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Abstract - In this paper we have discussed about Boolean near rings and pseudo commutative in near rings. Hansen, D.J.
and Jiang Luh [6] have stated that if N is a Boolean near ring, then xy = xyx for each x,y € N. It has been proved in this
paper by using the lemma if N is a Boolean near ring, then ab = 0 implies ba = b0 for all a,b € N. We have also
generalized this lemma to m > 1 and n > 1. It is obtained that every Boolean near ring with commutativity is pseudo
commutative.

Keywords - Boolean, Commutative, Pseudo Commutative, Weak Commutative, Zero symmetric.

1. Introduction

Near rings can be thought of as generalized rings: if in a ring we ignore the commutativity of addition and one
distributive law, we get a near ring. Gunter Pilz [5] “Near Rings” is an extensive collection of the work done in the area of
near rings.

Throughout this paper N stands for a right near ring (N, +,.), with at least two elements and ‘0’ denotes the identity
element of the group (N, +) and we write xy for x.y for any two elements x, y of N. Obviously On = 0 for all n € N. If,
in addition, n0 = 0 for all n € N then we say that N is zero symmetric.

2. Preliminaries
Definition 2.1 [6]

A right near ring is a non-empty set N together with two binary operations “+” and “.” such that (i) (N, +) is a group
(if) (N, .) is a semigroup (iii)(n, + n,)n; = nyng + nyn, forall ny, n,,ny €N.

Definition 2.2 [6]
A near ring N is called weak commutative if xyz = xzy for every x,y,z € N.

Definition 2.3 [23]
A near ring N is said to be pseudo commutative near ring if xyz = zyx forall x,y,z € N.

Definition 2.4 [4]
A near ring N is said to be quasi weak commutative near ring if xyz = yxz forall  x,y,z € N.

Definition 2.5 [4]
A near ring N is said to be reduced if N has no non-zero nilpotent elements.

Definition 2.6 [6]
A near ring N is called Boolean if x2 = x forall x € N.

Lemma 2.7 [7]
If N is a Boolean near ring, then xy = xyx for each x,y € N.

Definition 2.8 [25]
A near ring N is called reversible if forany a,b € N, ab = 0 = ba = 0.

EEmT [ his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. Dhivya & D. Radha/ IIMTT, 68(9), 34-38, 2022

3. Main Results
Lemma 3.1
If N is a Boolean near ring, then ab = 0 implies ba = b0 forall a,b € N.
Proof:
Let N be a Boolean near ring. Let a, b € N with ab = 0.
Now ba = (ba)? = (ba)(ba) = b(ab)a = b0a = b(0a) = b0. That is ba = b0 forall a,b € N.

Corollary 3.2
If N is a Boolean near ring with zero symmetric, then N is reversible.

Lemma 3.3
Let N be a Boolean near ring. If for all a, b € N with ab = 0, then (ba)™ = b0 foralln > 1.
Proof:
Let N be a Boolean near ring. Let a, b € N with ab = 0. The statement is true for n = 1 by lemma 3.1. Assume that
the statement is true for n = k, so (ba)* = bO0.
Then (ba)**! = (ba)*(ba) = (b0)(ba) = b(0b)a = b0a = b0. That is (ba)*** = b0. Hence (ba)™ = b0 for
alla,b € N and foralln > 1.

Lemma 3.4
Let N be a Boolean near ring. If for all a € N with a? = a0, then a = a0.
Proof:
Let N be a Boolean near ring. Let a € N with a? = a0. By definition of Boolean, a = a0 forall a € N.

Lemma 3.5
Let N be a Boolean near ring. If for all a € N with a™ = a0 for all n = 2, then a = a0.
Proof:
Let N be a Boolean near ring. The statement is true for n = 2 by lemma 3.4. Assume that the statement is true for n =
k, so a® = a0. Then a*** = a*a = (a0)a = a(0a) = a0.
That is a*** = a0. Hence a* = a0 for all a € N and for all n > 2.

Corollary 3.6
If N is zero symmetric with Boolean, then N is reduced.
Combining the lemma 3.3 and lemma 3.5 we have Proposition 3.7

Proposition 3.7

Let N be a zero symmetric Boolean near ring. Then N is reversible and reduced.

The lemma 3.8 taken from [7] plays an important role in the forthcoming theorem, proposition and lemma. The proof
is given using the lemma 3.1.

Lemma 3.8
If N is a Boolean near ring, then xyx = xy forall x,y € N.
Proof:
Let N be a Boolean near ring. Let x,y € N.
Now(xyx — xy)xy = xyx2y — xyxy

= XyXy — XyXy
= (xy)? — (xy)?
=0.

That is (xyx — xy)xy = 0.
By Lemma 3.1, xy(xyx —xy)=xy0 .. )

Also (xyx — xy)xyx = xyx2yx — xyxyx = xyxyx — xyxyx = 0.
That is (xyx — xy)xyx = 0.

By lemma 3.1, xyx(xyx —xy) =xyx0 .. 2)
Now xyx — xy = (xyx — xy)? = (xyx — xy) (xyx — xy)

= xyx(xyx — xy) — xy(xyx — xy)
= xyx0 — xy0 (By equation (1) and (2))
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= (xyx — xy)0.
Thatis xyx —xy = (xyx—xy)0o . 3)

Now (xyx — xy)x = 0.

= (xyx — xy)0x = 0. (By equation (3))
= (xyx —xy)0 = 0.

= xyx — xy = 0. (By equation (3))
Hence xyx = xy forall x,y € N.

Lemma 3.9

If N is a Boolean near ring, then x™y™x™ = x™y™ for all x,y € N where m > 1,n > 1 are fixed integers.
Proof:
Let N be a Boolean near ring. Let x,y € N.

Now (x™y™x™ — xMy™M)xMy™ = xMytxMxMy™ — xMylxMyn
- xmyn(xm)zyn — xmynxmyn
= xMytx Myt — xMynxMyn
=0.
That is (x™y"x™ — x™y")x™y*=0 . Q)
By Lemma 3.1, x™y" (x™y"x™ — x™y™) = x™y"0 ... 2)
Also
— xmyn(xm)zynxm _ xmynxmynxm
= xMyx My XM — My yMynym
=0.
Thatis (x™y™x™ — x™yM)x™y"x™ = 0.
Again, by Lemma 3.1,
xMytx™m(xM™y"tx™ — x™y™) = x™y"x™0 ?3)

NOW xmynxm _ xmyn — (xmynxm _ xmyn)z

— (xmynxm _ xmyn)(xmynxm _ xmyn)

— xmynxm(xmynxm _ xmyn) _ xmyn(xmynxm _ xmyn)
=xMy"x™0 — x™y"0.

That is x™y™x™ — x™y™ = (x™y"™x™ - x™y™m0 . 4)
— xmyn(xm)z _ xmynxm
m m,,n,m

= xMy"x™ — xMy"x
= 0.

Thatis (x™y™x™ — x™y™)x™ =0

= (xM™y"x™ — x™y™)0x™ = 0 (By equation (4))

= (My"x™ —xmy™0 =0

= xM™y"x™ — x™y™ = 0 (By equation (4))

= xM™y"x™ = xMy" forall x,y € N.

Theorem 3.10
Let N be a Boolean near ring. If N is commutative then N is pseudo commutative.
Proof:
Let N be a Boolean near ring. Let x,y,z € N.
Now, y(z — xz)x = y(zx — xzx)
= y(zx — xz) (By lemma 3.8)
= y(zx — zx)
=y0.
That is y(z — xz)x = y0.
= (z —x2)y(z — xz)x = (z — x2)y0
= (z — xz)yx = zy0 — xzy0 (By lemma 3.8)
= zyx — xzyx = zy0 — xzy0
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= zyx — xz(yx) = zy0 — xzy0

= zyx — xz(xy) = zy0 — xzy0 (Since N is commutative)
= zyx — (xzx)y = zy0 — xzy0

= zyx — (xz)y = zy0 — xzy0 (By lemma 3.8)

= zyx — x(zy) = zy0 — xzy0

=zyx —xyz=2zy0—xzy0 1)

Also, x(z — xz)x = x(zx — xzx)

x(zx — xz) (By lemma 3.8)
= x(zx — zx)
=x0

That is x(z — xz)x = x0.

= x(z — xz) = x0 (By lemma 3.8)

=yx(z—xz)=yx0 2)
Nowyx(z — xz)yx = yx(z — xz) (By Lemma 3.8)= yx0 (By equation (2))
That is yx(z — xz)yx = yx0

Now (z — xz)yx(z — xz)yx = (z — xz)yx0

= [(z — x2)yx]? = (z — xz)yx0

= (z — xz)yx = (z — xz)yx0 (Since N is Boolean)

= zyx — xzyx = zyx0 — xzyx0

= zyx — xz(yx) = zyx0 — xz(yx)0

= zyx — xz(xy) = zyx0 — xz(xy)0 (Since N is commutative)

= zyx — (xzx)y = zyx0 — (xzx)y0

= zyx — xzy = zyx0 — xzy0 (By Lemma 3.8)

= zyx — x(zy) = zyx0 — xzy0

= zyx — xyz = zyx0 — xzy0 (Since N is commutative) ... 3)
By equation (1) and (3) we get
= zy0 = zyx0 forall yzenN . 4)

Replacing x by y and y by z in equation (4), we get

= zz0 = zzy0

= 720 = z%y0

= z0 = zy0 (Since N is Boolean) forall z,yenN ... 5)
From equation (1) we get

zyx — xyz = zy0 — xzy0

z0 — xz0 (By equation (5))

=20 — (x2)0

=2z0— (zx)0

= z0 — z0 (By equation (5))
=0

Thatis zyx —xyz =0
= Zyx = xyz
Hence N is pseudo commutative.
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