An Improved Bound on Poisson Approximation for the Poisson Mean $\lambda=1$ with Stein-Chen Method

Kanint Teerapabolarn
${ }^{1}$ Department of Mathematics, Faculty of Science, Burapha University, Chonburi, 20131, Thailand

Received: 18 July 2022
Revised: 19 August 2022
Accepted: 01 September 2022
Published: 10 September 2022

Abstract

This paper uses the Stein-Chen method to obtain an improved bound on the Poisson approximation under the restriction of Poisson mean $\lambda=1$. In addition, it indicated that the bound in this study is better than that reported in Teerapabolarn [21].

Keywords - Non-uniform bound, Poisson approximation, Poisson mean, Stein-Chen method.

1. Introduction

Stein's method, introduced by Stein [9], is a power full method to give a bound on the normal approximation. Later, Chen [2] applied this method to give a bound on the Poisson approximation. This method is referred to as the Stein-Chen method. In the past few decades, many authors have developed the method for applying to many fields of statistics and probability theory, which can be found in [1], [3-8], [10-27] and references therein. In this section, we first start with Stein's equation for Poisson distribution with mean $\lambda=1$, for given h,

$$
\begin{equation*}
h(x)-P_{1}(h)=f(x+1)-x f(x), \tag{1}
\end{equation*}
$$

where $P_{1}(h)=e^{-1} \sum_{k=0}^{\infty} h(k) \frac{1}{k!}$ and f and h are bounded real valued functions defined on $¥ \cup\{0\}$.
For $A \subseteq ¥ \cup\{0\}$, let $h_{A}: ¥ \cup\{0\} \rightarrow i$ be defined by

$$
h_{A}(x)=\left\{\begin{array}{l}
1, \text { if } x \in A, \tag{2}\\
0, \text { if } x \notin A .
\end{array}\right.
$$

From Barbour, Holst and Janson [1], the solution f_{A} of (1) can be written as

$$
f_{A}(x)= \begin{cases}(x-1)!e\left[P_{1}\left(h_{A \cap C_{x-1}}\right)-P_{1}\left(h_{A}\right) P_{1}\left(h_{C_{x-1}}\right)\right], & \text { if } x \geq 1, \tag{3}\\ 0 & , \text { if } x=0,\end{cases}
$$

where $x \in ¥$. Similarly, for $A=\left\{x_{0}\right\}$ and $A=C_{x_{0}}=\left\{0, \ldots, x_{0}\right\}$ as $x_{0} \in ¥ \cup\{0\}, f_{x_{0}}=f_{\left\{x_{0}\right\}}$ and $f_{C_{x_{0}}}$ can be expressed as

$$
f_{x_{0}}(x)= \begin{cases}-\frac{(x-1)!}{x_{0}!} P_{1}\left(h_{C_{x-1}}\right), & \text { if } x \leq x_{0}, \tag{4}\\ \frac{(x-1)!}{x_{0}!} P_{1}\left(1-h_{C_{x-1}}\right), & \text { if } x>x_{0} \\ 0 & , \text { if } x=0\end{cases}
$$

and

$$
f_{C_{x_{0}}}(x)= \begin{cases}(x-1)!e\left[P_{1}\left(h_{C_{x-1}}\right) P_{1}\left(1-h_{C_{x_{0}}}\right)\right], & \text { if } x \leq x_{0} \tag{5}\\ (x-1)!e\left[P_{1}\left(h_{C_{x_{0}}}\right) P_{1}\left(1-h_{C_{x-1}}\right)\right] & , \text { if } x>x_{0} \\ 0 & , \text { if } x=0\end{cases}
$$

Let $\Delta f_{x_{0}}(x)=f_{x_{0}}(x+1)-f_{x_{0}}(x)$ and $\Delta f_{C_{x_{0}}}(x)=f_{C_{x_{0}}}(x+1)-f_{C_{x_{0}}}(x)$. Following Teerapabolarn [13], we have

$$
\Delta f_{C_{x_{0}}}(x)= \begin{cases}(x-1)!e P_{1}\left(1-h_{C_{x_{0}}}\right)\left[x P_{1}\left(h_{C_{x}}\right)-P_{1}\left(h_{C_{x-1}}\right)\right]>0 & , \text { if } x \leq x_{0} \tag{6}\\ (x-1)!e P_{1}\left(h_{C_{x_{0}}}\right)\left[x P_{1}\left(1-h_{C_{x}}\right)-P_{1}\left(1-h_{C_{x-1}}\right)\right]<0, & \text { if } x>x_{0}\end{cases}
$$

From (6), Teerapabolarn [19] showed that

$$
\left|\Delta f_{C_{x_{0}}}(x)\right| \leq \begin{cases}e^{-1} & , \text { if } x_{0}=0 \tag{7}\\ \min \left\{1-e^{-1}, \frac{2(e-2)}{x_{0}+1}, \frac{1}{x_{0}}\right\}, & \text { if } x_{0}>0\end{cases}
$$

Later, Teerapabolarn [21] improved the bound in (7) to be sharper bound in the form of

$$
\left|\Delta f_{C_{x_{0}}}(x)\right| \leq \begin{cases}e^{-1} & , \text { if } x_{0}=0 \tag{8}\\ 1-2 e^{-1} & , \text { if } x_{0}=1 \\ 3\left(1-2.5 e^{-1}\right), & \text { if } x_{0}=2 \\ \frac{1}{x_{0}+1} & , \text { if } x_{0} \geq 3\end{cases}
$$

In this paper, we also use the Stein-Chen method that mentioned above to improve the bound in (8) to be a better result.

2. Result

The theorem of this study is our main result that obtained by using the Stein-Chen method in Section I. Before giving the result, the following lemma is also need.
Lemma 1. $\Delta f_{C_{x_{0}}}$ is an increasing function for $x>x_{0}$.
Proof. We shall show that $\Delta f_{C_{x_{0}}}(x+1)-\Delta f_{C_{x_{0}}}(x)>0$ for $x>x_{0}$. From (6), we have

$$
\begin{aligned}
\Delta f_{C_{x_{0}}}(x+1)-\Delta f_{C_{x_{0}}}(x) & =(x-1)!\sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!}\left\{x \sum_{k=x+2}^{\infty} \frac{x+1-k}{k!}-\sum_{k=x+1}^{\infty} \frac{x-k}{k!}\right\} \\
& =(x-1)!\sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!}\left\{x \sum_{k=x+2}^{\infty} \frac{x+1-k}{k!}-\sum_{k=x+1}^{\infty} \frac{[x+1-(k+1)](k+1)}{(k+1)!}\right\} \\
& =(x-1)!\sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!}\left\{\sum_{k=x+2}^{\infty} \frac{(x-k)(x+1-k)}{k!}\right\} \\
& >0,
\end{aligned}
$$

which implies that $\Delta f_{C_{x_{0}}}$ is an increasing function for $x>x_{0}$.
Theorem 1. Let $x_{0} \in ¥ \cup\{0\}$ and $x \in ¥$, we then have the following:

$$
\left|\Delta f_{C_{x_{0}}}(x)\right| \leq \begin{cases}e^{-1} & , \text { if } x_{0}=0 \tag{9}\\ 1-2 e^{-1} & , \text { if } x_{0}=1 \\ 3\left(1-2.5 e^{-1}\right) & , \text { if } x_{0}=2 \\ \frac{1}{x_{0}+1}-\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}, \text { if } x_{0} \geq 3\end{cases}
$$

Proof. For $x=0,1,2$, the result in (9) follows from Teerapabolarn [21]. In the next step, we have to show that $\left|\Delta f_{C_{x_{0}}}(x)\right| \leq \frac{1}{x_{0}+1}-\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}$ for $x_{0} \geq 3$.

For $x>x_{0}$, following (6) and Lemma 1, we have

$$
\begin{aligned}
0<-\Delta f_{C_{x_{0}}}(x) & \leq-\Delta f_{C_{x_{0}}}\left(x_{0}+1\right) \\
& =\Delta f_{x_{0}+1}\left(x_{0}+1\right)-\Delta f_{C_{x_{0+1}}}\left(x_{0}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=x_{0}+2}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}+1} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!}-x_{0}!\sum_{k=x_{0}+2}^{\infty} \frac{e^{-1}}{k!} \sum_{j=0}^{x_{0}} \frac{x_{0}+1-j}{j!} \quad(\text { by (4) and (6)) } \\
& \leq \sum_{k=x_{0}+2}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}+1} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!}-\sum_{k=x_{0}+2}^{\infty} \frac{x_{0}!}{k!} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!} \\
& =\sum_{k=x_{0}+2}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}+1} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!}-\left\{\frac{1}{\left(x_{0}+1\right)\left(x_{0}+2\right)}+\frac{1}{\left(x_{0}+1\right)\left(x_{0}+2\right)\left(x_{0}+3\right)}+\mathrm{L}\right\} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!} \\
& \leq \sum_{k=x_{0}+2}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}+1} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!}-\frac{1}{\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!} \\
& \leq \frac{1}{x_{0}+2} \sum_{k=x_{0}+1}^{\infty} \frac{e^{-1}}{k!}+\left\{\frac{1}{x_{0}+1}-\frac{1}{\left(x_{0}+1\right)\left(x_{0}+2\right)}\right\} \sum_{j=0}^{x_{0}} \frac{e^{-1}}{j!} \\
& =\frac{1}{x_{0}+2},
\end{aligned}
$$

which yields

$$
\begin{equation*}
\left|\Delta f_{C_{x_{0}}}(x)\right| \leq \frac{1}{x_{0}+2} \tag{10}
\end{equation*}
$$

For $x \leq x_{0}$, following (6) and Teerapabolarn [21], we also have

$$
\begin{aligned}
0<\Delta f_{C_{x_{0}}}(x) & \leq \Delta f_{C_{x_{0}}}\left(x_{0}\right) \\
& =\Delta f_{x_{0}}\left(x_{0}\right)+\Delta f_{C_{x_{0-1}}}\left(x_{0}\right) \\
& =\sum_{k=x_{0}+1}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}+\left(x_{0}-1\right)!\sum_{k=x_{0}+1}^{\infty} \frac{x_{0}-k}{k!} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!} \quad(\text { by (4) and (6)) } \\
& =\sum_{k=x_{0}+1}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}-\sum_{k=x_{0}+1}^{\infty} \frac{\left(x_{0}-1\right)!\left(k-x_{0}\right)}{k!} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!} \\
& =\sum_{k=x_{0}+1}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}-\left\{\frac{1}{x_{0}\left(x_{0}+1\right)}+\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)}+\mathrm{L}\right\} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!} \\
& \leq \frac{1}{x_{0}+1} \sum_{k=x_{0}}^{\infty} \frac{e^{-1}}{k!}+\frac{1}{x_{0}} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}-\left\{\frac{1}{x_{0}\left(x_{0}+1\right)}+\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)}+\mathrm{L}\right\} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!} \\
& =\frac{1}{x_{0}+1}+\left\{\frac{1}{x_{0}}-\frac{1}{x_{0}+1}\right\} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}-\left\{\frac{1}{x_{0}\left(x_{0}+1\right)}+\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)}+\mathrm{L}\right\} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!} \\
& =\frac{1}{x_{0}+1}-\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!},
\end{aligned}
$$

which gives

$$
\begin{equation*}
\left|\Delta f_{C_{x_{0}}}(x)\right| \leq \frac{1}{x_{0}+1}-\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!} . \tag{11}
\end{equation*}
$$

Hence, from (10) and (11) and $\max \left\{\frac{1}{x_{0}+2}, \frac{1}{x_{0}+1}-\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}\right\}=\frac{1}{x_{0}+1}-\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}$, the result in (9) is obtained.
Because $\frac{1}{x_{0}+1}-\frac{2}{x_{0}\left(x_{0}+1\right)\left(x_{0}+2\right)} \sum_{j=0}^{x_{0}-1} \frac{e^{-1}}{j!}<\frac{1}{x_{0}+1}$, the result in this paper is better than that reported in (8).

3. Conclusion

In this study, an improvement of the bound on Poisson approximation is obtained by using the Stein-Chen method. Additionally, by comparing, the bound of this study is better than that presented in Teerapabolarn [21].

References

[1] A. D. Barbour, L. Holst and S. Janson, "Poisson Approximation," (Oxford Studies in Probability 2), Clarendon Press, Oxford, 1992.
[2] L. H. Y. Chen, "Poisson Approximation for Dependent Trials," Annals of Probability, vol. 3, no. 3, pp. 534-545, 1975.
[3] R. Kun and K. Teerapabolarn, "A Pointwise Poisson Approximation By W-Functions," Applied Mathematical Sciences, vol. 6, no. 101, pp. 5029-5037, 2012.
[4] K. Lange, "Applied Probability," Springer, New York, 2003.
[5] M. Majsnerowska "A Note on Poisson Approximation By W-Functions," Applicationes Mathematicae, vol. 25, no. 3, pp. 387-392, 1998.
[6] V. G. Mikhailov, "On a Poisson Approximation for the Distribution of the Number of Empty Cells in a Nonhomogeneous Allocation Scheme," Theory of Probability \& Its Applications, vol. 42, no. 1, pp. 184-189, 1998.
[7] K. Neammanee, "Pointwise Approximation of Poisson Binomial By Poisson Distribution," Stochastic Modelling and Applications, vol. 6, no. 1, pp. 20-26, 2003.
[8] K. Neammanee, "Non-Uniform Bound for the Approximation of Poisson Binomial By Poisson Distribution," International Journal of Mathematics and Mathematical Sciences, vol. 48, no. 1, pp. 3041-3046, 2003
[9] C. M. Stein, "A Bound for the Error in Normal Approximation to the Distribution of a Sum of Dependent Random Variables", Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, California, vol. 2, pp. 583-602, 1972.
[10] C. M. Stein, "Approximate Computation of Expectations," Hayward, Ca:Ims, 1986.
[11] K. Teerapabolarn, "A Non-Uniform Bound on Poisson Approximation for Sums of Bernoulli Random Variables with Small Mean," Thai Journal of Mathematics, vol. 4, no. 1, pp. 179-196, 2006.
[12] K. Teerapabolarn, "A Non-Uniform Bound in Probability Approximation Via the Stein-Chen Method," Stochastic Modelling and Applications, vol. 9, no. 1, pp. 1-15, 2006.
[13] K. Teerapabolarn, "A Bound on the Poisson-Binomial Relative Error," Statistical Methodology, vol. 4, no. 4, pp. 407-415, 2007.
[14] K. Teerapabolarn, "Bounds on Approximating the Yule Distribution By the Poisson and Geometric Distributions," International Journal of Applied Mathematics \& Statistics, vol. 14, no. 9, pp. 86-93, 2009.
[15] K. Teerapabolarn, "A Poisson-Binomial Relative Error Uniform Bound," Statistical Methodology, vol. 7, no. 2, pp. 69-76, 2010.
[16] K. Teerapabolarn, "on the Poisson Approximation to the Negative Hypergeometric Distribution," Bulletin of the Malaysian Mathematical Sciences Society, vol. 34, no. 2, pp. 331-336, 2011.
[17] K. Teerapabolarn, "An Improvement of Bound on the Poisson-Binomial Relative Error," International Journal of Pure and Applied Mathematics, vol. 80, no. 5, pp. 711-719, 2012.
[18] Teerapabolarn, "A Non-Uniform Bound on the Poisson-Negative Binomial Relative Error," General Mathematics Notes, vol. 12, no. 2, pp. 19, 2012.
[19] K. Teerapabolarn, "An Improvement of Poisson Approximation for Sums of Dependent Bernoulli Random Variables," Communications in Statistics-Theory and Methods, vol. 43, no. 8, pp. 1758-1777, 2014.
[20] K. Teerapabolarn, "New Non-Uniform Bounds on Poisson Approximation for Dependent Bernoulli Trials," Bulletin of the Malaysian Mathematical Sciences Society, vol. 38, no. 1, pp. 231-248, 2015.
[21] K. Teerapabolarn, "Improvements of Poisson Approximation for N-Dimensional Unit Cube Random Graph," Songklanakarin Journal of Science \& Technology, vol. 43, no. 4, pp. 917-926, 2021.
[22] K. Teerapabolarn and K. Neammanee, "A Non-Uniform Bound on Poisson Approximation in Somatic Cell Hybrid Model," Mathematical Biosciences, vol. 195, no. 1, pp. 56-64, 2005.
[23] K. Teerapabolarn and K. Neammanee, "A Non-Uniform Bound on Poisson Approximation for Dependent Trials," Stochastic Modelling and Applications, vol. 8, no. 1, pp. 17-31, 2005.
[24] K. Teerapabolarn and K. Neammanee, "Poisson Approximation for Sums of Dependent Bernoulli Random Variables," Acta Mathematica Academiae Paedagogicae Ny'Iregyh'Aziensis, vol. 22, no. 1, pp. 87-99, 2006.
[25] K. Teerapabolarn and K. Neammanee, "A Non-Uniform Bound on Matching Problem," Kyungpook Mathematical Journal, vol. 46, no. 4, pp. 489-496, 2006.
[26] K. Teerapabolarn and T. Santiwipanont, "Two Non-Uniform Bounds in the Poisson Approximation of Sums of Dependent Indicators," Thai Journal of Mathematics, vol. 5, no. 1, pp. 15-39, 2007.
[27] P. Wongkasem, K. Teerapabolarn and R. Gulasirima, "on Approximating A Generalized Binomial and Poisson Distributions," International Journal of Statistics and Systems, vol. 3, no. 2, pp. 113-124, 2008.

