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 Abstract - In this paper, some results relating to Fermat’s last theorem and beyond this theorem, have been presented. The 

expression of the form (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛, where 𝑥, 𝑦 are variable positive integers and 𝑥 > 𝑦, has been analyzed to derive 

some results relating to the Diophantine equation   𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛, where 𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 are positive integers. An 

attempt has been made to give a simple proof of Fermat’s last theorem and further this theorem has been extended to the case 

of 𝑠 = 3  relative to the equation        𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 . A result as a theorem 2.1 has been given to find the least 

positive   integral  value  of   𝑠  in   the   equation          𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛.        A   solution   of   each   of   the   equations 

 𝑎2 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2    and       𝑎3 = 𝑎1

3 + 𝑎2
3 + 𝑎3

3 + 𝑎4
3     has  been  obtained.  It  has  been  proved    that    the    equation 

  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can   be   expressed   as      (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛  = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛,   where       𝑢 + 𝑣 = 2𝑎,   

 𝑢 + 𝑣 = 2𝑎1. It will also be shown   that  the Diophantine   equation  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 is a particular case of the 

equation 

(𝑥 + 𝑦)𝑛 = (𝑥 − 𝑦)𝑛 + 2 (
𝑛
1

) 𝑥𝑛−1𝑦 + 2 (
𝑛
3

) 𝑥𝑛−3𝑦3 + ⋯ + 2𝛼,   𝛼 = {
𝑦𝑛 ,                     if 𝑛 is odd

(
𝑛

𝑛 − 1
) 𝑥𝑦𝑛−1 , if 𝑛 is even

 

as   it   is   obtained   by   putting   some   positive   integral   values     𝑢, 𝑣 (𝑢 > 𝑣)  of      𝑥, 𝑦 respectively.  Finally  equation 

  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 has been analyzed to conclude this paper. 

 

Keywords- Diophantine equation, expression, function, number of terms, positive integer 

 

1. Introduction  
If we study carefully the expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛, where 𝑥, 𝑦 are variable positive integers and  𝑥 > 𝑦, we can 

derive various results relating to the Diophantine equation  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 , where 𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠  are positive 

integers.  Fermat’s last theorem is one of these results whose proof has been a great challenge to the mathematicians for about 

three centuries.  As for as this theorem concerned, consider the Diophantine equation 

 

                                                                                      𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛                                                                                                        (1)  
where 𝑎, 𝑏, 𝑐, 𝑛 are all positive integers.  

 
Fermat’s last theorem states that Equation 1 holds only when 𝑛 ≤ 2 and it does not hold for 𝑛 > 2  whatever may be the 

values of the positive integers 𝑎, 𝑏, 𝑐. Wiles [1], and Wiles and Taylor [2] proved this theorem through two papers in 1995 by 

applying elliptic curves approach.  

 

There are many studies relating to the Fermat’s last theorem. Roy [3], discuses the proof of this theorem for the case of 

 𝑛 = 4, Rychlik[4], considered its proof for the case 𝑛 = 5 and Breusch [5], considered  the cases of 𝑛 = 6, 10. Adleman, 

Heath brown [6], discuss the first case of Fermat’s Last Theorem.  Edwards [7], studies this theorem in relation to number 

theory.  Bennett, Glass, Szekely, Gabar [8], study this theorem for rational exponents. Jennifer [9], studies it in relation to 

Pythagorean theorem.  Van der Poortan [10], gives notes on Fermat’s last theorem. Ribenboim [11], delivered 13 lectures on 

Fermat’ s last theorem, Singh [12], describes Fermat’s enigma, Charles [13], describes about  Fermat’s Diary, Cornell, 

Silverman and Stevens [14], study about modular forms and Fermat’s  last theorem, Buzzard [15], presents the review of 

modular forms and Fermat’s  last theorem, Faltings [16], discuses about the proof of Fermat’s  last theorem by R. Taylor and 

A. Wiles and Aczel [17] gives the details of  Fermat’s last theorem. 

    

Again, Fermat’s last theorem states that Diophantine equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛  does not hold if 𝑠 = 2, 𝑛 > 2 and 

Euler extended this conjecture to the values of 𝑠 = 3, 4, ⋯ , 𝑛 − 1.  

 

Demjanenko [18], describes the Euler’s conjecture and Lander and Parkin [19], present the counter examples to Euler’s 

conjecture. 

http://www.internationaljournalssrg.org/
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By  Elkies [20],      206156734 = 26824404 + 153656394 + 187967604  and   similar    result   given   by  Roger Frye, 

 4224814 =  958004 + 2175194 + 4145604, these  results  show  that  Euler  conjecture  is  false  for     𝑠 = 3, 𝑛 = 4.   Also 

from [21],  1445 = 275 + 845 + 1105 + 1335 shows that Euler conjecture is false for 𝑠 = 4, 𝑛 = 5. 

 

There are various results on the Diophantine equations .  Werebrusow [22], discuses on the equation  𝑥5 + 𝑦5 = 𝐴𝑧5, 

 Frey [23], studies the links between elliptic curves and certain Diophantine equations,  Michel Waldschmidt [24] discuses on 

open Diophantine problems , Carmichael  [25], presents the study on the impossibility of  certain Diophantine equations and 

systems of equations,  Newman [26], studies about radical Diophantine equations , Dickson [27], presents the History of theory 

of numbers with Diophantine analysis, Roger [28], studies the integral solution of 𝑎−2 + 𝑏−2 = 𝑑−2 and Zagier [29] studies the 

equation 𝑤4 + 𝑥4 + 𝑦4 = 𝑧4.   

 

In this article, Fermat’s last theorem and Diophantine equation  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛  will be discussed in relation to 

the expression  (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛. 

 

2. Analysis of the Expression   (𝒙 + 𝒚)𝒏 − (𝒙 − 𝒚)𝒏, 𝒙 > 𝒚 > 0 
If 𝑛 = 1, then expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 becomes(𝑥 + 𝑦)1 − (𝑥 − 𝑦)1 = (𝑥 + 𝑦) − (𝑥 − 𝑦)  = 𝑥 + 𝑦 − 𝑥 + 𝑦 = 2𝑦 
Therefore, if 𝑛 = 1, then the expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 has one term 2𝑦. 
      If   𝑛 = 2 , then expression  (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  becomes  (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 = 4𝑥𝑦 , therefore if  𝑛 = 2 , then the 

expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 has 1 term  4𝑥𝑦. If 𝑥 = 𝑢2 , 𝑦 = 𝑣2, then   (𝑢2 + 𝑣2)2 − (𝑢2 − 𝑣2)2 = 4𝑢2𝑣2 = (2𝑢𝑣)2 

⇒       (𝑢2 + 𝑣2)2 = (𝑢2 − 𝑣2)2 + (2𝑢𝑣)2  ⇒      𝑎2 = 𝑎1
2 + 𝑎2

2, where 𝑎 = 𝑢2 + 𝑣2, 𝑎1 = 𝑢2 − 𝑣2, 𝑎2 = 2𝑢𝑣            
      If 𝑛 = 3, then expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 becomes (𝑥 + 𝑦)3 − (𝑥 − 𝑦)3 = 6𝑥2𝑦 + 2𝑦3, therefore if 𝑛 = 3, then the 

expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 has 2 terms 6𝑥2𝑦, 2𝑦3. Expressions   2𝑦3, 6𝑥2𝑦 + 2𝑦3 cannot be expressed as cube of some 

positive integers.  If 𝑥 = 6𝑢3 , 𝑦 = 𝑣3, then  
(6𝑢3 + 𝑣3)3 − (6𝑢3 − 𝑣3)3 = 216𝑢6𝑣3 + 2𝑣9 = (6𝑢2𝑣)3 + 2(𝑣3)3 ⇒  (6𝑢3 + 𝑣3)3 = (6𝑢3 − 𝑣3)3 + (6𝑢2𝑣)3 + 2(𝑣3)3   

    From the above equation, we find that there exist positive integers 𝑎, 𝑎1, 𝑎2, 𝑎3, 𝑎4 which satisfy the equation 

  𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3 + 𝑎4

3, where 𝑎 = 6𝑢3 + 𝑣3, 𝑎1 = 6𝑢3 − 𝑣3, 𝑎2 = 6𝑢2𝑣, 𝑎3 = 𝑣3 = 𝑎4  
 
Illustration:Take 𝑢 = 1, 𝑣 = 1, then 𝑎 = 6𝑢3 + 𝑣3 = 6 × 13 + 13 = 7, 𝑎1 = 6𝑢3 − 𝑣3 = 6 × 13 − 13 = 5, 
 𝑎2 = 6𝑢2𝑣 = 6 × 12 × 1 = 6, 𝑎3 = 𝑣3 = 13 = 1 = 𝑎4. Therefore, 73 = 53 + 63 + 13 + 13 ⇒  𝑎3 = 𝑎1

3 + 𝑎2
3 + 𝑎3

3 + 𝑎4
3.             

  If 𝑥 = 5𝑢 , 𝑦 = 4𝑢, then   (5𝑢 + 4𝑢)3 − (5𝑢 − 4𝑢)3 = 600𝑢3 + 128𝑢3 = 728𝑢3 = (6𝑢3)3 + (8𝑢3)3 
 ⇒                                (9𝑢)3 = (𝑢)3 + (6𝑢)3 + (8𝑢)3               
    From the above equation, we find that there exist positive integers 𝑎, 𝑎1, 𝑎2, 𝑎3 which satisfy the equation 

  𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3, where 𝑎 = 9𝑢, 𝑎1 = 𝑢, 𝑎2 = 6𝑢, 𝑎3 = 8𝑢.                                                    

      If 𝑛 = 4, then expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 becomes (𝑥 + 𝑦)4 − (𝑥 − 𝑦)4 = 8𝑥3𝑦 + 8𝑥𝑦3, therefore if 𝑛 = 4, then the 

expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 has two terms  8𝑥3𝑦, 8𝑥𝑦3.If  𝑥 = 𝑢2,  𝑦 = 2𝑣2, then 
 (𝑢2 + 2𝑣2)4 − (𝑢2 − 2𝑣2)4 = 16𝑢6𝑣2 + 64𝑢2𝑣6 = (4𝑢3𝑣)2 + (8𝑢𝑣3)2, 
  i. e.  (𝑢2 + 2𝑣2)4 − (𝑢2 − 2𝑣2)4 = (4𝑢3𝑣)2 + (8𝑢𝑣3)2 
If 𝑎1 = 𝑢2 + 2𝑣2, 𝑎2 = 𝑢2 − 2𝑣2, 𝑎3 = 4𝑢3𝑣, 𝑎4 = 8𝑢𝑣3, then  𝑎1

4 − 𝑎2
4 = 𝑎3

2 + 𝑎4
2 

 
Illustration: If 𝑢 = 3, 𝑣 = 1, then 𝑎1 = 32 + 2 × 12 = 11, 𝑎2 = 32 − 2 × 12 = 7,    𝑎3 = 4 × 33 × 1 = 108, 𝑎4 =
8 × 3 × 13 = 24.  Therefore  114 − 74 = 1082 + 242.  
  If 𝑥 = 𝑢3 and 𝑦 = 𝑣3, then 
 (𝑢3 + 𝑣3)4 − (𝑢3 − 𝑣3)4 = 8𝑢9𝑣3 + 8𝑢3𝑣9 = (2𝑢3𝑣)3 + (2𝑢𝑣3)3, i. e.  (𝑢3 + 𝑣3)4 − (𝑢3 − 𝑣3)4 = (2𝑢3𝑣)3 + (2𝑢𝑣3)3 
If 𝑎1 = 𝑢3 + 𝑣3,   𝑎2 = 𝑢3 − 𝑣3,   𝑎3 = 2𝑢3𝑣,   𝑎4 = 2𝑢𝑣3, then 𝑎1

4 − 𝑎2
4 = 𝑎3

3 + 𝑎4
3. 

 

Illustration: If  𝑢 = 3, 𝑣 = 2, then  𝑎1 = 33 + 23 = 35, 𝑎2 = 33 − 23 = 19,   𝑎3 = 2 × 33 × 2 = 108, 
𝑎4 = 2 × 3 × 23 = 48.    Therefore   354 − 194 = 1083 + 483 
  If 𝑥 = 𝑢4 and 𝑦 = 2𝑣4, then (𝑢4 + 2𝑣4)4 − (𝑢4 − 2𝑣4)4 = 16𝑢12𝑣4 + 64𝑢4𝑣12  = (2𝑢3𝑣)4 + 4(2𝑢𝑣3)4 
i. e.  (𝑢4 + 2𝑣4)4 − (𝑢4 − 2𝑣4)4 = (2𝑢3𝑣)4 + 4(2𝑢𝑣3)4 ⇒   (𝑢4 + 2𝑣4)4 = (𝑢4 − 2𝑣4)4 + (2𝑢3𝑣)4 + 4(2𝑢𝑣3)4 
 If 𝑎 = 𝑢4 + 2𝑣4, 𝑎1 = 𝑢4 − 2𝑣4, 𝑎2 = 2𝑢3𝑣, 𝑎3 = 2𝑢𝑣3 , then 𝑎4 = 𝑎1

4 + 𝑎2
4 + 4𝑎3

4. 
i. e.    𝑎4 = 𝑎1

4 + 𝑎2
4 + 𝑎3

4 + 𝑎4
4 + 𝑎5

4 + 𝑎6
4 , where 𝑎3 = 𝑎4 = 𝑎5 = 𝑎6. 

 

Illustration: If 𝑢 = 3, 𝑣 = 1, then 𝑎 = 34 + 2 × 14 = 83, 𝑎1 = 34 − 2 × 14 = 79,   𝑎2 = 2 × 33 × 1 = 54, 
𝑎3 = 2 × 3 × 13 = 6. Therefore  834 = 794 + 544 + 4 × 64 = 794 + 544 + 64 + 64 + 64 + 64      
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 If 𝑥 = 𝑢4 and 𝑦 = 4𝑣4, then (𝑢4 + 4𝑣4)4 − (𝑢4 − 4𝑣4)4 = 32𝑢12𝑣4 + 512𝑢4𝑣12 = 2(2𝑢3𝑣)4 + 2(4𝑢𝑣3)4 
 i. e.   (𝑢4 + 4𝑣4)4 − (𝑢4 − 4𝑣4)4 = 2(2𝑢3𝑣)4 + 2(4𝑢𝑣3)4 ⇒  (𝑢4 + 4𝑣4)4 = (𝑢4 − 4𝑣4)4 + 2(2𝑢3𝑣)4 + 2(4𝑢𝑣3)4   
If  𝑎 = 𝑢4 + 4𝑣4,   𝑎1 = 𝑢4 − 4𝑣4,   𝑎2 = 2𝑢3𝑣,   𝑎4 = 4𝑢𝑣3, then 𝑎4 = 𝑎1

4 + 2𝑎2
4 + 2𝑎4

4 
i. e.    𝑎4 = 𝑎1

4 + 𝑎2
4 + 𝑎3

4 + 𝑎4
4 + 𝑎5

4 , where 𝑎2 = 𝑎3 ,   𝑎4 = 𝑎5. 
 

Illustration: Let  𝑢 = 3, 𝑣 = 1. Then 𝑎 = 34 + 4 × 14 = 85, 𝑎1 = 34 − 4 × 14 = 77, 𝑎2 = 2 × 33 × 1 = 54, 
𝑎4 = 4 × 3 × 13 = 12. Therefore  854 = 774 + 2 × 544 + 2 × 124 = 774 + 544 + 544 + 124 + 124 
    Continuing like this, we can analyze  (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 for 𝑛 = 5, 6, ⋯ 
 From the above analysis, we note the following important result: 
  

Theorem-2.1 

 If 𝑢 = 𝑘𝑢1
𝛼1𝑢2

𝛼2 ⋯ 𝑢𝑟
𝛼𝑟 ,     𝑣 = 𝑙𝑣1

𝛽1𝑣2
𝛽2 ⋯ 𝑣𝑠

𝛽𝑠  or  u = 𝑘1𝑢1
𝛼11𝑢2

𝛼12 ⋯ 𝑢𝑟
𝛼1𝑟 + 𝑘2𝑢1

𝛼21𝑢2
𝛼22 ⋯ 𝑢𝑟

𝛼2𝑟 + ⋯ + 𝑘𝑚𝑢1
𝛼𝑚1𝑢2

𝛼𝑚2 ⋯ 𝑢𝑟
𝛼𝑚𝑟 ,  

𝑣 =  𝑙1𝑣1
𝛽11𝑣2

𝛽12 ⋯ 𝑣𝑠
𝛽1𝑠 + 𝑙2𝑣1

𝛽21𝑣2
𝛽22 ⋯ 𝑣𝑠

𝛽2𝑠 + ⋯ + 𝑙𝑡𝑣1
𝛽𝑡1𝑣2

𝛽𝑡2 ⋯ 𝑣𝑠
𝛽𝑡𝑠, where 𝑘, 𝑙, 𝑘𝑖 , 𝑙𝑖  are fixed integers, integers 𝛼𝑖 , 𝛽𝑖 , 𝛼𝑖𝑗 ,

𝛽𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗; then number of terms in (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 as a function of 𝑢1, 𝑢2, ⋯ , 𝑢𝑟  , 𝑣1, 𝑣2, ⋯ , 𝑣𝑠 cannot be less than the 

number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦.  

         In particular if (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2
𝑛 + 𝑎3

𝑛 + ⋯, then number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦  
≤ number of 𝑎𝑖𝑠  in  𝑎2

𝑛 + 𝑎3
𝑛 + ⋯.  

  Moreover if there are 𝑚 terms in  (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦; then there exist at least 𝑚 positive integers 

𝑎2, 𝑎3, ⋯ , 𝑎𝑚+1 such that (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2
𝑛 + 𝑎3

𝑛 + ⋯ + 𝑎𝑚+1
𝑛 . 

 

Proof: First Part: we have  

(𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 = 2 (
𝑛
1

) 𝑥𝑛−1𝑦 + 2 (
𝑛
3

) 𝑥𝑛−3𝑦3 + ⋯ + 2𝛼                                                           … (2) 

         where    𝛼 = {
𝑦𝑛 ,                     if 𝑛 is odd

(
𝑛

𝑛 − 1
) 𝑥𝑦𝑛−1 , if 𝑛 is even

 ,  

Therefore number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦 is the number of terms in the right hand side of 

Equation 2.  If we put 𝑥 = 𝑘𝑢1
𝛼1𝑢2

𝛼2 ⋯ 𝑢𝑟
𝛼𝑟 = 𝑢, 𝑦 = 𝑙𝑣1

𝛽1𝑣2
𝛽2 ⋯ 𝑣𝑠

𝛽𝑠 = 𝑣 in Equation 2, then it becomes  

(𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 2 (
𝑛
1

) 𝑢𝑛−1𝑣 + 2 (
𝑛
3

) 𝑢𝑛−3𝑣3 + ⋯ + 2𝛼                                                           … (3) 

         where   𝛼 = {
𝑣𝑛 ,                     if 𝑛 is odd

(
𝑛

𝑛 − 1
) 𝑢𝑣𝑛−1 , if 𝑛 is even

 

   From the Equation 3, we find that number of terms in (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 as a function of 𝑢1, 𝑢2, ⋯ , 𝑢𝑟  , 𝑣1, 𝑣2, ⋯ , 𝑣𝑠 is 

equal to number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦.  

      If we put  𝑥 = 𝑘1𝑢1
𝛼11𝑢2

𝛼12 ⋯ 𝑢𝑟
𝛼1𝑟 + 𝑘2𝑢1

𝛼21𝑢2
𝛼22 ⋯ 𝑢𝑟

𝛼2𝑟 + ⋯ + 𝑘𝑚𝑢1
𝛼𝑚1𝑢2

𝛼𝑚2 ⋯ 𝑢𝑟
𝛼𝑚𝑟 = 𝑢,  

                     𝑦 = 𝑙1𝑣1
𝛽11𝑣2

𝛽12 ⋯ 𝑣𝑠
𝛽1𝑠 + 𝑙2𝑣1

𝛽21𝑣2
𝛽22 ⋯ 𝑣𝑠

𝛽2𝑠 + ⋯ + 𝑙𝑡𝑣1
𝛽𝑡1𝑣2

𝛽𝑡2 ⋯ 𝑣𝑠
𝛽𝑡𝑠 = 𝑣  

  in Equation 2, then it again becomes  Equation 3 with changed values of 𝑢 and 𝑣. Then from the Equation 3, we find that 

number of terms in (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛  as a function of 𝑢1, 𝑢2, ⋯ , 𝑢𝑟  , 𝑣1, 𝑣2, ⋯ , 𝑣𝑠  is greater than number of terms in 
(𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦. 
  This proves that number of terms in    (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦   ≤  number of terms in (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 
as a function of 𝑢1, 𝑢2, ⋯ , 𝑢𝑟  , 𝑣1, 𝑣2, ⋯ , 𝑣𝑠. 
 
Second Part:  

               Let (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2
𝑛 + 𝑎3

𝑛 + ⋯  
Now by first part, number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦 ≤ number of terms in (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛     

                                                                                                                                   as a function of 𝑢1, 𝑢2, ⋯ , 𝑢𝑟  , 𝑣1, 𝑣2, ⋯ , 𝑣𝑠 

 ⇒      number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛as a function of 𝑥, 𝑦    ≤ number of terms in 𝑎2
𝑛 + 𝑎3

𝑛 + ⋯ as a function 

                                                                                                                                        of 𝑢1, 𝑢2, ⋯ , 𝑢𝑟  , 𝑣1, 𝑣2, ⋯ , 𝑣𝑠 

⇒      number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦  ≤ number of 𝑎𝑖
𝑛𝑠  in  𝑎2

𝑛 + 𝑎3
𝑛 + ⋯  

                                                                                                                                    [∵  𝑎2
𝑛, 𝑎3

𝑛, ⋯ are the terms of 𝑎2
𝑛 + 𝑎3

𝑛 + ⋯] 

⇒      number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦  ≤ number of 𝑎𝑖𝑠  in  𝑎2
𝑛 + 𝑎3

𝑛 + ⋯ 

This implies if there are 𝑚 terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦; then there exist at least 𝑚 positive integers 

𝑎2, 𝑎3, ⋯ , 𝑎𝑚+1 such that  (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2
𝑛 + 𝑎3

𝑛 + ⋯ + 𝑎𝑚+1
𝑛 . 
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3. Solution of Diophantine Equations 

   𝑎2 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2  and  𝑎3 = 𝑎1

3 + 𝑎2
3 + 𝑎3

3 + 𝑎4
3     

  We have (𝑥 + 𝑦)2 = 𝑥2 + 2𝑥𝑦 + 𝑦2.Put 𝑥 = 𝑢2, 𝑦 = 2𝑣2, we have 
(𝑢2 + 2𝑣2)2 = 𝑢4 + 4𝑢2𝑣2 + 4𝑣4 = (𝑢2)2 + (2𝑢𝑣)2 + (2𝑣2)2   = (𝑢2)2 + (2𝑣2)2 + (2𝑢𝑣)2 

Put 𝑑 = 𝑢2 + 2𝑣2, 𝑎 = 𝑢2, 𝑏 = 2𝑣2, 𝑐 = 2𝑢𝑣 , we have  𝑑2 = 𝑎2 + 𝑏2 + 𝑐2 
Illustration: Let 𝑢 = 1, 𝑣 = 2.Then (12 + 2 × 22)2 = 14 + 4 × 12 × 22 + 4 × 24  ⇒     92 = 12 + 82 + 42 
 

 (i) To find positive integers 𝑎, 𝑎1, ⋯ , 𝑎𝑛 satisfying the equation 𝑎2 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2 . 

Consider the identity 
(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛)2 − (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛−1 − 𝑥𝑛)2 = 4𝑥1𝑥𝑛 + 4𝑥2𝑥𝑛 + ⋯ + 4𝑥𝑛−1𝑥𝑛 
Now put  𝑥1 = 𝑦1

2, 𝑥2 = 𝑦2
2, ⋯ , 𝑥𝑛 = 𝑦𝑛

2, we have   
(𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛−1

2 + 𝑦𝑛
2)2 − (𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛−1

2 − 𝑦𝑛
2)2 = 4𝑦1

2𝑦𝑛
2 + 4𝑦2

2𝑦𝑛
2 + ⋯ + 4𝑦𝑛−1

2 𝑦𝑛
2 

         = (2𝑦1𝑦𝑛)2 + (2𝑦2𝑦𝑛)2 + ⋯ + (2𝑦𝑛−1𝑦𝑛)2 
Take 𝑎 = 𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛−1

2 + 𝑦𝑛
2,   𝑎1 = 𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛−1

2 − 𝑦𝑛
2 

    𝑎2 = 2𝑦1𝑦𝑛,   𝑎3 = 2𝑦2𝑦𝑛, ⋯,   𝑎𝑛 = 2𝑦𝑛−1𝑦𝑛, we have 𝑎2 − 𝑎1
2 = 𝑎2

2 + ⋯ + 𝑎𝑛
2  

Therefore, for suitable choice of integers 𝑦1, 𝑦2, ⋯ , 𝑦𝑛; there exist positive integers 𝑎, 𝑎1, ⋯ , 𝑎𝑛 satisfying the equation 
 𝑎2 = 𝑎1

2 + 𝑎2
2 + ⋯ + 𝑎𝑛

2 . 
As an illustration: (72 + 32 + 12)2 − (72 + 32 − 12)2 = (2 × 7 × 1)2 + (2 × 3 × 1)2  ⇒    592 = 572 + 142 + 62 

 

 (ii) To find positive integers 𝑎, 𝑎1, 𝑎2, 𝑎3, 𝑎4 satisfying the equation 𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3 + 𝑎4

3.  
 Consider the identity 

(𝑥1 + 𝑥2 − 𝑥3)3 + (𝑥1 − 𝑥2 + 𝑥3)3 + (−𝑥1 + 𝑥2 + 𝑥3)3  − (𝑥1 + 𝑥2 + 𝑥3)3 = −24𝑥1𝑥2𝑥3      
 Put  𝑥1 = 3𝑦1

3, 𝑥2 = 3𝑦2
3, 𝑥3 = 𝑦3

3, we have 
 (3𝑦1

3 + 3𝑦2
3 − 𝑦3

3)3 + (3𝑦1
3 − 3𝑦2

3 + 𝑦3
3)3   + (−3𝑦1

3 + 3𝑦2
3 + 𝑦3

3)3 − (3𝑦1
3 + 3𝑦2

3 + 𝑦3
3)3  = −216𝑦1

3𝑦2
3𝑦3

3      
⇒  (3𝑦1

3 + 3𝑦2
3 + 𝑦3

3)3 = (3𝑦1
3 + 3𝑦2

3 − 𝑦3
3)3 + (3𝑦1

3 − 3𝑦2
3 + 𝑦3

3)3 + (−3𝑦1
3 + 3𝑦2

3 + 𝑦3
3)3 + 216𝑦1

3𝑦2
3𝑦3

3 
= (3𝑦1

3 + 3𝑦2
3 − 𝑦3

3)3 + (3𝑦1
3 − 3𝑦2

3 + 𝑦3
3)3 + (−3𝑦1

3 + 3𝑦2
3 + 𝑦3

3)3 + (6𝑦1𝑦2𝑦3)3                   
Take 𝑎 = 3𝑦1

3 + 3𝑦2
3 + 𝑦3

3, 𝑎1 = 3𝑦1
3 + 3𝑦2

3 − 𝑦3
3,    𝑎2 = 3𝑦1

3 − 3𝑦2
3 + 𝑦3

3, 𝑎3 = −3𝑦1
3 + 3𝑦2

3 + 𝑦3
3,     𝑎4 = 6𝑦1𝑦2𝑦3,   

Therefore, for suitable choice of integers 𝑦1, 𝑦2, 𝑦3; there exist positive integers 𝑎, 𝑎1, 𝑎2, 𝑎3, 𝑎4 satisfying the equation 
𝑎3 = 𝑎1

3 + 𝑎2
3 + 𝑎3

3 + 𝑎4
3.  

 

Illustration: Take 𝑦1 = 1, 𝑦2 = 2, 𝑦3 = 3, then 𝑎 = 3𝑦1
3 + 3𝑦2

3 + 𝑦3
3 = 3 × 13 + 3 × 23 + 33 = 54,   

𝑎1 = 3𝑦1
3 + 3𝑦2

3 − 𝑦3
3 = 3 × 13 + 3 × 23 − 33 = 0,   𝑎2 = 3𝑦1

3 − 3𝑦2
3 + 𝑦3

3 = 3 × 13 − 3 × 23 + 33 = 6, 
𝑎3 = −3𝑦1

3 + 3𝑦2
3 + 𝑦3

3 = −3 × 13 + 3 × 23 + 33 = 48, 𝑎4 = 6𝑦1𝑦2𝑦3 = 6 × 1 × 2 × 3 = 36 
∴   543 = 63 + 483 + 363 ⇒   93 = 13 + 83 + 63 
   Similarly, if 𝑦1 = 2, 𝑦2 = 3, 𝑦3 = 4, then 1693 = 413 + 73 + 1213 + 1443 
Also from [21], the formula of expressing cube of a positive integer as a sum of three cubes is given by 

 𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3, where 𝑎 = 9𝑢4 , 𝑎1 = 9𝑢4 − 3𝑢𝑣3,   𝑎2 = 9𝑢3𝑣 − 𝑣4, 𝑎3 = 𝑣4. 

 

Illustration:  If we put 𝑢 = 𝑣 = 1, then we get  93 = 13 + 83 + 63 

     Again from [21], Ramanujan gave the solution of the equation 

 𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3 as follows: 

 𝑎 =  6𝑢2 − 4𝑢𝑣 + 4𝑣2 , 𝑎1 = 4𝑢2 − 4𝑢𝑣 + 6𝑣2, 𝑎2 = 5𝑢2 − 5𝑢𝑣 − 3𝑣2,   𝑎3 = 3𝑢2 + 5𝑢𝑣 − 5𝑣2. 
 

Illustration: If 𝑢 = 3, 𝑣 = 1, then 𝑎 = 46, 𝑎1 = 30, 𝑎2 = 27, 𝑎3 = 37. Therefore, 463 = 303 + 273 + 373. 
 

4. Main Results   
    We observe that the expression 132 = 52 + 122 can be written as (9 + 4)2 − (9 − 4)2 = 122 

⇒      262 = 102 + 242 can be written as (18 + 8)2 − (18 − 8)2 = 242,                 
the expression 92 = 12 + 82 + 42 can be written as (5 + 4)2 − (5 − 4)2 = 82 + 42 
⇒               182 = 22 + 162 + 82 can be written as (10 + 8)2 − (10 − 8)2 = 162 + 82,         
the expression 93 = 13 + 83 + 63 can be written as (5 + 4)3 − (5 − 4)3 = 83 + 63 
⇒                183 = 23 + 163 + 123 can be written as (10 + 8)3 − (10 − 8)3 = 163 + 123,    
the expression 63 = 33 + 43 + 53 can be written as  (5 + 1)3 − (5 − 1)3 = 33 + 53 
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⇒               123 = 63 + 83 + 103 can be written as  (10 + 2)3 − (10 − 2)3 = 63 + 103, 
the expression 1693 = 413 + 73 + 1213 + 1443 can be written as  (88 + 81)3 − (88 − 81)3 = 413 + 1213 + 1443 
⇒               3383 = 823 + 143 + 2423 + 2883 can be written as  (176 + 162)3 − (176 − 162)3 = 823 + 2423 + 2883,       
the expression 206156734 = 26824404 + 153656394 + 187967604 (due to Elkies [20]) can be written as 

                 (17990656 + 2625017)4 − (17990656 − 2625017)4 = 26824404 + 187967604 
⇒              412313464 = 53648804 + 307312784 + 375935204   can be written as  
                  (35981312 + 5250034)4 − (35981312 − 5250034)4 = 53648804 + 375935204, 
the expression 4224814 = 958004 + 2175194 + 4145604 (due to Roger Frye) can be written as 

                   (320000 + 102481)4 − (320000 − 102481)4 = 958004 + 4145604 
⇒               8449624 = 1916004 + 4350384 + 8291204 can be written as 

                   (640000 + 204962)4 − (640000 − 204962)4 = 1916004 + 8291204, 
the expression 3534 = 304 + 1204 + 2724 + 3154 (from [21]) can be written as 

                 (334 + 19)4 − (334 − 19)4 = 304 + 1204 + 2724 
⇒              7064 = 604 + 2404 + 5444 + 6304 can be written as 
                  (688 + 38)4 − (668 − 38)4 = 604 + 2404 + 5444, 
the expression 1445 = 275 + 845 + 1105 + 1335 (from [21]) can be written as 
                  (127 + 17)5 − (127 − 17)5 = 275 + 845 + 1335 
⇒               2885 = 545 + 1685 + 2205 + 2665 can be written as 

                (254 + 34)5 − (254 − 34)5 = 545 + 1685 + 2665 etc. 
          From the above analysis, we have the following results: 

 

Theorem-4.1 

 Every Diophantine equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 or 

 (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛, where 𝑎, 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠 are positive integers. 
Proof:  𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑠

𝑛 ⇒  𝑎𝑛 − 𝑎1
𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛  

Case-I If  𝑎 is odd. 
 If 𝑎 is odd positive integer, then one of the positive integers 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠 must be odd. So suppose that  𝑎1 is odd. Now 
𝑎, 𝑎1are odd so 𝑎 + 𝑎1, 𝑎 − 𝑎1 are even. 

Take 𝑢 =
𝑎 + 𝑎1

2
,   𝑣 =

𝑎 − 𝑎1

2
,   then  𝑎 = 𝑢 + 𝑣,   𝑎1 = 𝑢 − 𝑣           

∴   𝑎𝑛 − 𝑎1
𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛  ⇒    (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 

This implies 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 in this case.  

 

Case-II If  𝑎 is even and one of the positive integers 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠 is even. 
 If one of the positive integers 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠is even, then suppose that  𝑎1 is even. Now 𝑎, 𝑎1are even so 𝑎 + 𝑎1, 𝑎 − 𝑎1 are 

even. 

Take 𝑢 =
𝑎 + 𝑎1

2
,   𝑣 =

𝑎 − 𝑎1

2
,   then  𝑎 = 𝑢 + 𝑣,   𝑎1 = 𝑢 − 𝑣           

∴   𝑎𝑛 − 𝑎1
𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛  ⇒    (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 

This implies 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 in this case.  

 

Case-III If  𝑎 is even but none of the positive integers 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠 is even. 
 Then equation 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑠

𝑛 can be expressed as (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛  
and (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 ⇒  (2𝑎)𝑛 − (2𝑎1)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛  

Take 𝑢 =
2𝑎 + 2𝑎1

2
= 𝑎 + 𝑎1,   𝑣 =

2𝑎 − 2𝑎1

2
= 𝑎 − 𝑎1,   then  2𝑎 = 𝑢 + 𝑣,   2𝑎1 = 𝑢 − 𝑣. 

So  (2𝑎)𝑛 − (2𝑎1)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛  ⇒    (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 
This implies (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛. 
This implies 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑠

𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 in this case. 

 
Theorem-4.2 Every Diophantine equation (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 can be expressed as  

 (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛, where 𝑎, 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠 are positive integers. 

Proof:   (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 ⇒  (2𝑎)𝑛 − (2𝑎1)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛  

Take 𝑢 =
2𝑎 + 2𝑎1

2
= 𝑎 + 𝑎1,   𝑣 =

2𝑎 − 2𝑎1

2
= 𝑎 − 𝑎1,   then  2𝑎 = 𝑢 + 𝑣,   2𝑎1 = 𝑢 − 𝑣. 
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So  (2𝑎)𝑛 − (2𝑎1)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛  ⇒    (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 
This implies (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛. 
 

Theorem-4.3 Every Diophantine equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as  

 (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛, where 𝑎, 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠 are positive integers. 

Proof: Equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 

and by theorem-4.2,  (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 can be expressed as 
                                       (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛, where 𝑢 + 𝑣 = 2𝑎, 𝑢 − 𝑣 = 2𝑎1 . 
 Hence 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑠

𝑛 can be expressed as  (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛    
 

Theorem-4.4 Every Diophantine equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be obtained by putting some positive integral values of 

𝑥, 𝑦 in the equation 

(𝑥 + 𝑦)𝑛 = (𝑥 − 𝑦)𝑛 + 2 (
𝑛
1

) 𝑥𝑛−1𝑦 + 2 (
𝑛
3

) 𝑥𝑛−3𝑦3 + ⋯ + 2𝛼,  

where                𝛼 = {
𝑦𝑛 ,                     if 𝑛 is odd

(
𝑛

𝑛 − 1
) 𝑥𝑦𝑛−1 , if 𝑛 is even

                          

   Or   

Equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 is the particular case of the equation  

 (𝑥 + 𝑦)𝑛 = (𝑥 − 𝑦)𝑛 + 2 (
𝑛
1

) 𝑥𝑛−1𝑦 + 2 (
𝑛
3

) 𝑥𝑛−3𝑦3 + ⋯ + 2𝛼             

where 𝑎, 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑠 are positive integers. 

Proof: By theorem-4.3, equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 

But              (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 2 (
𝑛
1

) 𝑢𝑛−1𝑣 + 2 (
𝑛
3

) 𝑢𝑛−3𝑣3 + ⋯ + 2𝛼,                                                                      … (4) 

where                𝛼 = {
𝑣𝑛 ,                     if 𝑛 is odd

(
𝑛

𝑛 − 1
) 𝑢𝑣𝑛−1 , if 𝑛 is even

.             

Therefore, by Equation 4, 

𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 2 (

𝑛
1

) 𝑢𝑛−1𝑣 + 2 (
𝑛
3

) 𝑢𝑛−3𝑣3 + ⋯ + 2𝛼 

⇒ 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (𝑢 + 𝑣)𝑛 = (𝑢 − 𝑣)𝑛 + 2 (

𝑛
1

) 𝑢𝑛−1𝑣 + 2 (
𝑛
3

) 𝑢𝑛−3𝑣3 + ⋯ + 2𝛼 

   In other words, equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 is the particular case of the equation 

 (𝑥 + 𝑦)𝑛 = (𝑥 − 𝑦)𝑛 + 2 (
𝑛
1

) 𝑥𝑛−1𝑦 + 2 (
𝑛
3

) 𝑥𝑛−3𝑦3 + ⋯ + 2𝛼 , because 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛  is obtained from it by 

putting 𝑥 = 𝑢, 𝑦 = 𝑣. This proves the theorem. 
    Further for some positive integers 𝑢, 𝑣 (𝑢 > 𝑣), if   (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎2

𝑛 + 𝑎3
𝑛 + ⋯ + 𝑎𝑟+1

𝑛  and 𝑚 is the number of 

terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦; then by theorem-2.1,  𝑚 ≤ 𝑟 always. 

  Let 2 (
𝑛
1

) 𝑢𝑛−1𝑣 + 2 (
𝑛
3

) 𝑢𝑛−3𝑣3 + ⋯ + 2𝛼 = 𝛽.  

      Therefore, we notice that proofs of Fermat’s last theorem and its extensions are given by the expression 

 (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎𝑛 − 𝑎1
𝑛 = 𝛽 completely.  Because if there exists a positive integer 𝑎2 such that 𝛽 = 𝑎2

𝑛, then 𝑎𝑛 −
𝑎1

𝑛 = 𝑎2
𝑛  and this implies 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛. 

  
      By using expression (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑎𝑛 − 𝑎1

𝑛 = 𝛽, this theorem can be proved as follows.  

Theorem-4.5 (Fermat’s Last Theorem): Equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 is possible for       𝑛 = 1, 2  and it is not possible for any 𝑛 >
2 where 𝑎, 𝑎1, 𝑎2  are positive integers. 

    Proof: To prove  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 holds for 𝑛 = 1, it is easy to see that every positive integer 𝑎 ≥ 2 can be expressed as 𝑎 =
𝑎1 + 𝑎2, where 𝑎1, 𝑎2 are positive integers and 𝑎1 = 𝑎2 may be possible  
  Also  𝑎 = 𝑎1 + 𝑎2  ⇒  𝑎1 = 𝑎1

1 + 𝑎2
1 

Therefore, 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 holds for 𝑛 = 1. 

                

 To prove 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 holds for 𝑛 = 2, consider the equation    

       (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 = 4𝑥𝑦                                
Put 𝑥 = 𝑢2, 𝑦 = 𝑣2, then, (𝑢2 + 𝑣2)2 − (𝑢2 − 𝑣2)2 = 4𝑢2𝑣2 = (2𝑢𝑣)2 

We can choose integers  𝑢, 𝑣 in such a way that 𝑢2 + 𝑣2, 𝑢2 − 𝑣2, 2𝑢𝑣 are all positive. 
Now put 𝑥 + 𝑦 = 𝑢2 + 𝑣2 = 𝑎, 𝑥 − 𝑦 = 𝑢2 − 𝑣2 = 𝑎1, 2𝑢𝑣 = 𝑎2 
Then, 𝑎2 − 𝑎1

2 = 𝑎2
2  ⇒  𝑎2 = 𝑎1

2 + 𝑎2
2 
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So there exist positive integers 𝑎, 𝑎1, 𝑎2 satisfying the equation 𝑎2 = 𝑎1
2 + 𝑎2

2. 
Therefore, 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 holds for 𝑛 = 2. 

 
   For  𝑛 > 2 , if equation 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 is possible   ⇒  (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛  is possible ⇒  𝑏𝑛 = 𝑏1

𝑛 + 𝑏2
𝑛 is possible, 

where 𝑏 = 2𝑎, 𝑏1 = 2𝑎1, 𝑏2 = 2𝑎2..   
        By theorem-4.2, (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛, where  𝑢 + 𝑣 = 2𝑎,  
𝑢 − 𝑣 = 2𝑎1,  i.e. 𝑏𝑛 = 𝑏1

𝑛 + 𝑏2
𝑛  can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑏2

𝑛, where   𝑢 + 𝑣 = 𝑏, 𝑢 − 𝑣 = 𝑏1.    
     If it is possible to express (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑏2

𝑛 + 𝑏3
𝑛 + ⋯,  then by theorem-2.1, number of terms in 

 (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦 ≤ number of 𝑏𝑖𝑠 in 𝑏2
𝑛 + 𝑏3

𝑛 + ⋯. 
        Now for  𝑛 > 2, there are at least 2 terms in the expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of  𝑥, 𝑦; so the number of 
𝑏𝑖𝑠  in the expression 𝑏2

𝑛 + 𝑏3
𝑛 + ⋯ cannot be less than 2(=least number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛) , i.e. there exist at 

least 2 positive integers 𝑏2, 𝑏3 such that 

                          (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑏2
𝑛 + 𝑏3

𝑛 .  
This implies there exists no positive integer  𝑏2 such that     (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛  = 𝑏2

𝑛 

⇒    𝑏𝑛 − 𝑏1
𝑛 = 𝑏2

𝑛 is not possible  ⇒    (2𝑎)𝑛 − (2𝑎1)𝑛 = (2𝑎2)𝑛 is not possible  ⇒  𝑎𝑛 − 𝑎1
𝑛 = 𝑎2

𝑛 is not possible 

⇒  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 is not possible for 𝑛 > 2. 
   Therefore, 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 does not hold for 𝑛 > 2. This proves the theorem. 

 

Theorem-4.6 Equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛  is possible for       𝑛 = 1, 2, 3, 4   and it is not possible for any  𝑛 > 4  where 

𝑎, 𝑎1, 𝑎2, 𝑎3 are positive integers. 
    Proof: To prove  𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + 𝑎3

𝑛 holds for 𝑛 = 1, it is easy to see that every positive integer 𝑎 ≥ 3 can be expressed as 

  𝑎 = 𝑎1 + 𝑎2 + 𝑎3, where 𝑎1, 𝑎2, 𝑎3 are positive integers and 𝑎1 = 𝑎2 = 𝑎3 may be possible or any two of 𝑎1, 𝑎2, 𝑎3 may be 

equal.  Also  𝑎 = 𝑎1 + 𝑎2 + 𝑎3  ⇒  𝑎1 = 𝑎1
1 + 𝑎2

1 + 𝑎3
1 

Therefore, 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛  holds for 𝑛 = 1. 

 
To prove 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + 𝑎3

𝑛 holds for 𝑛 = 2, consider the equation       
                        (𝑥 + 𝑦 + 𝑧)2 − (𝑥 + 𝑦 − 𝑧)2 = 4𝑥𝑧 + 4𝑦𝑧.                           
Put 𝑥 = 𝑢2, 𝑦 = 𝑣2, 𝑧 = 𝑤2, then 

           (𝑢2 + 𝑣2 + 𝑤2)2 − (𝑢2 + 𝑣2 − 𝑤2)2 = 4𝑢2𝑤2 + 4𝑣2𝑤2 = (2𝑢𝑤)2 + (2𝑣𝑤)2          
We can choose integers  𝑢, 𝑣, 𝑤 in such a way that 𝑢2 + 𝑣2 + 𝑤2, 𝑢2 + 𝑣2 − 𝑤2, 2𝑢𝑤, 2𝑣𝑤 are all positive. 
Put 𝑢2 + 𝑣2 + 𝑤2 = 𝑎, 𝑢2 + 𝑣2 − 𝑤2 = 𝑎1, 2𝑢𝑤 = 𝑎2 , 2𝑣𝑤 = 𝑎3 
Then, 𝑎2 − 𝑎1

2 = 𝑎2
2 + 𝑎3

2  ⇒  𝑎2 = 𝑎1
2 + 𝑎2

2 + 𝑎3
2 

So there exist positive integers 𝑎, 𝑎1, 𝑎2, 𝑎3 satisfying the equation 𝑎2 = 𝑎1
2 + 𝑎2

2 + 𝑎3
2. 

Therefore, 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛 holds for 𝑛 = 2. 

 
   To prove 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + 𝑎3

𝑛 holds for 𝑛 = 3, consider the identity given by Ramanujan  in [21],  

                 (6𝑢2 − 4𝑢𝑣 + 4𝑣2)3 = (4𝑢2 − 4𝑢𝑣 + 6𝑣2)3  + (5𝑢2 − 5𝑢𝑣 − 3𝑣2)3 + (3𝑢2 + 5𝑢𝑣 − 5𝑣2)3 

   We can choose integers  𝑢, 𝑣, 𝑤 in such a way that 6𝑢2 − 4𝑢𝑣 + 4𝑣2, 4𝑢2 − 4𝑢𝑣 + 6𝑣2, 5𝑢2 − 5𝑢𝑣 − 3𝑣2,   
3𝑢2 + 5𝑢𝑣 − 5𝑣2 are all positive. 
          Put    6𝑢2 − 4𝑢𝑣 + 4𝑣2 = 𝑎, 4𝑢2 − 4𝑢𝑣 + 6𝑣2 = 𝑎1 , 5𝑢2 − 5𝑢𝑣 − 3𝑣2 = 𝑎2 , 3𝑢2 + 5𝑢𝑣 − 5𝑣2 = 𝑎3 , then 

 𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3 . 

 So there exist positive integers 𝑎, 𝑎1, 𝑎2, 𝑎3 satisfying the equation 𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3. 

  Therefore, 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛  holds for 𝑛 = 3. 

 

   To prove 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛 holds for 𝑛 = 4, by Roger Frye, we have the equation 

(422481𝑡)4 = (217519𝑡)4 + (95800𝑡)4 + (414560𝑡)4, where  𝑡 be any positive integer.  
Put   422481𝑡 = 𝑎, 217519𝑡 = 𝑎1 , 95800𝑡 = 𝑎2 , 414560𝑡 = 𝑎3 , then  

𝑎4 = 𝑎1
4 + 𝑎2

4 + 𝑎3
4 .        

So there exist positive integers 𝑎, 𝑎1, 𝑎2, 𝑎3 satisfying the equation 𝑎4 = 𝑎1
4 + 𝑎2

4 + 𝑎3
4. 

  Therefore, 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛  holds for 𝑛 = 4. 

 

For  𝑛 > 4 , if 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛  is possible   ⇒  (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + (2𝑎3)𝑛  is possible ⇒  𝑏𝑛 = 𝑏1

𝑛 + 𝑏2
𝑛 + 𝑏3

𝑛 is 

possible, where  𝑏 = 2𝑎, 𝑏1 = 2𝑎1, 𝑏2 = 2𝑎2 , 𝑏3 = 2𝑎3  .    
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            By theorem-4.2, (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + (2𝑎3)𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + (2𝑎3)𝑛, 

where        𝑢 + 𝑣 = 2𝑎, 𝑢 − 𝑣 = 2𝑎1,   i.e.       𝑏𝑛 = 𝑏1
𝑛 + 𝑏2

𝑛 + 𝑏3
𝑛  can be expressed as       (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑏2

𝑛 + 𝑏3
𝑛, 

where  𝑢 + 𝑣 = 𝑏, 𝑢 − 𝑣 = 𝑏1.    
     If it is possible to express (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑏2

𝑛 + 𝑏3
𝑛 + ⋯,  then by theorem-2.1, number of terms in 

 (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦 ≤ number of 𝑏𝑖𝑠 in 𝑏2
𝑛 + 𝑏3

𝑛 + ⋯. 
        Now for  𝑛 > 4, there are at least 3 terms in the expression (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of  𝑥, 𝑦; so the number of 
𝑏𝑖𝑠  in the expression 𝑏2

𝑛 + 𝑏3
𝑛 + ⋯ cannot be less than 3(=least number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛) , i.e. there exist at 

least 3 positive integers 𝑏2, 𝑏3, 𝑏4  such that 

                          (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑏2
𝑛 + 𝑏3

𝑛 + 𝑏4
𝑛 .  

This implies there exist no positive integers  𝑏2, 𝑏3 such that     (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛  = 𝑏2
𝑛 + 𝑏3

𝑛 

⇒    𝑏𝑛 − 𝑏1
𝑛 = 𝑏2

𝑛 + 𝑏3
𝑛  is not possible  ⇒    (2𝑎)𝑛 − (2𝑎1)𝑛 = (2𝑎2)𝑛 + (2𝑎3)𝑛  is not possible  ⇒  𝑎𝑛 − 𝑎1

𝑛 = 𝑎2
𝑛 + 𝑎3

𝑛  is 

not possible 

⇒  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛 is not possible for 𝑛 > 4. 

   Therefore, 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛 does not hold for 𝑛 > 4. This proves the theorem. 

 

5. Analysis of the Diophantine Equation  𝒂𝒏 = 𝒂𝟏
𝒏 + 𝒂𝟐

𝒏 + ⋯ + 𝒂𝒔
𝒏 

 Every Diophantine equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 can be expressed as (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛, and by 

theorem-4.2, (2𝑎)𝑛 = (2𝑎1)𝑛 + (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛, 

where   𝑢 + 𝑣 = 2𝑎, 𝑢 − 𝑣 = 2𝑎1,  i.e.  𝑏𝑛 = 𝑏1
𝑛 + 𝑏2

𝑛 + ⋯ + 𝑏𝑠
𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = 𝑏2

𝑛 + ⋯ + 𝑏𝑠
𝑛, 

where   𝑏 = 𝑢 + 𝑣 = 2𝑎, 𝑏1 = 𝑢 − 𝑣 = 2𝑎1, 𝑏2 = 2𝑎2, ⋯ , 𝑏𝑠 = 2𝑎𝑠. 
    From the above illustration, 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑠

𝑛 can be expressed as (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = (2𝑎2)𝑛 + ⋯ + (2𝑎𝑠)𝑛, 

where  𝑢 + 𝑣 = 2𝑎, 𝑢 − 𝑣 = 2𝑎1. 
        Let 𝑚 = number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛 as a function of 𝑥, 𝑦;  then 𝑠 ≥ 𝑚 + 1. 
   Also by using theorem-2.1, there exist least number of positive integers 𝑎2, 𝑎3, ⋯  such that 

 (𝑢 + 𝑣)𝑛 − (𝑢 − 𝑣)𝑛 = {

𝑎2
𝑛 + 𝑎3

𝑛 + ⋯ + 𝑎𝑛+3

2

𝑛  if 𝑛 is odd

𝑎2
𝑛 + 𝑎3

𝑛 + ⋯ + 𝑎𝑛+2

2

𝑛  if 𝑛 is even
 . 

    It is easy to check that every positive integer 𝑎 > 1 can be expressed as 𝑎 = 𝑎1 + 𝑎2, where 𝑎1, 𝑎2 are positive integers 

and 𝑎1 = 𝑎2 may be possible. Also  𝑎 = 𝑎1 + 𝑎2  ⇒  𝑎1 = 𝑎1
1 + 𝑎2

1 

                 Or  
       If 𝑛 = 1, the expression,𝑐𝑛 − 𝑑𝑛 = 𝑐1 − 𝑑1 = 𝑐 − 𝑑 has at least 1 term for any variable positive integral substitutions of 

the form  𝑐 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑟 , 𝑑 = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑠  and  𝑐 = 𝑥 + 𝑦, 𝑑 = 𝑥 − 𝑦, where 𝑥, 𝑦 (𝑥 > 𝑦) are variable positive 

integers for  which 𝑐1 − 𝑑1 = 𝑐 − 𝑑 has 1 term because  
 

                 𝑐1 − 𝑑1 = 𝑐 − 𝑑 = (𝑥 + 𝑦)1 − (𝑥 − 𝑦)1 = 2𝑦                                                                                               … (5) 
 
       From the Equation 5, we find that there is 1 term 2𝑦 in the expression (𝑥 + 𝑦)1 − (𝑥 − 𝑦)1 . Therefore by theorem-2.1, for 

positive integers 𝑥 = 𝑢, 𝑦 = 𝑣 (𝑢 > 𝑣), there exists at least 1 positive integer  𝑎2  such that          

 

                                (𝑢 + 𝑣)1 − (𝑢 − 𝑣)1 = 𝑎2
1                                                                                                                                  … (6)   

 

⇒                    2𝑣 = 𝑎2
1 = 𝑎2                                                                                                                                                                             

Therefore there exists positive integer 𝑎2 = 2𝑣 which satisfies the Equation 6. 

Also Equation 6 can be written as  

 

                                    (𝑢 + 𝑣)1 = (𝑢 − 𝑣)1 + 𝑎2
1                                                                                                                               … (7) 

 
Put 𝑢 + 𝑣 = 𝑎, 𝑢 − 𝑣 = 𝑎1 in Equation 7, we get the equation  

 

                           𝑎1 = 𝑎1
1 + 𝑎2

1                                                                                                                                                       … (8)  
 

 From  the  Equation 8,  we  find  that  every   positive  integer> 1,  can  be  expressed  as  a  sum  of  at  least 2  positive  

integers.  
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   Again let  𝑚 be the number of terms in   (𝑥 + 𝑦)1 − (𝑥 − 𝑦)1  as a function of 𝑥, 𝑦. Since (𝑥 + 𝑦)1 − (𝑥 − 𝑦)1 = 2𝑦, there is 

1 term   2𝑦 in (𝑥 + 𝑦)1 − (𝑥 − 𝑦)1,  therefore 𝑚 = 1. Therefore by theorem-2.1, any positive integer > 1, can be expressed as 

a sum of at least 𝑚 + 1 = 1 + 1 = 2 positive integers.  

      From the above illustration, we find that the equation 𝑎1 = 𝑎1
1 + 𝑎2

1 + ⋯ + 𝑎𝑠
1  holds only when  𝑠 ≥ 2 , where 

𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 are positive integers.  

 

          If   𝑛 = 2,  the  expression   𝑐𝑛 − 𝑑𝑛  =  𝑐2 − 𝑑2  has  at  least  1  term  for  any  variable  positive  integral   substitutions   

of   the  form  𝑐 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑟 ,   𝑑 = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑠  and  𝑐 = 𝑥 + 𝑦, 𝑑 = 𝑥 − 𝑦 , where 𝑥, 𝑦 (𝑥 > 𝑦)  are variable 

positive integers for  which 𝑐2 − 𝑑2 has 1 term because  
 

                                  𝑐2 − 𝑑2 = (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 = 4𝑥𝑦                                                                                             … (9) 
 
From the Equation 9, we find that there is 1 term 4𝑥𝑦 in the expression (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 . Therefore by theorem-2.1, for 

positive integers 𝑥 = 𝑢2, 𝑦 = 𝑣2 (𝑢 > 𝑣), there exists at least 1 positive integer  𝑎2  such that         

 

                                (𝑢2 + 𝑣2)2 − (𝑢2 − 𝑣2)2 = 𝑎2
2                                                                                                                         … (10)   

 

⇒                          4𝑢2𝑣2 = 𝑎2
2 ⇒  (2𝑢𝑣)2 = 𝑎2

2  ⇒  𝑎2 = 2𝑢𝑣 

 

 Therefore there exists positive integer 𝑎2 = 2𝑢𝑣 which satisfies the Equation 10. 

Also Equation 10 can be written as  

 

                    (𝑢2 + 𝑣2)2 = (𝑢2 − 𝑣2)2 + 𝑎2
2                                                                                                                            … (11) 

 
Put 𝑢2 + 𝑣2 = 𝑎, 𝑢2 − 𝑣2 = 𝑎1 in Equation 11, we get the equation  

 

                                    𝑎2 = 𝑎1
2 + 𝑎2

2                                                                                                                                            … (12) 

 

  From  the Equation 12,  we  find  that square of every   positive  integer> 1,  can  be  expressed  as  a  sum of  squares of  at  

least 2  positive  integers.  

 Again let  𝑚 is the number of terms in   (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2  as a function of 𝑥, 𝑦. Since (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 = 4𝑥𝑦, there is 

1 term   4𝑥𝑦 in (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2,  then 𝑚 = 1. Therefore by theorem-2.1, square of every positive integer > 1 can be 

expressed as a sum of squares of at least 𝑚 + 1 = 1 + 1 = 2 positive integers.  

   From the above illustration, we find that the equation 𝑎2 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑠
2 holds only when 𝑠 ≥ 2, where 𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 

are positive integers. 

 

         If   𝑛 = 3,  the  expression   𝑐𝑛 − 𝑑𝑛  =   𝑐3 − 𝑑3   has  at  least  2  terms  for  any  variable  positive  integral   
substitutions  of   the  form  𝑎 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑟  , 𝑏 = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑠  and 𝑐 = 𝑥 + 𝑦, 𝑑 = 𝑥 − 𝑦, where 𝑥, 𝑦 (𝑥 > 𝑦) are 

variable positive integers for  which 𝑐3 − 𝑑3 has 2 terms because  
 

                                𝑐3 − 𝑑3 = (𝑥 + 𝑦)3 − (𝑥 − 𝑦)3 = 6𝑥2𝑦 + 2𝑦3                                                                                … (13) 
 
From the Equation 13, we find that there are 2 terms 6𝑥2𝑦, 2𝑦3 in the expression (𝑥 + 𝑦)3 − (𝑥 − 𝑦)3.  Therefore by theorem-

2.1, for positive integers 𝑥 = 𝑢, 𝑦 = 𝑣 (𝑢 > 𝑣), there exist at least 2 positive integers  𝑎2, 𝑎3  such that     

     

                                (𝑢 + 𝑣)3 − (𝑢 − 𝑣)3 = 𝑎2
3 + 𝑎3

3                                                                                                                       … (14)   
 

     Now equation (6𝑡)3 = (5𝑡)3 + (4𝑡)3 + (3𝑡)3, where 𝑡 is any positive integer. 
  ⇒       (5𝑡 + 𝑡)3 − (5𝑡 − 𝑡)3 = (5𝑡)3 + (3𝑡)3  
Take 𝑢 = 5𝑡, 𝑣 = 𝑡. Then (𝑢 + 𝑣)3 − (𝑢 − 𝑣)3 = (5𝑡)3 + (3𝑡)3 
By  Equation 14,              𝑎2

3 + 𝑎3
3 = (5𝑡)3 + (3𝑡)3  ⇒  𝑎2 = 5𝑡, 𝑎3 = 3𝑡 

Therefore there exist positive integers 𝑎2 = 5𝑡, 𝑎3 = 3𝑡 which satisfy the Equation 14 at 𝑢 = 5𝑡, 𝑣 = 3𝑡. 
Also Equation 14 can be written as  

 

                                          (𝑢 + 𝑣)3 = (𝑢 − 𝑣)3 + 𝑎2
3 + 𝑎3

3                                                                                                  … (15) 
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Put 𝑢 + 𝑣 = 6𝑡 = 𝑎, 𝑢 − 𝑣 = 4𝑡 = 𝑎1  in Equation 15, we get the equation 

 

                                                𝑎3 = 𝑎1
3 + 𝑎2

3 + 𝑎3
3                                                                                                                     … (16)  

 

   From  the Equation 16,  we  find  that cube of every   positive  integer> 1,  can  be  expressed  as  a  sum of cubes of  at  least 

3  positive  integers.  

    Again let  𝑚 is the number of terms in   (𝑥 + 𝑦)3 − (𝑥 − 𝑦)3  as a function of 𝑥, 𝑦. Since (𝑥 + 𝑦)3 − (𝑥 − 𝑦)3 = 6𝑥2𝑦 +
2𝑦3, there are 2 terms   6𝑥2𝑦, 2𝑦3 in (𝑥 + 𝑦)3 − (𝑥 − 𝑦)3,  then 𝑚 = 2. Therefore by theorem-2.1, cube of every positive 

integer > 1 can be expressed as a sum of cubes of at least 𝑚 + 1 = 2 + 1 = 3 positive integers.  

    From the above illustration, we find that the equation 𝑎3 = 𝑎1
3 + 𝑎2

3 + ⋯ + 𝑎𝑠
3 holds only when 𝑠 ≥ 3, where 𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 

are positive integers. 

         If   𝑛 =  4,   the  expression   𝑐𝑛 − 𝑑𝑛  =  𝑐4 − 𝑑4  has   at  least  2  terms  for  any  variable  positive  integral  
substitutions  of  the  form  𝑐 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑟  , 𝑑 = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑠  and 𝑐 = 𝑥 + 𝑦, 𝑑 = 𝑥 − 𝑦, where 𝑥, 𝑦 (𝑥 > 𝑦) are 

variable positive integers for  which 𝑐4 − 𝑑4 has 2 terms because 

 

                                𝑐4 − 𝑑4 = (𝑥 + 𝑦)4 − (𝑥 − 𝑦)4 = 8𝑥3𝑦 + 8𝑥𝑦3                                                                              … (17) 
 
From the Equation 17, we find that there are 2 terms 8𝑥3𝑦, 8𝑥𝑦3 in the expression (𝑥 + 𝑦)4 − (𝑥 − 𝑦)4 . Therefore by  

theorem-2.1, for positive integers 𝑥 = 𝑢, 𝑦 = 𝑣 (𝑢 > 𝑣), there exist at least 2 positive integers  𝑎2, 𝑎3  such that         

 

                                (𝑢 + 𝑣)4 − (𝑢 − 𝑣)4 = 𝑎2
4 + 𝑎3

4                                                                                                                      … (18)   
 

Due to Roger Frye, equation    

       (422481𝑡)4 = (95800𝑡)4 + (217519𝑡)4 + (414560𝑡)4, where 𝑡 is any positive integer. 
  ⇒  (320000𝑡 + 102481𝑡)4 − (320000𝑡 − 102481𝑡)4 = (95800𝑡)4 + (414560𝑡)4  
Take 𝑢 = 320000𝑡, 𝑣 = 102481𝑡. Then (𝑢 + 𝑣)4 − (𝑢 − 𝑣)4 = (95800𝑡)4 + (414560𝑡)4 
By  Equation 18,              𝑎2

4 + 𝑎3
4 = (95800𝑡)4 + (414560𝑡)4  ⇒  𝑎2 = 95800𝑡, 𝑎3 = 414560𝑡 

Therefore there exist positive integers 𝑎2 = 95800𝑡, 𝑎3 = 414560𝑡 which satisfy the Equation 18 at 𝑢 = 320000𝑡,  
𝑣 = 102481𝑡. 

Also Equation 18 can be written as  

                             (𝑢 + 𝑣)4 = (𝑢 − 𝑣)4 + 𝑎2
4 + 𝑎3

4                                                                                                             … (19) 
 
Put 𝑢 + 𝑣 = 422481𝑡 = 𝑎, 𝑢 − 𝑣 = 217519𝑡 = 𝑎1  in Equation 19, we get the equation 

 

                                     𝑎4 = 𝑎1
4 + 𝑎2

4 + 𝑎3
4                                                                                                                              … (20) 

 

  From  the Equation 20,  we  find  that biquadrate of every  positive  integer> 1,  can  be  expressed  as  a  sum of biquadrates 

of  at  least 3  positive  integers.  

   Again let  𝑚 is the number of terms in   (𝑥 + 𝑦)4 − (𝑥 − 𝑦)4  as a function of 𝑥, 𝑦. Since (𝑥 + 𝑦)4 − (𝑥 − 𝑦)4 = 8𝑥3𝑦 +
8𝑥𝑦3, there are 2 terms   8𝑥3𝑦, 8𝑥𝑦3 in (𝑥 + 𝑦)4 − (𝑥 − 𝑦)4,  then 𝑚 = 2. Therefore by theorem-2.1, biquadrate of every 

positive integer > 1 can be expressed as a sum of biquadrates of at least 𝑚 + 1 = 2 + 1 = 3 positive integers.  

    From the above illustration, we find that the equation 𝑎4 = 𝑎1
4 + 𝑎2

4 + ⋯ + 𝑎𝑠
4 holds only when 𝑠 ≥ 3, where 𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 

are positive integers.  

               If 𝑛 = 5, the expression  𝑐𝑛 − 𝑑𝑛 = 𝑐5 − 𝑑5 has at least 3 terms for any variable positive integral substitutions of the 

form  𝑐 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑟  , 𝑑 = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑠  and  𝑐 = 𝑥 + 𝑦, 𝑑 = 𝑥 − 𝑦 , where 𝑥, 𝑦 (𝑥 > 𝑦)  are variable positive 

integers for  which 𝑐5 − 𝑑5 has 3 terms because    
  

                              𝑐5 − 𝑑5 = (𝑥 + 𝑦)5 − (𝑥 − 𝑦)5 = 10𝑥4𝑦 + 20𝑥2𝑦3 + 2𝑦5                                                          … (21) 
 
From the Equation 21, we find that there are 3 terms 10𝑥4𝑦, 20𝑥2𝑦3, 2𝑦5 in the expression (𝑥 + 𝑦)5 − (𝑥 − 𝑦)5. Therefore 

by theorem-2.1, for positive integers 𝑥 = 𝑢, 𝑦 = 𝑣 (𝑢 > 𝑣), there exist at least 3 positive integers  𝑎2, 𝑎3, 𝑎4  such that      

    

                                                                  (𝑢 + 𝑣)5 − (𝑢 − 𝑣)5 = 𝑎2
5 + 𝑎3

5 + 𝑎4
5                                                                        … (22)   
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From [21], equation 

       (144𝑡)5 = (27𝑡)5 + (84𝑡)5 + (110𝑡)5 + (133𝑡)5, where 𝑡 is any positive integer. 
  ⇒  (127𝑡 + 17𝑡)5 − (127𝑡 − 17𝑡)5 = (27𝑡)5 + (84𝑡)5 + (133𝑡)5  
Take 𝑢 = 127𝑡, 𝑣 = 17𝑡. Then (𝑢 + 𝑣)5 − (𝑢 − 𝑣)5 = (27𝑡)5 + (84𝑡)5 + (133𝑡)5 

By  Equation 22,        𝑎2
5 + 𝑎3

5 + 𝑎4
5 = (27𝑡)5 + (84𝑡)5 + (133𝑡)5  ⇒  𝑎2 = 27𝑡, 𝑎3 = 84𝑡, 𝑎4 = 133𝑡 

Therefore there exist positive integers 𝑎2 = 27𝑡, 𝑎3 = 84𝑡, 𝑎4 = 133𝑡 which satisfy the Equation 22 at 𝑢 = 127𝑡, 𝑣 = 17𝑡. 

Also Equation 22 can be written as  

 

                              (𝑢 + 𝑣)5 = (𝑢 − 𝑣)5 + 𝑎2
5 + 𝑎3

5 + 𝑎4
5                                                                                                 … (23) 

 
Put 𝑢 + 𝑣 = 144𝑡 = 𝑎, 𝑢 − 𝑣 = 110𝑡 = 𝑎1  in Equation 23, we get the equation 

 

                                     𝑎5 = 𝑎1
5 + 𝑎2

5 + 𝑎3
5 + 𝑎4

5                                                                                                                   … (24)  
 
  From  the Equation 24,  we  find  that the fifth power of every  positive  integer> 1,  can  be  expressed  as  a  sum of the fifth 

powers of  at  least 4  positive  integers.  

   Again let  𝑚 is the number of terms in   (𝑥 + 𝑦)5 − (𝑥 − 𝑦)5  as a function of 𝑥, 𝑦. Since (𝑥 + 𝑦)5 − (𝑥 − 𝑦)5 = 10𝑥4𝑦 +
20𝑥2𝑦3 + 2𝑦5, there are 3  terms   10𝑥4𝑦, 20𝑥2𝑦3, 2𝑦5 in    (𝑥 + 𝑦)5 − (𝑥 − 𝑦)5, then  𝑚 = 3. Therefore by theorem-2.1, the 

fifth   power   of   every   positive integer > 1 can be expressed as a sum of the fifth powers  of at least 𝑚 + 1 = 3 + 1 = 4 
positive integers.       
     From the above illustration, we find that the equation 𝑎5 = 𝑎1

5 + 𝑎2
5 + ⋯ + 𝑎𝑠

5  holds only when  𝑠 ≥ 4 , where 

𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 are positive integers. 

     Further on the basis of the above discussion in this section, if 𝑛 = 6, the expression 𝑐𝑛 − 𝑑𝑛 = 𝑐6 − 𝑑6 has at least 3 terms 

for any variable positive integral substitutions of the form  𝑐 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑟  , 𝑑 = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑠  and 𝑐 = 𝑥 + 𝑦, 𝑑 =
𝑥 − 𝑦, where 𝑥, 𝑦 (𝑥 > 𝑦) are variable positive integers for  which 𝑐6 − 𝑑6 has 3 terms because     
 

                       𝑐6 − 𝑑6 = (𝑥 + 𝑦)6 − (𝑥 − 𝑦)6 = 12𝑥5𝑦 + 40𝑥3𝑦3 + 12𝑥𝑦5                                                        … (25) 
 
          From the Equation 25, we find that there are 3 terms 12𝑥5𝑦, 40𝑥3𝑦3, 12𝑥𝑦5 in the expression (𝑥 + 𝑦)6 − (𝑥 − 𝑦)6. 

Therefore by theorem-2.1, for positive integers 𝑥 = 𝑢, 𝑦 = 𝑣 (𝑢 > 𝑣), there exist at least 3 positive integers  𝑎2, 𝑎3, 𝑎4  such 

that         

                                                  (𝑢 + 𝑣)6 − (𝑢 − 𝑣)6 = 𝑎2
6 + 𝑎3

6 +  𝑎4
6                                                                          … (26) 

Also Equation 26 can be written as   

 

                                                  (𝑢 + 𝑣)6 = (𝑢 − 𝑣)6 + 𝑎2
6 + 𝑎3

6 +  𝑎4
6                                                                          … (27) 

 
Put 𝑢 + 𝑣 = 𝑎, 𝑢 − 𝑣 = 𝑎1 in Equation 27, we get the equation 

 

                                                𝑎6 = 𝑎1
6 + 𝑎2

6 + 𝑎3
6 + 𝑎4

6                                                                                                    … (28)  
 

 From  the Equation 28,  we  find  that the sixth power of every  positive  integer> 1,  can  be  expressed  as  a  sum of the sixth 

powers of  at  least 4  positive  integers.  

 

 Again let  𝑚 is the number of terms in  (𝑥 + 𝑦)6 − (𝑥 − 𝑦)6  as a function of 𝑥, 𝑦. Since (𝑥 + 𝑦)6 − (𝑥 − 𝑦)6 = 12𝑥5𝑦 +
40𝑥3𝑦3 + 12𝑥𝑦5, there are 3 terms      12𝑥5𝑦,      40𝑥3𝑦3,      12𝑥𝑦5 in       (𝑥 + 𝑦)6 − (𝑥 − 𝑦)6,  then      𝑚 = 3. Therefore  by  

 theorem-2.1,  sixth  power  of  every  positive integer > 1 can be expressed as a sum of sixth  powers  of at least 𝑚 + 1 = 3 +
1 = 4 positive integers.  

 

      From the above illustration, we find that the equation 𝑎6 = 𝑎1
6 + 𝑎2

6 + ⋯ + 𝑎𝑠
6  holds only when  𝑠 ≥ 4 , where 

𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 are positive integers. 

    
     Continuing like this, in general, the equation    𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑠

𝑛  holds only when                 
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   𝑠 ≥ {

𝑛 + 3

2
  if 𝑛 is odd       

𝑛 + 2

2
  if 𝑛 is even       

 

 
      If it is so, then 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑠

𝑛 definitely holds for all 𝑠 ≥ 𝑛, where 𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 are positive integers. 
           Also if 𝑚 is the number of terms in (𝑥 + 𝑦)𝑛 − (𝑥 − 𝑦)𝑛  as a function of 𝑥, 𝑦; then 
 

𝑚 = {

𝑛 + 1

2
  if 𝑛 is odd

𝑛

2
       if 𝑛 is even

      or  𝑚 = [
𝑛 + 1

2
].                            

 
Therefore, by theorem-2.1,   equation 𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + ⋯ + 𝑎𝑚+1

𝑛  holds for 𝑛 = 1, 2, ⋯ , 2𝑚 and it does not hold if 𝑛 >
2𝑚, where 𝑎1, 𝑎2, ⋯ , 𝑎𝑚+1 are positive integers.  

 

6. Conclusion 
From the above discussion, we draw the following conclusions:  

It is possible to find positive integers 𝑎, 𝑎1, 𝑎2, ⋯ , 𝑎𝑠 such that  

the equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 holds for  𝑛 = 1, 2; and it does not hold for 𝑛 > 2, 
the equation  𝑎𝑛 = 𝑎1

𝑛 + 𝑎2
𝑛 + 𝑎3

𝑛 holds for  𝑛 = 1, 2, 3, 4; and it does not hold for 𝑛 > 4, 

the equation 𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛 + 𝑎4

𝑛 holds for  𝑛 = 1, 2, 3, 4, 5, 6; and it does not hold for 𝑛 > 6, 

Further on the basis of validity of the above equations and analysis in the section-5, there is possibility that 

the equation  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛 + 𝑎4

𝑛 + 𝑎5
𝑛 holds for  𝑛 = 1, 2, 3, 4, 5, 6, 7, 8; and it does not hold for 𝑛 > 8, 

the equation  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + 𝑎3
𝑛 + 𝑎4

𝑛 + 𝑎5
𝑛 + 𝑎6

𝑛 holds for  𝑛 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; and it does not hold for 𝑛 > 10, 

Continuing like this, 

 the equation  𝑎𝑛 = 𝑎1
𝑛 + 𝑎2

𝑛 + ⋯ + 𝑎𝑠
𝑛 holds for 𝑛 = 1, 2, 3, ⋯ , 2𝑠 − 2 and it does not hold for  𝑛 > 2𝑠 − 2.  
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