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Abstract - This paper uses the Stein-Chen method to obtain an improved bound on the Poisson approximation under the 

restriction of Poisson mean  =   In addition, it indicated that the bound in this study is better than that reported in 

Teerapabolarn [21]. 
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1. Introduction  
Stein’s method, introduced by Stein [9], is a power full method to give a bound on the normal approximation. Later, Chen 

[2] applied this method to give a bound on the Poisson approximation. This method is referred to as the Stein-Chen method. In 

the past few decades, many authors have developed the method for applying to many fields of statistics and probability theory, 

which can be found in [1], [3-8], [10-27] and references therein. In this section, we first start with Stein’s equation for Poisson 

distribution with mean 1= , for given h,  
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From Barbour, Holst and Janson [1], the solution Af  of (1) can be written as 
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where .x ¥  Similarly, for 0{ }A x=  and 
0 0{0,..., }= =xA C x  as 0 {0},x  ¥
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Let 
0 0 0
( ) ( 1) ( )x x xf x f x f x = + − and 

0 0 0
( ) ( 1) ( ). = + −

x x xC C Cf x f x f x  Following Teerapabolarn [13], we have 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kanint Teerapabolarn / IJMTT, 68(9), 1-4, 2022 

 

2 

          
0

( )
xCf x

10

10

1 1 1 0

1 1 1 0

( 1)! (1 )[ ( ) ( )] 0      ,  if  ,

( 1)! ( )[ (1 ) (1 )] 0 ,  if  .

−

−

− − −  


= 
− − − −  

x x x

x x x

C C C

C C C

x eP h xP h P h x x

x eP h xP h P h x x
               (6) 

 

From (6), Teerapabolarn [19] showed that  
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Later, Teerapabolarn [21] improved the bound in (7) to be sharper bound in the form of   
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In this paper, we also use the Stein-Chen method that mentioned above to improve the bound in (8) to be a better result.  

2. Result 
The theorem of this study is our main result that obtained by using the Stein-Chen method in Section I. Before giving the 

result, the following lemma is also need. 

Lemma 1. 
0xCf  is an increasing function for 0.x x  

Proof. We shall show that 
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which implies that 
0xCf  is an increasing function for 0.x x                         

Theorem 1.  Let 0 {0}x  ¥  and ,x ¥  we then have the following: 
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Proof. For 0,1,2,x = the result in (9) follows from Teerapabolarn [21]. In the next step, we have to show that 
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For 0 ,x x  following (6) and Lemma 1, we have  
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For 0 ,x x  following (6) and Teerapabolarn [21], we also have  
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3. Conclusion  
In this study, an improvement of the bound on Poisson approximation is obtained by using the Stein-Chen method. 

Additionally, by comparing, the bound of this study is better than that presented in Teerapabolarn [21]. 
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