{3}=1=a_{4}$. Therefore, $7^{3}=5^{3}+6^{3}+1^{3}+1^{3} \Rightarrow a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}$.
If $x=5 u, y=4 u$, then $(5 u+4 u)^{3}-(5 u-4 u)^{3}=600 u^{3}+128 u^{3}=728 u^{3}=\left(6 u^{3}\right)^{3}+\left(8 u^{3}\right)^{3}$
$\Rightarrow \quad(9 u)^{3}=(u)^{3}+(6 u)^{3}+(8 u)^{3}$
From the above equation, we find that there exist positive integers a, a_{1}, a_{2}, a_{3} which satisfy the equation $a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}$, where $a=9 u, a_{1}=u, a_{2}=6 u, a_{3}=8 u$.

If $n=4$, then expression $(x+y)^{n}-(x-y)^{n}$ becomes $(x+y)^{4}-(x-y)^{4}=8 x^{3} y+8 x y^{3}$, therefore if $n=4$, then the expression $(x+y)^{n}-(x-y)^{n}$ has two terms $8 x^{3} y, 8 x y^{3}$.If $x=u^{2}, y=2 v^{2}$, then
$\left(u^{2}+2 v^{2}\right)^{4}-\left(u^{2}-2 v^{2}\right)^{4}=16 u^{6} v^{2}+64 u^{2} v^{6}=\left(4 u^{3} v\right)^{2}+\left(8 u v^{3}\right)^{2}$,
i. e. $\left(u^{2}+2 v^{2}\right)^{4}-\left(u^{2}-2 v^{2}\right)^{4}=\left(4 u^{3} v\right)^{2}+\left(8 u v^{3}\right)^{2}$

If $a_{1}=u^{2}+2 v^{2}, a_{2}=u^{2}-2 v^{2}, a_{3}=4 u^{3} v, a_{4}=8 u v^{3}$, then $a_{1}^{4}-a_{2}^{4}=a_{3}^{2}+a_{4}^{2}$
Illustration: If $\quad u=3, v=1$, then $a_{1}=3^{2}+2 \times 1^{2}=11, a_{2}=3^{2}-2 \times 1^{2}=7, \quad a_{3}=4 \times 3^{3} \times 1=108, a_{4}=$ $8 \times 3 \times 1^{3}=24$. Therefore $11^{4}-7^{4}=108^{2}+24^{2}$.
If $x=u^{3}$ and $y=v^{3}$, then
$\left(u^{3}+v^{3}\right)^{4}-\left(u^{3}-v^{3}\right)^{4}=8 u^{9} v^{3}+8 u^{3} v^{9}=\left(2 u^{3} v\right)^{3}+\left(2 u v^{3}\right)^{3}$, i. e. $\left(u^{3}+v^{3}\right)^{4}-\left(u^{3}-v^{3}\right)^{4}=\left(2 u^{3} v\right)^{3}+\left(2 u v^{3}\right)^{3}$
If $a_{1}=u^{3}+v^{3}, a_{2}=u^{3}-v^{3}, a_{3}=2 u^{3} v, a_{4}=2 u v^{3}$, then $a_{1}^{4}-a_{2}^{4}=a_{3}^{3}+a_{4}^{3}$.
Illustration: If $u=3, v=2$, then $a_{1}=3^{3}+2^{3}=35, a_{2}=3^{3}-2^{3}=19, a_{3}=2 \times 3^{3} \times 2=108$,
$a_{4}=2 \times 3 \times 2^{3}=48$. Therefore $35^{4}-19^{4}=108^{3}+48^{3}$
If $x=u^{4}$ and $y=2 v^{4}$, then $\left(u^{4}+2 v^{4}\right)^{4}-\left(u^{4}-2 v^{4}\right)^{4}=16 u^{12} v^{4}+64 u^{4} v^{12}=\left(2 u^{3} v\right)^{4}+4\left(2 u v^{3}\right)^{4}$
i. e. $\left(u^{4}+2 v^{4}\right)^{4}-\left(u^{4}-2 v^{4}\right)^{4}=\left(2 u^{3} v\right)^{4}+4\left(2 u v^{3}\right)^{4} \Rightarrow\left(u^{4}+2 v^{4}\right)^{4}=\left(u^{4}-2 v^{4}\right)^{4}+\left(2 u^{3} v\right)^{4}+4\left(2 u v^{3}\right)^{4}$

If $a=u^{4}+2 v^{4}, a_{1}=u^{4}-2 v^{4}, a_{2}=2 u^{3} v, a_{3}=2 u v^{3}$, then $a^{4}=a_{1}^{4}+a_{2}^{4}+4 a_{3}^{4}$.
i. e. $\quad a^{4}=a_{1}^{4}+a_{2}^{4}+a_{3}^{4}+a_{4}^{4}+a_{5}^{4}+a_{6}^{4}$, where $a_{3}=a_{4}=a_{5}=a_{6}$.

Illustration: If $u=3, v=1$, then $a=3^{4}+2 \times 1^{4}=83, a_{1}=3^{4}-2 \times 1^{4}=79, a_{2}=2 \times 3^{3} \times 1=54$, $a_{3}=2 \times 3 \times 1^{3}=6$. Therefore $83^{4}=79^{4}+54^{4}+4 \times 6^{4}=79^{4}+54^{4}+6^{4}+6^{4}+6^{4}+6^{4}$

If $x=u^{4}$ and $y=4 v^{4}$, then $\left(u^{4}+4 v^{4}\right)^{4}-\left(u^{4}-4 v^{4}\right)^{4}=32 u^{12} v^{4}+512 u^{4} v^{12}=2\left(2 u^{3} v\right)^{4}+2\left(4 u v^{3}\right)^{4}$
i. e. $\left(u^{4}+4 v^{4}\right)^{4}-\left(u^{4}-4 v^{4}\right)^{4}=2\left(2 u^{3} v\right)^{4}+2\left(4 u v^{3}\right)^{4} \Rightarrow\left(u^{4}+4 v^{4}\right)^{4}=\left(u^{4}-4 v^{4}\right)^{4}+2\left(2 u^{3} v\right)^{4}+2\left(4 u v^{3}\right)^{4}$

If $a=u^{4}+4 v^{4}, a_{1}=u^{4}-4 v^{4}, a_{2}=2 u^{3} v, \quad a_{4}=4 u v^{3}$, then $a^{4}=a_{1}^{4}+2 a_{2}^{4}+2 a_{4}^{4}$
i. e. $\quad a^{4}=a_{1}^{4}+a_{2}^{4}+a_{3}^{4}+a_{4}^{4}+a_{5}^{4}$, where $a_{2}=a_{3}, \quad a_{4}=a_{5}$.

Illustration: Let $u=3, v=1$. Then $a=3^{4}+4 \times 1^{4}=85, a_{1}=3^{4}-4 \times 1^{4}=77, a_{2}=2 \times 3^{3} \times 1=54$, $a_{4}=4 \times 3 \times 1^{3}=12$. Therefore $85^{4}=77^{4}+2 \times 54^{4}+2 \times 12^{4}=77^{4}+54^{4}+54^{4}+12^{4}+12^{4}$
Continuing like this, we can analyze $(x+y)^{n}-(x-y)^{n}$ for $n=5,6, \cdots$
From the above analysis, we note the following important result:

Theorem-2.1

If $u=k u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} \cdots u_{r}^{\alpha_{r}}, \quad v=l v_{1}^{\beta_{1}} v_{2}^{\beta_{2}} \cdots v_{s}^{\beta_{s}}$ or $\mathrm{u}=k_{1} u_{1}^{\alpha_{11}} u_{2}^{\alpha_{12}} \cdots u_{r}^{\alpha_{1 r}}+k_{2} u_{1}^{\alpha_{21}} u_{2}^{\alpha_{22}} \cdots u_{r}^{\alpha_{2 r}}+\cdots+k_{m} u_{1}^{\alpha_{m 1}} u_{2}^{\alpha_{m 2}} \cdots u_{r}^{\alpha_{m r}}$, $v=l_{1} v_{1}^{\beta_{11}} v_{2}^{\beta_{12}} \cdots v_{s}^{\beta_{1 s}}+l_{2} v_{1}^{\beta_{21}} v_{2}^{\beta_{22}} \cdots v_{s}^{\beta_{2 s}}+\cdots+l_{t} v_{1}^{\beta_{t 1}} v_{2}^{\beta_{t 2}} \cdots v_{s}^{\beta_{t s}}$, where k, l, k_{i}, l_{i} are fixed integers, integers $\alpha_{i}, \beta_{i}, \alpha_{i j}$, $\beta_{i j} \geq 0 \forall i, j$; then number of terms in $(u+v)^{n}-(u-v)^{n}$ as a function of $u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{s}$ cannot be less than the number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y.

In particular if $(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+a_{3}^{n}+\cdots$, then number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y \leq number of $a_{i} s$ in $a_{2}^{n}+a_{3}^{n}+\cdots$.
Moreover if there are m terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y; then there exist at least m positive integers $a_{2}, a_{3}, \cdots, a_{m+1}$ such that $(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+a_{3}^{n}+\cdots+a_{m+1}^{n}$.

Proof: First Part: we have

$$
\begin{equation*}
(x+y)^{n}-(x-y)^{n}=2\binom{n}{1} x^{n-1} y+2\binom{n}{3} x^{n-3} y^{3}+\cdots+2 \alpha \tag{2}
\end{equation*}
$$

where $\quad \alpha=\left\{\begin{array}{c}y^{n}, \quad \text { if } n \text { is odd } \\ \left.\begin{array}{c}n \\ n-1\end{array}\right) x y^{n-1}, \text { if } n \text { is even }, ~\end{array}\right.$
Therefore number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y is the number of terms in the right hand side of Equation 2. If we put $x=k u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} \cdots u_{r}^{\alpha_{r}}=u, y=l v_{1}^{\beta_{1}} v_{2}^{\beta_{2}} \cdots v_{s}^{\beta_{s}}=v$ in Equation 2, then it becomes

$$
\begin{equation*}
(u+v)^{n}-(u-v)^{n}=2\binom{n}{1} u^{n-1} v+2\binom{n}{3} u^{n-3} v^{3}+\cdots+2 \alpha \tag{3}
\end{equation*}
$$

where $\alpha=\left\{\begin{array}{cc}v^{n}, & \text { if } n \text { is odd } \\ \binom{n}{n-1} u v^{n-1}, & \text { if } n \text { is even }\end{array}\right.$
From the Equation 3, we find that number of terms in $(u+v)^{n}-(u-v)^{n}$ as a function of $u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{s}$ is equal to number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y.

If we put $x=k_{1} u_{1}^{\alpha_{11}} u_{2}^{\alpha_{12}} \cdots u_{r}^{\alpha_{1 r}}+k_{2} u_{1}^{\alpha_{21}} u_{2}^{\alpha_{22}} \cdots u_{r}^{\alpha_{2 r}}+\cdots+k_{m} u_{1}^{\alpha_{m 1}} u_{2}^{\alpha_{m 2}} \cdots u_{r}^{\alpha_{m r}}=u$,

$$
y=l_{1} v_{1}^{\beta_{11}} v_{2}^{\beta_{12}} \cdots v_{s}^{\beta_{1 s}}+l_{2} v_{1}^{\beta_{21}} v_{2}^{\beta_{22}} \cdots v_{s}^{\beta_{2 s}}+\cdots+l_{t} v_{1}^{\beta_{t 1}} v_{2}^{\beta_{t 2}} \cdots v_{s}^{\beta_{t s}}=v
$$

in Equation 2, then it again becomes Equation 3 with changed values of u and v. Then from the Equation 3, we find that number of terms in $(u+v)^{n}-(u-v)^{n}$ as a function of $u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{s}$ is greater than number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y.
This proves that number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of $x, y \leq$ number of terms in $(u+v)^{n}-(u-v)^{n}$ as a function of $u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{s}$.

Second Part:

$$
\text { Let }(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+a_{3}^{n}+\cdots
$$

Now by first part, number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of $x, y \leq$ number of terms in $(u+v)^{n}-(u-v)^{n}$ as a function of $u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{s}$ $\Rightarrow \quad$ number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of $x, y \leq$ number of terms in $a_{2}^{n}+a_{3}^{n}+\cdots$ as a function of $u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{s}$
$\Rightarrow \quad$ number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of $x, y \leq$ number of $a_{i}^{n} s$ in $a_{2}^{n}+a_{3}^{n}+\cdots$

$$
\left[\because a_{2}^{n}, a_{3}^{n}, \cdots \text { are the terms of } a_{2}^{n}+a_{3}^{n}+\cdots\right]
$$

$\Rightarrow \quad$ number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of $x, y \leq$ number of $a_{i} s$ in $a_{2}^{n}+a_{3}^{n}+\cdots$
This implies if there are m terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y; then there exist at least m positive integers $a_{2}, a_{3}, \cdots, a_{m+1}$ such that $(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+a_{3}^{n}+\cdots+a_{m+1}^{n}$.

3. Solution of Diophantine Equations

$$
a^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \text { and } a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}
$$

We have $(x+y)^{2}=x^{2}+2 x y+y^{2}$. Put $x=u^{2}, y=2 v^{2}$, we have

$$
\left(u^{2}+2 v^{2}\right)^{2}=u^{4}+4 u^{2} v^{2}+4 v^{4}=\left(u^{2}\right)^{2}+(2 u v)^{2}+\left(2 v^{2}\right)^{2}=\left(u^{2}\right)^{2}+\left(2 v^{2}\right)^{2}+(2 u v)^{2}
$$

Put $d=u^{2}+2 v^{2}, a=u^{2}, b=2 v^{2}, c=2 u v$, we have $d^{2}=a^{2}+b^{2}+c^{2}$
Illustration: Let $u=1, v=2$.Then $\left(1^{2}+2 \times 2^{2}\right)^{2}=1^{4}+4 \times 1^{2} \times 2^{2}+4 \times 2^{4} \Rightarrow 9^{2}=1^{2}+8^{2}+4^{2}$
(i) To find positive integers a, a_{1}, \cdots, a_{n} satisfying the equation $a^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}$.

Consider the identity
$\left(x_{1}+x_{2}+\cdots+x_{n-1}+x_{n}\right)^{2}-\left(x_{1}+x_{2}+\cdots+x_{n-1}-x_{n}\right)^{2}=4 x_{1} x_{n}+4 x_{2} x_{n}+\cdots+4 x_{n-1} x_{n}$
Now put $x_{1}=y_{1}^{2}, x_{2}=y_{2}^{2}, \cdots, x_{n}=y_{n}^{2}$, we have
$\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{n-1}^{2}+y_{n}^{2}\right)^{2}-\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{n-1}^{2}-y_{n}^{2}\right)^{2}=4 y_{1}^{2} y_{n}^{2}+4 y_{2}^{2} y_{n}^{2}+\cdots+4 y_{n-1}^{2} y_{n}^{2}$
$=\left(2 y_{1} y_{n}\right)^{2}+\left(2 y_{2} y_{n}\right)^{2}+\cdots+\left(2 y_{n-1} y_{n}\right)^{2}$
Take $a=y_{1}^{2}+y_{2}^{2}+\cdots+y_{n-1}^{2}+y_{n}^{2}, \quad a_{1}=y_{1}^{2}+y_{2}^{2}+\cdots+y_{n-1}^{2}-y_{n}^{2}$
$a_{2}=2 y_{1} y_{n}, \quad a_{3}=2 y_{2} y_{n}, \cdots, \quad a_{n}=2 y_{n-1} y_{n}$, we have $a^{2}-a_{1}^{2}=a_{2}^{2}+\cdots+a_{n}^{2}$
Therefore, for suitable choice of integers $y_{1}, y_{2}, \cdots, y_{n}$; there exist positive integers a, a_{1}, \cdots, a_{n} satisfying the equation $a^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}$.
As an illustration: $\left(7^{2}+3^{2}+1^{2}\right)^{2}-\left(7^{2}+3^{2}-1^{2}\right)^{2}=(2 \times 7 \times 1)^{2}+(2 \times 3 \times 1)^{2} \Rightarrow 59^{2}=57^{2}+14^{2}+6^{2}$
(ii) To find positive integers $a, a_{1}, a_{2}, a_{3}, a_{4}$ satisfying the equation $a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}$.

Consider the identity

$$
\left(x_{1}+x_{2}-x_{3}\right)^{3}+\left(x_{1}-x_{2}+x_{3}\right)^{3}+\left(-x_{1}+x_{2}+x_{3}\right)^{3}-\left(x_{1}+x_{2}+x_{3}\right)^{3}=-24 x_{1} x_{2} x_{3}
$$

Put $x_{1}=3 y_{1}^{3}, x_{2}=3 y_{2}^{3}, x_{3}=y_{3}^{3}$, we have
$\left(3 y_{1}^{3}+3 y_{2}^{3}-y_{3}^{3}\right)^{3}+\left(3 y_{1}^{3}-3 y_{2}^{3}+y_{3}^{3}\right)^{3}+\left(-3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}\right)^{3}-\left(3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}\right)^{3}=-216 y_{1}^{3} y_{2}^{3} y_{3}^{3}$
$\Rightarrow\left(3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}\right)^{3}=\left(3 y_{1}^{3}+3 y_{2}^{3}-y_{3}^{3}\right)^{3}+\left(3 y_{1}^{3}-3 y_{2}^{3}+y_{3}^{3}\right)^{3}+\left(-3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}\right)^{3}+216 y_{1}^{3} y_{2}^{3} y_{3}^{3}$

$$
=\left(3 y_{1}^{3}+3 y_{2}^{3}-y_{3}^{3}\right)^{3}+\left(3 y_{1}^{3}-3 y_{2}^{3}+y_{3}^{3}\right)^{3}+\left(-3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}\right)^{3}+\left(6 y_{1} y_{2} y_{3}\right)^{3}
$$

Take $a=3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}, a_{1}=3 y_{1}^{3}+3 y_{2}^{3}-y_{3}^{3}, \quad a_{2}=3 y_{1}^{3}-3 y_{2}^{3}+y_{3}^{3}, a_{3}=-3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}, \quad a_{4}=6 y_{1} y_{2} y_{3}$, Therefore, for suitable choice of integers y_{1}, y_{2}, y_{3}; there exist positive integers $a, a_{1}, a_{2}, a_{3}, a_{4}$ satisfying the equation $a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}$.

Illustration: Take $y_{1}=1$, $y_{2}=2, y_{3}=3$, then $a=3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}=3 \times 1^{3}+3 \times 2^{3}+3^{3}=54$,
$a_{1}=3 y_{1}^{3}+3 y_{2}^{3}-y_{3}^{3}=3 \times 1^{3}+3 \times 2^{3}-3^{3}=0, \quad a_{2}=3 y_{1}^{3}-3 y_{2}^{3}+y_{3}^{3}=3 \times 1^{3}-3 \times 2^{3}+3^{3}=6$,
$a_{3}=-3 y_{1}^{3}+3 y_{2}^{3}+y_{3}^{3}=-3 \times 1^{3}+3 \times 2^{3}+3^{3}=48, a_{4}=6 y_{1} y_{2} y_{3}=6 \times 1 \times 2 \times 3=36$
$\therefore 54^{3}=6^{3}+48^{3}+36^{3} \Rightarrow 9^{3}=1^{3}+8^{3}+6^{3}$
Similarly, if $y_{1}=2, y_{2}=3, y_{3}=4$, then $169^{3}=41^{3}+7^{3}+121^{3}+144^{3}$
Also from [21], the formula of expressing cube of a positive integer as a sum of three cubes is given by
$a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}$, where $a=9 u^{4}, a_{1}=9 u^{4}-3 u v^{3}, a_{2}=9 u^{3} v-v^{4}, a_{3}=v^{4}$.
Illustration: If we put $u=v=1$, then we get $9^{3}=1^{3}+8^{3}+6^{3}$
Again from [21], Ramanujan gave the solution of the equation
$a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}$ as follows:
$a=6 u^{2}-4 u v+4 v^{2}, a_{1}=4 u^{2}-4 u v+6 v^{2}, a_{2}=5 u^{2}-5 u v-3 v^{2}, a_{3}=3 u^{2}+5 u v-5 v^{2}$.
Illustration: If $u=3, v=1$, then $a=46, a_{1}=30, a_{2}=27, a_{3}=37$. Therefore, $46^{3}=30^{3}+27^{3}+37^{3}$.

4. Main Results

We observe that the expression $13^{2}=5^{2}+12^{2}$ can be written as $(9+4)^{2}-(9-4)^{2}=12^{2}$
$\Rightarrow \quad 26^{2}=10^{2}+24^{2}$ can be written as $(18+8)^{2}-(18-8)^{2}=24^{2}$,
the expression $9^{2}=1^{2}+8^{2}+4^{2}$ can be written as $(5+4)^{2}-(5-4)^{2}=8^{2}+4^{2}$
$\Rightarrow \quad 18^{2}=2^{2}+16^{2}+8^{2}$ can be written as $(10+8)^{2}-(10-8)^{2}=16^{2}+8^{2}$,
the expression $9^{3}=1^{3}+8^{3}+6^{3}$ can be written as $(5+4)^{3}-(5-4)^{3}=8^{3}+6^{3}$
$\Rightarrow \quad 18^{3}=2^{3}+16^{3}+12^{3}$ can be written as $(10+8)^{3}-(10-8)^{3}=16^{3}+12^{3}$,
the expression $6^{3}=3^{3}+4^{3}+5^{3}$ can be written as $(5+1)^{3}-(5-1)^{3}=3^{3}+5^{3}$
$\Rightarrow \quad 12^{3}=6^{3}+8^{3}+10^{3}$ can be written as $(10+2)^{3}-(10-2)^{3}=6^{3}+10^{3}$, the expression $169^{3}=41^{3}+7^{3}+121^{3}+144^{3}$ can be written as $(88+81)^{3}-(88-81)^{3}=41^{3}+121^{3}+144^{3}$
$\Rightarrow \quad 338^{3}=82^{3}+14^{3}+242^{3}+288^{3}$ can be written as $(176+162)^{3}-(176-162)^{3}=82^{3}+242^{3}+288^{3}$,
the expression $20615673^{4}=2682440^{4}+15365639^{4}+18796760^{4}$ (due to Elkies [20]) can be written as

$$
\begin{aligned}
& (17990656+2625017)^{4}-(17990656-2625017)^{4}=2682440^{4}+18796760^{4} \\
& \Rightarrow \quad 41231346^{4}=5364880^{4}+30731278^{4}+37593520^{4} \text { can be written as } \\
& (35981312+5250034)^{4}-(35981312-5250034)^{4}=5364880^{4}+37593520^{4}
\end{aligned}
$$

the expression $422481^{4}=95800^{4}+217519^{4}+414560^{4}$ (due to Roger Frye) can be written as
$(320000+102481)^{4}-(320000-102481)^{4}=95800^{4}+414560^{4}$
$\Rightarrow \quad 844962^{4}=191600^{4}+435038^{4}+829120^{4}$ can be written as
$(640000+204962)^{4}-(640000-204962)^{4}=191600^{4}+829120^{4}$,
the expression $353^{4}=30^{4}+120^{4}+272^{4}+315^{4}$ (from [21]) can be written as
$(334+19)^{4}-(334-19)^{4}=30^{4}+120^{4}+272^{4}$
$\Rightarrow \quad 706^{4}=60^{4}+240^{4}+544^{4}+630^{4}$ can be written as
$(688+38)^{4}-(668-38)^{4}=60^{4}+240^{4}+544^{4}$,
the expression $144^{5}=27^{5}+84^{5}+110^{5}+133^{5}$ (from [21]) can be written as
$(127+17)^{5}-(127-17)^{5}=27^{5}+84^{5}+133^{5}$
$\Rightarrow \quad 288^{5}=54^{5}+168^{5}+220^{5}+266^{5}$ can be written as
$(254+34)^{5}-(254-34)^{5}=54^{5}+168^{5}+266^{5}$ etc.
From the above analysis, we have the following results:

Theorem-4.1

Every Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+\cdots+a_{s}^{n}$ or $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, where $a, a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ are positive integers.
Proof: $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n} \Rightarrow a^{n}-a_{1}^{n}=a_{2}^{n}+\cdots+a_{s}^{n}$
Case-I If a is odd.
If a is odd positive integer, then one of the positive integers $a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ must be odd. So suppose that a_{1} is odd. Now a, a_{1} are odd so $a+a_{1}, a-a_{1}$ are even.
Take $u=\frac{a+a_{1}}{2}, v=\frac{a-a_{1}}{2}$, then $a=u+v, a_{1}=u-v$
$\therefore \quad a^{n}-a_{1}^{n}=a_{2}^{n}+\cdots+a_{s}^{n} \Rightarrow(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+\cdots+a_{s}^{n}$
This implies $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+\cdots+a_{s}^{n}$ in this case.
Case-II If a is even and one of the positive integers $a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ is even.
If one of the positive integers $a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ is even, then suppose that a_{1} is even. Now a, a_{1} are even so $a+a_{1}, a-a_{1}$ are even.
Take $u=\frac{a+a_{1}}{2}, v=\frac{a-a_{1}}{2}$, then $a=u+v, a_{1}=u-v$
$\therefore a^{n}-a_{1}^{n}=a_{2}^{n}+\cdots+a_{s}^{n} \Rightarrow(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+\cdots+a_{s}^{n}$
This implies $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+\cdots+a_{s}^{n}$ in this case.
Case-III If a is even but none of the positive integers $a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ is even.
Then equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
and $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n} \Rightarrow(2 a)^{n}-\left(2 a_{1}\right)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
Take $u=\frac{2 a+2 a_{1}}{2}=a+a_{1}, \quad v=\frac{2 a-2 a_{1}}{2}=a-a_{1}$, then $2 a=u+v, 2 a_{1}=u-v$.
So $(2 a)^{n}-\left(2 a_{1}\right)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n} \Rightarrow(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
This implies $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$. This implies $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$ in this case.

Theorem-4.2 Every Diophantine equation $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$ can be expressed as
$(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, where $a, a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ are positive integers.
Proof: $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n} \Rightarrow(2 a)^{n}-\left(2 a_{1}\right)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
Take $u=\frac{2 a+2 a_{1}}{2}=a+a_{1}, \quad v=\frac{2 a-2 a_{1}}{2}=a-a_{1}$, then $2 a=u+v, 2 a_{1}=u-v$.

So $(2 a)^{n}-\left(2 a_{1}\right)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n} \Rightarrow(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
This implies $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$.
Theorem-4.3 Every Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as
$(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, where $a, a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ are positive integers.
Proof: Equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
and by theorem-4.2, $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$ can be expressed as
$(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, where $u+v=2 a, u-v=2 a_{1}$.
Hence $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
Theorem-4.4 Every Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be obtained by putting some positive integral values of x, y in the equation

$$
\begin{aligned}
& (x+y)^{n}=(x-y)^{n}+2\binom{n}{1} x^{n-1} y+2\binom{n}{3} x^{n-3} y^{3}+\cdots+2 \alpha, \\
& \text { where } \quad \alpha=\left\{\begin{array}{l}
y^{n}, \\
n \\
n-1
\end{array}\right) x y^{n-1}, \text { if } n \text { is odd }
\end{aligned}
$$

Or
Equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ is the particular case of the equation

$$
(x+y)^{n}=(x-y)^{n}+2\binom{n}{1} x^{n-1} y+2\binom{n}{3} x^{n-3} y^{3}+\cdots+2 \alpha
$$

where $a, a_{1}, a_{2}, a_{3}, \cdots, a_{s}$ are positive integers.
Proof: By theorem-4.3, equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$
But

$$
\begin{equation*}
(u+v)^{n}-(u-v)^{n}=2\binom{n}{1} u^{n-1} v+2\binom{n}{3} u^{n-3} v^{3}+\cdots+2 \alpha \tag{4}
\end{equation*}
$$

where

$$
\alpha=\left\{\begin{array}{c}
v^{n}, \\
\binom{n}{n-1} u v^{n-1}, \text { if } n \text { is even } .
\end{array}\right.
$$

Therefore, by Equation 4,
$a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=2\binom{n}{1} u^{n-1} v+2\binom{n}{3} u^{n-3} v^{3}+\cdots+2 \alpha$
$\Rightarrow a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}=(u-v)^{n}+2\binom{n}{1} u^{n-1} v+2\binom{n}{3} u^{n-3} v^{3}+\cdots+2 \alpha$
In other words, equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ is the particular case of the equation
$(x+y)^{n}=(x-y)^{n}+2\binom{n}{1} x^{n-1} y+2\binom{n}{3} x^{n-3} y^{3}+\cdots+2 \alpha$, because $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ is obtained from it by putting $x=u, y=v$. This proves the theorem.
Further for some positive integers $u, v(u>v)$, if $(u+v)^{n}-(u-v)^{n}=a_{2}^{n}+a_{3}^{n}+\cdots+a_{r+1}^{n}$ and m is the number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y; then by theorem-2.1, $m \leq r$ always.
Let $2\binom{n}{1} u^{n-1} v+2\binom{n}{3} u^{n-3} v^{3}+\cdots+2 \alpha=\beta$.
Therefore, we notice that proofs of Fermat's last theorem and its extensions are given by the expression
$(u+v)^{n}-(u-v)^{n}=a^{n}-a_{1}^{n}=\beta$ completely. Because if there exists a positive integer a_{2} such that $\beta=a_{2}^{n}$, then $a^{n}-$ $a_{1}^{n}=a_{2}^{n}$ and this implies $a^{n}=a_{1}^{n}+a_{2}^{n}$.

By using expression $(u+v)^{n}-(u-v)^{n}=a^{n}-a_{1}^{n}=\beta$, this theorem can be proved as follows.
Theorem-4.5 (Fermat's Last Theorem): Equation $a^{n}=a_{1}^{n}+a_{2}^{n}$ is possible for $\quad n=1,2$ and it is not possible for any $n>$ 2 where a, a_{1}, a_{2} are positive integers.
Proof: To prove $a^{n}=a_{1}^{n}+a_{2}^{n}$ holds for $n=1$, it is easy to see that every positive integer $a \geq 2$ can be expressed as $a=$ $a_{1}+a_{2}$, where a_{1}, a_{2} are positive integers and $a_{1}=a_{2}$ may be possible
Also $a=a_{1}+a_{2} \Rightarrow a^{1}=a_{1}^{1}+a_{2}^{1}$
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}$ holds for $n=1$.
To prove $a^{n}=a_{1}^{n}+a_{2}^{n}$ holds for $n=2$, consider the equation
$(x+y)^{2}-(x-y)^{2}=4 x y$
Put $x=u^{2}, y=v^{2}$, then, $\left(u^{2}+v^{2}\right)^{2}-\left(u^{2}-v^{2}\right)^{2}=4 u^{2} v^{2}=(2 u v)^{2}$
We can choose integers u, v in such a way that $u^{2}+v^{2}, u^{2}-v^{2}, 2 u v$ are all positive.
Now put $x+y=u^{2}+v^{2}=a, x-y=u^{2}-v^{2}=a_{1}, 2 u v=a_{2}$
Then, $a^{2}-a_{1}^{2}=a_{2}^{2} \Rightarrow a^{2}=a_{1}^{2}+a_{2}^{2}$

So there exist positive integers a, a_{1}, a_{2} satisfying the equation $a^{2}=a_{1}^{2}+a_{2}^{2}$.
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}$ holds for $n=2$.
For $n>2$, if equation $a^{n}=a_{1}^{n}+a_{2}^{n}$ is possible $\Rightarrow(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}$ is possible $\Rightarrow b^{n}=b_{1}^{n}+b_{2}^{n}$ is possible, where $b=2 a, b_{1}=2 a_{1}, b_{2}=2 a_{2}$.

By theorem-4.2, $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}$, where $u+v=2 a$, $u-v=2 a_{1}$, i.e. $b^{n}=b_{1}^{n}+b_{2}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=b_{2}^{n}$, where $u+v=b, u-v=b_{1}$.

If it is possible to express $(u+v)^{n}-(u-v)^{n}=b_{2}^{n}+b_{3}^{n}+\cdots$, then by theorem-2.1, number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of $x, y \leq$ number of $b_{i} s$ in $b_{2}^{n}+b_{3}^{n}+\cdots$.

Now for $n>2$, there are at least 2 terms in the expression $(x+y)^{n}-(x-y)^{n}$ as a function of x, y; so the number of $b_{i} s$ in the expression $b_{2}^{n}+b_{3}^{n}+\cdots$ cannot be less than 2 (=least number of terms in $\left.(x+y)^{n}-(x-y)^{n}\right)$, i.e. there exist at least 2 positive integers b_{2}, b_{3} such that

$$
(u+v)^{n}-(u-v)^{n}=b_{2}^{n}+b_{3}^{n}
$$

This implies there exists no positive integer b_{2} such that $(u+v)^{n}-(u-v)^{n}=b_{2}^{n}$
$\Rightarrow \quad b^{n}-b_{1}^{n}=b_{2}^{n}$ is not possible $\Rightarrow(2 a)^{n}-\left(2 a_{1}\right)^{n}=\left(2 a_{2}\right)^{n}$ is not possible $\Rightarrow a^{n}-a_{1}^{n}=a_{2}^{n}$ is not possible $\Rightarrow a^{n}=a_{1}^{n}+a_{2}^{n}$ is not possible for $n>2$.
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}$ does not hold for $n>2$. This proves the theorem.
Theorem-4.6 Equation $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ is possible for $n=1,2,3,4$ and it is not possible for any $n>4$ where a, a_{1}, a_{2}, a_{3} are positive integers.
Proof: To prove $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=1$, it is easy to see that every positive integer $a \geq 3$ can be expressed as $a=a_{1}+a_{2}+a_{3}$, where a_{1}, a_{2}, a_{3} are positive integers and $a_{1}=a_{2}=a_{3}$ may be possible or any two of a_{1}, a_{2}, a_{3} may be equal. Also $a=a_{1}+a_{2}+a_{3} \Rightarrow a^{1}=a_{1}^{1}+a_{2}^{1}+a_{3}^{1}$
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=1$.
To prove $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=2$, consider the equation

$$
(x+y+z)^{2}-(x+y-z)^{2}=4 x z+4 y z
$$

Put $x=u^{2}, y=v^{2}, z=w^{2}$, then

$$
\left(u^{2}+v^{2}+w^{2}\right)^{2}-\left(u^{2}+v^{2}-w^{2}\right)^{2}=4 u^{2} w^{2}+4 v^{2} w^{2}=(2 u w)^{2}+(2 v w)^{2}
$$

We can choose integers u, v, w in such a way that $u^{2}+v^{2}+w^{2}, u^{2}+v^{2}-w^{2}, 2 u w, 2 v w$ are all positive.
Put $u^{2}+v^{2}+w^{2}=a, u^{2}+v^{2}-w^{2}=a_{1}, 2 u w=a_{2}, 2 v w=a_{3}$
Then, $a^{2}-a_{1}^{2}=a_{2}^{2}+a_{3}^{2} \Rightarrow a^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$
So there exist positive integers a, a_{1}, a_{2}, a_{3} satisfying the equation $a^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$.
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=2$.
To prove $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=3$, consider the identity given by Ramanujan in [21],

$$
\left(6 u^{2}-4 u v+4 v^{2}\right)^{3}=\left(4 u^{2}-4 u v+6 v^{2}\right)^{3}+\left(5 u^{2}-5 u v-3 v^{2}\right)^{3}+\left(3 u^{2}+5 u v-5 v^{2}\right)^{3}
$$

We can choose integers u, v, w in such a way that $6 u^{2}-4 u v+4 v^{2}, 4 u^{2}-4 u v+6 v^{2}, 5 u^{2}-5 u v-3 v^{2}$,
$3 u^{2}+5 u v-5 v^{2}$ are all positive.
Put $6 u^{2}-4 u v+4 v^{2}=a, 4 u^{2}-4 u v+6 v^{2}=a_{1}, 5 u^{2}-5 u v-3 v^{2}=a_{2}, 3 u^{2}+5 u v-5 v^{2}=a_{3}$, then

$$
a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}
$$

So there exist positive integers a, a_{1}, a_{2}, a_{3} satisfying the equation $a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}$.
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=3$.
To prove $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=4$, by Roger Frye, we have the equation
$(422481 t)^{4}=(217519 t)^{4}+(95800 t)^{4}+(414560 t)^{4}$, where t be any positive integer.
Put $422481 t=a, \quad 217519 t=a_{1}, 95800 t=a_{2}, 414560 t=a_{3}$, then

$$
a^{4}=a_{1}^{4}+a_{2}^{4}+a_{3}^{4}
$$

So there exist positive integers a, a_{1}, a_{2}, a_{3} satisfying the equation $a^{4}=a_{1}^{4}+a_{2}^{4}+a_{3}^{4}$.
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=4$.
For $n>4$, if $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ is possible $\Rightarrow(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\left(2 a_{3}\right)^{n}$ is possible $\Rightarrow b^{n}=b_{1}^{n}+b_{2}^{n}+b_{3}^{n}$ is possible, where $b=2 a, b_{1}=2 a_{1}, b_{2}=2 a_{2}, b_{3}=2 a_{3}$.

By theorem-4.2, $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\left(2 a_{3}\right)^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\left(2 a_{3}\right)^{n}$, where $\quad u+v=2 a, u-v=2 a_{1}$, i.e. $\quad b^{n}=b_{1}^{n}+b_{2}^{n}+b_{3}^{n}$ can be expressed as $\quad(u+v)^{n}-(u-v)^{n}=b_{2}^{n}+b_{3}^{n}$, where $u+v=b, u-v=b_{1}$.

If it is possible to express $(u+v)^{n}-(u-v)^{n}=b_{2}^{n}+b_{3}^{n}+\cdots$, then by theorem-2.1, number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of $x, y \leq$ number of $b_{i} s$ in $b_{2}^{n}+b_{3}^{n}+\cdots$.

Now for $n>4$, there are at least 3 terms in the expression $(x+y)^{n}-(x-y)^{n}$ as a function of x, y; so the number of $b_{i} s$ in the expression $b_{2}^{n}+b_{3}^{n}+\cdots$ cannot be less than 3 (=least number of terms in $\left.(x+y)^{n}-(x-y)^{n}\right)$, i.e. there exist at least 3 positive integers b_{2}, b_{3}, b_{4} such that

$$
(u+v)^{n}-(u-v)^{n}=b_{2}^{n}+b_{3}^{n}+b_{4}^{n}
$$

This implies there exist no positive integers b_{2}, b_{3} such that $(u+v)^{n}-(u-v)^{n}=b_{2}^{n}+b_{3}^{n}$
$\Rightarrow b^{n}-b_{1}^{n}=b_{2}^{n}+b_{3}^{n}$ is not possible $\Rightarrow(2 a)^{n}-\left(2 a_{1}\right)^{n}=\left(2 a_{2}\right)^{n}+\left(2 a_{3}\right)^{n}$ is not possible $\Rightarrow a^{n}-a_{1}^{n}=a_{2}^{n}+a_{3}^{n}$ is not possible
$\Rightarrow a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ is not possible for $n>4$.
Therefore, $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ does not hold for $n>4$. This proves the theorem.

5. Analysis of the Diophantine Equation $\boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}_{\mathbf{1}}^{\boldsymbol{n}}+\boldsymbol{a}_{\mathbf{2}}^{\boldsymbol{n}}+\cdots+\boldsymbol{a}_{\boldsymbol{s}}^{\boldsymbol{n}}$

Every Diophantine equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, and by theorem-4.2, $(2 a)^{n}=\left(2 a_{1}\right)^{n}+\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, where $u+v=2 a, u-v=2 a_{1}$, i.e. $b^{n}=b_{1}^{n}+b_{2}^{n}+\cdots+b_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=b_{2}^{n}+\cdots+b_{s}^{n}$, where $b=u+v=2 a, b_{1}=u-v=2 a_{1}, b_{2}=2 a_{2}, \cdots, b_{s}=2 a_{s}$.

From the above illustration, $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ can be expressed as $(u+v)^{n}-(u-v)^{n}=\left(2 a_{2}\right)^{n}+\cdots+\left(2 a_{s}\right)^{n}$, where $u+v=2 a, u-v=2 a_{1}$.

Let $m=$ number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y; then $s \geq m+1$.
Also by using theorem-2.1, there exist least number of positive integers a_{2}, a_{3}, \cdots such that
$(u+v)^{n}-(u-v)^{n}=\left\{\begin{array}{l}a_{2}^{n}+a_{3}^{n}+\cdots+a_{\frac{n+3}{n}}^{n} \text { if } n \text { is odd } \\ a_{2}^{n}+a_{3}^{n}+\cdots+a_{\frac{n+2}{2}}^{n} \text { if } n \text { is even }\end{array}\right.$.
It is easy to check that every positive integer $a>1$ can be expressed as $a=a_{1}+a_{2}$, where a_{1}, a_{2} are positive integers and $a_{1}=a_{2}$ may be possible. Also $a=a_{1}+a_{2} \Rightarrow a^{1}=a_{1}^{1}+a_{2}^{1}$ Or
If $n=1$, the expression, $c^{n}-d^{n}=c^{1}-d^{1}=c-d$ has at least 1 term for any variable positive integral substitutions of the form $c=u_{1}+u_{2}+\cdots+u_{r}, d=v_{1}+v_{2}+\cdots+v_{s}$ and $c=x+y, d=x-y$, where $x, y(x>y)$ are variable positive integers for which $c^{1}-d^{1}=c-d$ has 1 term because

$$
\begin{equation*}
c^{1}-d^{1}=c-d=(x+y)^{1}-(x-y)^{1}=2 y \tag{5}
\end{equation*}
$$

From the Equation 5, we find that there is 1 term $2 y$ in the expression $(x+y)^{1}-(x-y)^{1}$. Therefore by theorem-2.1, for positive integers $x=u, y=v(u>v)$, there exists at least 1 positive integer a_{2} such that

$$
\begin{equation*}
(u+v)^{1}-(u-v)^{1}=a_{2}^{1} \tag{6}
\end{equation*}
$$

$\Rightarrow \quad 2 v=a_{2}^{1}=a_{2}$
Therefore there exists positive integer $a_{2}=2 v$ which satisfies the Equation 6.
Also Equation 6 can be written as

$$
\begin{equation*}
(u+v)^{1}=(u-v)^{1}+a_{2}^{1} \tag{7}
\end{equation*}
$$

Put $u+v=a, u-v=a_{1}$ in Equation 7, we get the equation

$$
\begin{equation*}
a^{1}=a_{1}^{1}+a_{2}^{1} \tag{8}
\end{equation*}
$$

From the Equation 8, we find that every positive integer> 1, can be expressed as a sum of at least 2 positive integers.

Again let m be the number of terms in $(x+y)^{1}-(x-y)^{1}$ as a function of x, y. Since $(x+y)^{1}-(x-y)^{1}=2 y$, there is 1 term $2 y$ in $(x+y)^{1}-(x-y)^{1}$, therefore $m=1$. Therefore by theorem-2.1, any positive integer >1, can be expressed as a sum of at least $m+1=1+1=2$ positive integers.

From the above illustration, we find that the equation $a^{1}=a_{1}^{1}+a_{2}^{1}+\cdots+a_{s}^{1}$ holds only when $s \geq 2$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers.

If $n=2$, the expression $c^{n}-d^{n}=c^{2}-d^{2}$ has at least 1 term for any variable positive integral substitutions of the form $c=u_{1}+u_{2}+\cdots+u_{r}, d=v_{1}+v_{2}+\cdots+v_{s}$ and $c=x+y, d=x-y$, where $x, y(x>y)$ are variable positive integers for which $c^{2}-d^{2}$ has 1 term because

$$
\begin{equation*}
c^{2}-d^{2}=(x+y)^{2}-(x-y)^{2}=4 x y \tag{9}
\end{equation*}
$$

From the Equation 9, we find that there is 1 term $4 x y$ in the expression $(x+y)^{2}-(x-y)^{2}$. Therefore by theorem-2.1, for positive integers $x=u^{2}, y=v^{2}(u>v)$, there exists at least 1 positive integer a_{2} such that

$$
\begin{gather*}
\left(u^{2}+v^{2}\right)^{2}-\left(u^{2}-v^{2}\right)^{2}=a_{2}^{2} \tag{10}\\
\Rightarrow \quad 4 u^{2} v^{2}=a_{2}^{2} \Rightarrow(2 u v)^{2}=a_{2}^{2} \Rightarrow a_{2}=2 u v
\end{gather*}
$$

Therefore there exists positive integer $a_{2}=2 u v$ which satisfies the Equation 10.
Also Equation 10 can be written as

$$
\begin{equation*}
\left(u^{2}+v^{2}\right)^{2}=\left(u^{2}-v^{2}\right)^{2}+a_{2}^{2} \tag{11}
\end{equation*}
$$

Put $u^{2}+v^{2}=a, u^{2}-v^{2}=a_{1}$ in Equation 11, we get the equation

$$
\begin{equation*}
a^{2}=a_{1}^{2}+a_{2}^{2} \tag{12}
\end{equation*}
$$

From the Equation 12, we find that square of every positive integer> 1, can be expressed as a sum of squares of at least 2 positive integers.
Again let m is the number of terms in $(x+y)^{2}-(x-y)^{2}$ as a function of x, y. Since $(x+y)^{2}-(x-y)^{2}=4 x y$, there is 1 term $4 x y$ in $(x+y)^{2}-(x-y)^{2}$, then $m=1$. Therefore by theorem-2.1, square of every positive integer >1 can be expressed as a sum of squares of at least $m+1=1+1=2$ positive integers.
From the above illustration, we find that the equation $a^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{s}^{2}$ holds only when $s \geq 2$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers.

If $n=3$, the expression $c^{n}-d^{n}=c^{3}-d^{3}$ has at least 2 terms for any variable positive integral substitutions of the form $a=u_{1}+u_{2}+\cdots+u_{r}, b=v_{1}+v_{2}+\cdots+v_{s}$ and $c=x+y, d=x-y$, where $x, y(x>y)$ are variable positive integers for which $c^{3}-d^{3}$ has 2 terms because

$$
\begin{equation*}
c^{3}-d^{3}=(x+y)^{3}-(x-y)^{3}=6 x^{2} y+2 y^{3} \tag{13}
\end{equation*}
$$

From the Equation 13, we find that there are 2 terms $6 x^{2} y, 2 y^{3}$ in the expression $(x+y)^{3}-(x-y)^{3}$. Therefore by theorem2.1, for positive integers $x=u, y=v(u>v)$, there exist at least 2 positive integers a_{2}, a_{3} such that

$$
\begin{equation*}
(u+v)^{3}-(u-v)^{3}=a_{2}^{3}+a_{3}^{3} \tag{14}
\end{equation*}
$$

Now equation $(6 t)^{3}=(5 t)^{3}+(4 t)^{3}+(3 t)^{3}$, where t is any positive integer.
$\Rightarrow \quad(5 t+t)^{3}-(5 t-t)^{3}=(5 t)^{3}+(3 t)^{3}$
Take $u=5 t, v=t$. Then $(u+v)^{3}-(u-v)^{3}=(5 t)^{3}+(3 t)^{3}$
By Equation 14, $\quad a_{2}^{3}+a_{3}^{3}=(5 t)^{3}+(3 t)^{3} \Rightarrow a_{2}=5 t, a_{3}=3 t$
Therefore there exist positive integers $a_{2}=5 t, a_{3}=3 t$ which satisfy the Equation 14 at $u=5 t, v=3 t$.
Also Equation 14 can be written as

$$
\begin{equation*}
(u+v)^{3}=(u-v)^{3}+a_{2}^{3}+a_{3}^{3} \tag{15}
\end{equation*}
$$

Put $u+v=6 t=a, u-v=4 t=a_{1}$ in Equation 15, we get the equation

$$
\begin{equation*}
a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3} \tag{16}
\end{equation*}
$$

From the Equation 16, we find that cube of every positive integer> 1, can be expressed as a sum of cubes of at least 3 positive integers.

Again let m is the number of terms in $(x+y)^{3}-(x-y)^{3}$ as a function of x, y. Since $(x+y)^{3}-(x-y)^{3}=6 x^{2} y+$ $2 y^{3}$, there are 2 terms $6 x^{2} y, 2 y^{3}$ in $(x+y)^{3}-(x-y)^{3}$, then $m=2$. Therefore by theorem-2.1, cube of every positive integer >1 can be expressed as a sum of cubes of at least $m+1=2+1=3$ positive integers.

From the above illustration, we find that the equation $a^{3}=a_{1}^{3}+a_{2}^{3}+\cdots+a_{s}^{3}$ holds only when $s \geq 3$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers.

If $n=4$, the expression $c^{n}-d^{n}=c^{4}-d^{4}$ has at least 2 terms for any variable positive integral substitutions of the form $c=u_{1}+u_{2}+\cdots+u_{r}, d=v_{1}+v_{2}+\cdots+v_{s}$ and $c=x+y, d=x-y$, where $x, y(x>y)$ are variable positive integers for which $c^{4}-d^{4}$ has 2 terms because

$$
\begin{equation*}
c^{4}-d^{4}=(x+y)^{4}-(x-y)^{4}=8 x^{3} y+8 x y^{3} \tag{17}
\end{equation*}
$$

From the Equation 17, we find that there are 2 terms $8 x^{3} y, 8 x y^{3}$ in the expression $(x+y)^{4}-(x-y)^{4}$. Therefore by
theorem-2.1, for positive integers $x=u, y=v(u>v)$, there exist at least 2 positive integers a_{2}, a_{3} such that

$$
\begin{equation*}
(u+v)^{4}-(u-v)^{4}=a_{2}^{4}+a_{3}^{4} \tag{18}
\end{equation*}
$$

Due to Roger Frye, equation
$(422481 t)^{4}=(95800 t)^{4}+(217519 t)^{4}+(414560 t)^{4}$, where t is any positive integer.
$\Rightarrow(320000 t+102481 t)^{4}-(320000 t-102481 t)^{4}=(95800 t)^{4}+(414560 t)^{4}$
Take $u=320000 t, v=102481 t$. Then $(u+v)^{4}-(u-v)^{4}=(95800 t)^{4}+(414560 t)^{4}$
By Equation 18, $\quad a_{2}^{4}+a_{3}^{4}=(95800 t)^{4}+(414560 t)^{4} \Rightarrow a_{2}=95800 t, a_{3}=414560 t$
Therefore there exist positive integers $a_{2}=95800 t, a_{3}=414560 t$ which satisfy the Equation 18 at $u=320000 t$, $v=102481 t$.
Also Equation 18 can be written as

$$
\begin{equation*}
(u+v)^{4}=(u-v)^{4}+a_{2}^{4}+a_{3}^{4} \tag{19}
\end{equation*}
$$

Put $u+v=422481 t=a, u-v=217519 t=a_{1}$ in Equation 19, we get the equation

$$
\begin{equation*}
a^{4}=a_{1}^{4}+a_{2}^{4}+a_{3}^{4} \tag{20}
\end{equation*}
$$

From the Equation 20, we find that biquadrate of every positive integer >1, can be expressed as a sum of biquadrates of at least 3 positive integers.
Again let m is the number of terms in $(x+y)^{4}-(x-y)^{4}$ as a function of x, y. Since $(x+y)^{4}-(x-y)^{4}=8 x^{3} y+$ $8 x y^{3}$, there are 2 terms $8 x^{3} y, 8 x y^{3}$ in $(x+y)^{4}-(x-y)^{4}$, then $m=2$. Therefore by theorem-2.1, biquadrate of every positive integer >1 can be expressed as a sum of biquadrates of at least $m+1=2+1=3$ positive integers.
From the above illustration, we find that the equation $a^{4}=a_{1}^{4}+a_{2}^{4}+\cdots+a_{s}^{4}$ holds only when $s \geq 3$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers.

If $n=5$, the expression $c^{n}-d^{n}=c^{5}-d^{5}$ has at least 3 terms for any variable positive integral substitutions of the form $\quad c=u_{1}+u_{2}+\cdots+u_{r}, d=v_{1}+v_{2}+\cdots+v_{s}$ and $c=x+y, d=x-y$, where $x, y(x>y)$ are variable positive integers for which $c^{5}-d^{5}$ has 3 terms because

$$
\begin{equation*}
c^{5}-d^{5}=(x+y)^{5}-(x-y)^{5}=10 x^{4} y+20 x^{2} y^{3}+2 y^{5} \tag{21}
\end{equation*}
$$

From the Equation 21, we find that there are 3 terms $10 x^{4} y, 20 x^{2} y^{3}, 2 y^{5}$ in the expression $(x+y)^{5}-(x-y)^{5}$. Therefore by theorem-2.1, for positive integers $x=u, y=v(u>v)$, there exist at least 3 positive integers a_{2}, a_{3}, a_{4} such that

$$
\begin{equation*}
(u+v)^{5}-(u-v)^{5}=a_{2}^{5}+a_{3}^{5}+a_{4}^{5} \tag{22}
\end{equation*}
$$

From [21], equation
$(144 t)^{5}=(27 t)^{5}+(84 t)^{5}+(110 t)^{5}+(133 t)^{5}$, where t is any positive integer.
$\Rightarrow(127 t+17 t)^{5}-(127 t-17 t)^{5}=(27 t)^{5}+(84 t)^{5}+(133 t)^{5}$
Take $u=127 t, v=17 t$. Then $(u+v)^{5}-(u-v)^{5}=(27 t)^{5}+(84 t)^{5}+(133 t)^{5}$
By Equation 22, $\quad a_{2}^{5}+a_{3}^{5}+a_{4}^{5}=(27 t)^{5}+(84 t)^{5}+(133 t)^{5} \Rightarrow a_{2}=27 t, a_{3}=84 t, a_{4}=133 t$
Therefore there exist positive integers $a_{2}=27 t, a_{3}=84 t, a_{4}=133 t$ which satisfy the Equation 22 at $u=127 t, v=17 t$.
Also Equation 22 can be written as

$$
\begin{equation*}
(u+v)^{5}=(u-v)^{5}+a_{2}^{5}+a_{3}^{5}+a_{4}^{5} \tag{23}
\end{equation*}
$$

Put $u+v=144 t=a, u-v=110 t=a_{1}$ in Equation 23, we get the equation

$$
\begin{equation*}
a^{5}=a_{1}^{5}+a_{2}^{5}+a_{3}^{5}+a_{4}^{5} \tag{24}
\end{equation*}
$$

From the Equation 24, we find that the fifth power of every positive integer >1, can be expressed as a sum of the fifth powers of at least 4 positive integers.
Again let m is the number of terms in $(x+y)^{5}-(x-y)^{5}$ as a function of x, y. Since $(x+y)^{5}-(x-y)^{5}=10 x^{4} y+$ $20 x^{2} y^{3}+2 y^{5}$, there are 3 terms $10 x^{4} y, 20 x^{2} y^{3}, 2 y^{5}$ in $(x+y)^{5}-(x-y)^{5}$, then $m=3$. Therefore by theorem-2.1, the fifth power of every positive integer >1 can be expressed as a sum of the fifth powers of at least $m+1=3+1=4$ positive integers.

From the above illustration, we find that the equation $a^{5}=a_{1}^{5}+a_{2}^{5}+\cdots+a_{s}^{5}$ holds only when $s \geq 4$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers.

Further on the basis of the above discussion in this section, if $n=6$, the expression $c^{n}-d^{n}=c^{6}-d^{6}$ has at least 3 terms for any variable positive integral substitutions of the form $c=u_{1}+u_{2}+\cdots+u_{r}, d=v_{1}+v_{2}+\cdots+v_{s}$ and $c=x+y, d=$ $x-y$, where $x, y(x>y)$ are variable positive integers for which $c^{6}-d^{6}$ has 3 terms because

$$
\begin{equation*}
c^{6}-d^{6}=(x+y)^{6}-(x-y)^{6}=12 x^{5} y+40 x^{3} y^{3}+12 x y^{5} \tag{25}
\end{equation*}
$$

From the Equation 25, we find that there are 3 terms $12 x^{5} y, 40 x^{3} y^{3}, 12 x y^{5}$ in the expression $(x+y)^{6}-(x-y)^{6}$. Therefore by theorem-2.1, for positive integers $x=u, y=v(u>v)$, there exist at least 3 positive integers a_{2}, a_{3}, a_{4} such that

Also Equation 26 can be written as

$$
\begin{equation*}
(u+v)^{6}-(u-v)^{6}=a_{2}^{6}+a_{3}^{6}+a_{4}^{6} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
(u+v)^{6}=(u-v)^{6}+a_{2}^{6}+a_{3}^{6}+a_{4}^{6} \tag{27}
\end{equation*}
$$

Put $u+v=a, u-v=a_{1}$ in Equation 27, we get the equation

$$
\begin{equation*}
a^{6}=a_{1}^{6}+a_{2}^{6}+a_{3}^{6}+a_{4}^{6} \tag{28}
\end{equation*}
$$

From the Equation 28, we find that the sixth power of every positive integer >1, can be expressed as a sum of the sixth powers of at least 4 positive integers.

Again let m is the number of terms in $(x+y)^{6}-(x-y)^{6}$ as a function of x, y. Since $(x+y)^{6}-(x-y)^{6}=12 x^{5} y+$ $40 x^{3} y^{3}+12 x y^{5}$, there are 3 terms $12 x^{5} y, 40 x^{3} y^{3}, 12 x y^{5}$ in $(x+y)^{6}-(x-y)^{6}$, then $m=3$. Therefore by theorem-2.1, sixth power of every positive integer >1 can be expressed as a sum of sixth powers of at least $m+1=3+$ $1=4$ positive integers.

From the above illustration, we find that the equation $a^{6}=a_{1}^{6}+a_{2}^{6}+\cdots+a_{s}^{6}$ holds only when $s \geq 4$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers.

Continuing like this, in general, the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ holds only when

$$
s \geq \begin{cases}\frac{n+3}{2} & \text { if } n \text { is odd } \\ \frac{n+2}{2} & \text { if } n \text { is even }\end{cases}
$$

If it is so, then $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ definitely holds for all $s \geq n$, where $a, a_{1}, a_{2}, \cdots, a_{s}$ are positive integers.
Also if m is the number of terms in $(x+y)^{n}-(x-y)^{n}$ as a function of x, y; then

$$
m=\left\{\begin{array}{l}
\frac{n+1}{2} \text { if } n \text { is odd } \\
\frac{n}{2} \quad \text { if } n \text { is even }
\end{array} \quad \text { or } m=\left[\frac{n+1}{2}\right] .\right.
$$

Therefore, by theorem-2.1, equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{m+1}^{n}$ holds for $n=1,2, \cdots, 2 m$ and it does not hold if $n>$ $2 m$, where $a_{1}, a_{2}, \cdots, a_{m+1}$ are positive integers.

6. Conclusion

From the above discussion, we draw the following conclusions:
It is possible to find positive integers $a, a_{1}, a_{2}, \cdots, a_{s}$ such that
the equation $a^{n}=a_{1}^{n}+a_{2}^{n}$ holds for $n=1,2$; and it does not hold for $n>2$,
the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}$ holds for $n=1,2,3,4$; and it does not hold for $n>4$,
the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}+a_{4}^{n}$ holds for $n=1,2,3,4,5,6$; and it does not hold for $n>6$,
Further on the basis of validity of the above equations and analysis in the section-5, there is possibility that
the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}+a_{4}^{n}+a_{5}^{n}$ holds for $n=1,2,3,4,5,6,7,8$; and it does not hold for $n>8$,
the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+a_{3}^{n}+a_{4}^{n}+a_{5}^{n}+a_{6}^{n}$ holds for $n=1,2,3,4,5,6,7,8,9,10$; and it does not hold for $n>10$, Continuing like this,
the equation $a^{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{s}^{n}$ holds for $n=1,2,3, \cdots, 2 s-2$ and it does not hold for $n>2 s-2$.

Acknowledgements

I am thankful to all those authors whose results have been used in this paper.

References

[1] Wiles, "Modular Elliptic Curves and Fermat's Last Theorem," Annals of Mathematics, vol. 141, no. 3, pp. 443-551, 1995.
[2] R. Taylor, A. Wiles, "Ring Theoretic Properties of Certain Hecke Algebras," Annals of Mathematics, vol. 141, no. 4, pp. 553-572, 1995.
[3] B. Roy, "Fermat's Last Theorem in the Case $n=4$," Mathematical Gazette, vol. 95, pp. 269-271, 2011.
[4] K. Rychlik, "On Fermat's last theorem for $n=5$," Casopis Pest Mat., vol. 39, pp. 185-195 305-317, 1910.
[5] R. Breusch, "A Simple Proof of Fermat's Last Theorem for $n=5, n=10$, " Mathematics Magazine, vol. 33, no. 5, pp. 279-281, 1960.
[6] L.M. Adleman, D.R. Heath Brown, "The First Case of the Fermat Last Theorem," Inventiones Mathematica, Berlin, Springer, vol. 79, no. 2, 1985.
[7] H. M. Edwards, "Fermat Last Theorem: A Genetic Introduction to Number Theory, Graduate Texts in Mathematics," Springer Verlag, vol. 50, pp. 79, 1977.
[8] C. D. Bennett, A.M.W. Glass, Szekely and J. Gaber, "Fermat's Last Theorem for Rational Exponents," Americal Mathematical Monthly, vol. 111, no. 4, pp. 322-329, 2004
[9] R. Jennifer, "The Upside Down Pythagorean Theorem," Mathematical Gazette, vol. 92, pp. 313-317, 2008.
[10] A. Van der Poortan, "Notes on Fermat's Last Theorem", 1996.
[11] P. Ribenboim, "13 Lectures on Fermat's Last Theorem," Springer Verlag, pp. 51-54, 1979.
[12] S. Singh, "Fermat's Enigma," Anchor Books, 1998.
[13] M. Charles, "The Fermat's Diary," American Mathematical Society, 2000.
[14] G.Cornell, J.H. Silverman and G. Stevens , "Modular Forms and Fermat's Last Theorem", Springer, pp. 482, 1997.
[15] K. Buzzard , "Review of Modular Forms and Fermat's Last Theorem by G. Cornell, J.H. Silverman and G. Stevens," Bulletin of the American Mathematical Society, vol. 36, no. 2, pp. 261-266, 1999.
[16] G. Faltings, "The proof of Fermat's last theorem by R Taylor and A. Wiles," Notices of the American Mathematical Society, vol. 42, no.7, pp. 743-746, 1995.
[17] A. Aczel, "Fermat's Last Theorem: Unlocking the Secret of Ancient Mathematical Problem," 1997.
[18] V.A. Demjanenko, "L. Eulers Conjecture," Acta Arith, vol. 25, pp. 127-135,1974.
[19] L.J. Lander and T. R. Parkin, "Counter Examples to the Euler's Conjecture on the Sums of Like Powers," Bull. Amer. Math . Soc., vol. 72, pp. 1079, 1966.
[20] N. D. Elkies, "On $A^{4}+B^{4}+C^{4}=D^{4}$," Math.. Comput.. vol. 51, pp. 825-835, 1988.
[21] G. H. Hardy, E. M. Wright revised by D. R. Heath Brown, J. H. Silverman, "An Introduction to the Theory of Numbers," 6th ed., Oxford University Press, pp. 260, pp. 440-444, 2008.
[22] A.S. Werebrusow, "On the Equation $x^{5}+y^{5}=A z^{5}$," Math .Samml., vol. 25, pp. 466-473,1905.
[23] G. Frey, "Links between Stable Elliptic Curves and Certain Diophantine Equations", Annales Universitatis Saraviensis Series Mathematicae, vol. 1, pp. 1-40, 1986.
[24] M. Waldschmidt, "Open Diophantine problems," Moscow Mathematical Journal, vol. 4, pp. 245-305, 2004.
[25] R. D. Carmichael, "On the Impossibility of Certain Diophantine Equations and Systems of Equations," American Mathematical Monthly, vol. 20, pp. 213-221, 1913.
[26] M. Newman, "A Radical Diphantine Equation," Journal of Number Theory, vol. 13, no. 4, pp. 495-498, 1981.
[27] L.E. Dickson, "History of the Theory of Numbers, Diophantine analysis," G,E. Stechert \& Co., vol. 2, 1934.
[28] V. Roger, "Integers Solution of $a^{-2}+b^{-2}=d^{-2}$," Mathematical Gazette, vol. 83, no. 497, pp. 269-271, 1999.
[29] D. Zagier, "On the Equation $w^{4}+x^{4}+y^{4}=z^{4}$," Unpublished Note, 1987.

