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Abstract - This paper uses the Stein-Chen method to obtain an improved bound on the Poisson approximation under the
restriction of Poisson mean A =/. In addition, it indicated that the bound in this study is better than that reported in

Teerapabolarn [21].
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1. Introduction
Stein’s method, introduced by Stein [9], is a power full method to give a bound on the normal approximation. Later, Chen
[2] applied this method to give a bound on the Poisson approximation. This method is referred to as the Stein-Chen method. In
the past few decades, many authors have developed the method for applying to many fields of statistics and probability theory,
which can be found in [1], [3-8], [10-27] and references therein. In this section, we first start with Stein’s equation for Poisson
distribution with mean A =1, for given h,
h(x) =R (h) = f(x+1)—xf(x) , 1)

where B (h) :e‘lzh(k)% and f and h are bounded real valued functions defined on ¥ U{0}.
k=0
For Ac¥ u{0}, let hy:¥ U{0}—; be defined by

1,if xeA
hA(X):{O,if xg A )

From Barbour, Holst and Janson [1], the solution f, of (1) can be written as

F(X) = {(x ~De[Pi(hanc, ,) — Rha)Ri(hc, )1, i-f x>1, 5
0 ,if x=0,

where xe¥. Similarly, for A={x} and A=C, ={0,...x} as xg ¥ U{0}, f, =frs and fCXO can be expressed as

- (XX;?! R(he, ) . if X<,
o (0= { S R-Pc, ). if x>, @
0 ,if x=0
and
(x-DlePi(he, JRA-h ) ,if x<x,
fe,, (9 =] (x=DtelR(he, RA-he, 1, if x> %, 5)
0 ,if x=0.

Let Afy (x) = fy, (x+1) — fy, (%) and AfCXO x)= fCXO (x+1) - fCXO (x). Following Teerapabolarn [13], we have
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(x-DleR@-hc, JxA(hc,)-Rlhc, )1>0 . if x<x, 6
Ale,y () = (x-DeR (e, )IXR(-he )~ Pl—he, )]<0, if x> X ©)

From (6), Teerapabolarn [19] showed that

el ,ifxy =0,

7
min{l—e‘l,%,%}, if g > 0. )

‘AfCXO (x)‘ <

Later, Teerapabolarn [21] improved the bound in (7) to be sharper bound in the form of
-1

e y if X0:0,
f 1-2¢71ifxg =1, 6
A X ‘S
‘ Cio () 3(L-25e7Y), if xp =2, ®)
1 -
Yo , if xg 23.

In this paper, we also use the Stein-Chen method that mentioned above to improve the bound in (8) to be a better result.

2. Result

The theorem of this study is our main result that obtained by using the Stein-Chen method in Section I. Before giving the
result, the following lemma is also need.

Lemma 1. AfoO is an increasing function for x> x,.

Proof. We shall show that Afoo (x+1) - Afoo (x) >0 for x> x,. From (6), we have

X -1 0 0
e z Xx+1-k x—k
Al,, (x+1) = Afe, (x) _(X_l)!z'l{x Kkt 2 k! }
J: k=x+2 ) k=x+1 "

j=0

X0 -1 s} o)
e X+1—k X+1-(k+1)](k +2)
:(X—l)!z_l{x Z ! - z [ (k+1)']
P A e S L —] :
GQel| & (x—K)(x+1-k)
j=0 P kSae :
>0,
which implies that Afcxo is an increasing function for x> x,. 0
Theorem 1. Let x, e¥ u{0} and x ¥, we then have the following:
et if X9 =0,
1-2¢t L if X9 =1,
‘Afcxo (x)‘ <)31-25¢Y) Jif X =2, 9)
Xo—l 1
1 2 B
ol "l 2 T 1 023
j=0

Proof. For x=0,1,2the result in (9) follows from Teerapabolarn [21]. In the next step, we have to show that
Xo—l

1 2 et
‘Af% (X)‘STO+1‘7XO(X<)+1>(XO+2) Z(:)T'! for x, > 3.
J:

For x> xg, following (6) and Lemma 1, we have
0<—Afe, (x) <-afc, (x+1)

=My +1) -Afe, (% +1)
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SR S Y z o221 (by (@) end 6)

et 1 Qe 1 1 Get
= Z -—* - + +L Z*
kI xo+1 j1 (X +D(X+2) (X +1)(X +2)(Xo +3) i j!

< i el iyl 1 et
- , kKU xg+14 ! +1) (X +2) =~ j!
0 Xo 0 =0

® -1 X0 -1
< 3 e S
x0+2k: ‘1 k! Xo+1 (X +D(Xp+2) i j!

which yields

‘Afc (x)‘ (10)

Xg + 2
For x<x,, following (6) and Teerapabolarn [21], we also have
0<Afe, (¥) <Afe, (%)

= Ay, (x0) + A, (%)

0 X-1 1

0 1 —k 0
:z L Xlojzoe+(x0—1)' > B> (by@)and (6)

] ]
J' kel < joo b

Xol Xgl,l

1 d “DI(k -
Z“L!)TZE Z(XO )( Xo)z

|
0 J. k= X0+1

z et iz‘i { 2 ,_}XO e
Korg il KX Xo(Xo+1) Xo(Xo +1(Xp +2) i !
1

o Xg—l -1 Xo-1 1
ZL Ze_{ 1,2 +L}Ze_'
- k! j! Xo(Xg +1)  Xo(Xp +D(Xp +2) e~ jl

J 0

1 11 et 1 2 olet
NUnE I
o+l % 0t (oGt %G +DX+2) ] 1!

1 2 olet

1

B Xo +1 Xo(Xo +D(Xg +2) j:OT
which gives
2 X071£
x0+1 xo(x0+1)(x0+2)

[afe,, (9] < (1

X 1 %1
Hence, from (10) and (11) and max{ R N } 1 e the result in (9) is obtained.

2 2 e
X +2' xg+l XO(Xo+1)(xO+2) J' Xo+1 XO(X0+1)(XO+2)ZO i’
J:

g
-1

Because the result in this paper is better than that reported in (8).

x0+1 xo(x0+l)(x0+2)z ! x 1’
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3. Conclusion

In this study, an improvement of the bound on Poisson approximation is obtained by using the Stein-Chen method.

Additionally, by comparing, the bound of this study is better than that presented in Teerapabolarn [21].
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