Original Article

The Role of Boolean and Pseudo Commutativity in Near Rings

C. Dhivya ${ }^{1}$, D. Radha ${ }^{2}$
${ }^{1,2} P G \&$ Research Department of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi, Tamilnadu, India. ${ }^{1,2}$ Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli, Tamilnadu, India.

Abstract - In this paper we have discussed about Boolean near rings and pseudo commutative in near rings. Hansen, D.J. and Jiang Luh [6] have stated that if N is a Boolean near ring, then $x y=x y x$ for each $x, y \in N$. It has been proved in this paper by using the lemma if N is a Boolean near ring, then $a b=0$ implies $b a=b 0$ for all $a, b \in N$. We have also generalized this lemma to $m \geq 1$ and $n \geq 1$. It is obtained that every Boolean near ring with commutativity is pseudo commutative.

Keywords - Boolean, Commutative, Pseudo Commutative, Weak Commutative, Zero symmetric.

1. Introduction

Near rings can be thought of as generalized rings: if in a ring we ignore the commutativity of addition and one distributive law, we get a near ring. Gunter Pilz [5] "Near Rings" is an extensive collection of the work done in the area of near rings.

Throughout this paper N stands for a right near ring ($N,+,$.), with at least two elements and ' 0 ' denotes the identity element of the group $(N,+)$ and we write $x y$ for $x . y$ for any two elements x, y of N. Obviously $0 n=0$ for all $n \in N$. If, in addition, $n 0=0$ for all $n \in N$ then we say that N is zero symmetric.

2. Preliminaries

Definition 2.1 [6]

A right near ring is a non-empty set N together with two binary operations " + " and "." such that (i) $(N,+)$ is a group (ii) $(N,$.$) is a semigroup (iii) \left(n_{1}+n_{2}\right) n_{3}=n_{1} n_{3}+n_{2} n_{3}$ for all $n_{1}, n_{2}, n_{3} \in N$.

Definition 2.2 [6]

A near ring N is called weak commutative if $x y z=x z y$ for every $x, y, z \in N$.

Definition 2.3 [23]

A near ring N is said to be pseudo commutative near ring if $x y z=z y x$ for all $x, y, z \in N$.

Definition 2.4 [4]

A near ring N is said to be quasi weak commutative near ring if $x y z=y x z$ for all $\quad x, y, z \in N$.

Definition 2.5 [4]

A near ring N is said to be reduced if N has no non-zero nilpotent elements.

Definition 2.6 [6]

A near ring N is called Boolean if $x^{2}=x$ for all $x \in N$.

Lemma 2.7 [7]

If N is a Boolean near ring, then $x y=x y x$ for each $x, y \in N$.

Definition 2.8 [25]

A near ring N is called reversible if for any $a, b \in N, a b=0 \Rightarrow b a=0$.

3. Main Results

Lemma 3.1

If N is a Boolean near ring, then $a b=0$ implies $b a=b 0$ for all $a, b \in N$.

Proof:

Let N be a Boolean near ring. Let $a, b \in N$ with $a b=0$.
Now $b a=(b a)^{2}=(b a)(b a)=b(a b) a=b 0 a=b(0 a)=b 0$. That is $b a=b 0$ for all $a, b \in N$.

Corollary 3.2

If N is a Boolean near ring with zero symmetric, then N is reversible.

Lemma 3.3

Let N be a Boolean near ring. If for all $a, b \in N$ with $a b=0$, then $(b a)^{n}=b 0$ for all $n \geq 1$.

Proof:

Let N be a Boolean near ring. Let $a, b \in N$ with $a b=0$. The statement is true for $n=1$ by lemma 3.1. Assume that the statement is true for $n=k$, so $(b a)^{k}=b 0$.

Then $(b a)^{k+1}=(b a)^{k}(b a)=(b 0)(b a)=b(0 b) a=b 0 a=b 0$. That is $(b a)^{k+1}=b 0$. Hence $(b a)^{n}=b 0$ for all $a, b \in N$ and for all $n \geq 1$.

Lemma 3.4

Let N be a Boolean near ring. If for all $a \in N$ with $a^{2}=a 0$, then $a=a 0$.

Proof:

Let N be a Boolean near ring. Let $a \in N$ with $a^{2}=a 0$. By definition of Boolean, $a=a 0$ for all $a \in N$.

Lemma 3.5

Let N be a Boolean near ring. If for all $a \in N$ with $a^{n}=a 0$ for all $n \geq 2$, then $a=a 0$.

Proof:

Let N be a Boolean near ring. The statement is true for $n=2$ by lemma 3.4. Assume that the statement is true for $n=$ k, so $a^{k}=a 0$. Then $a^{k+1}=a^{k} a=(a 0) a=a(0 a)=a 0$.
That is $a^{k+1}=a 0$. Hence $a^{k}=a 0$ for all $a \in N$ and for all $n \geq 2$.

Corollary 3.6

If N is zero symmetric with Boolean, then N is reduced.
Combining the lemma 3.3 and lemma 3.5 we have Proposition 3.7

Proposition 3.7

Let N be a zero symmetric Boolean near ring. Then N is reversible and reduced.
The lemma 3.8 taken from [7] plays an important role in the forthcoming theorem, proposition and lemma. The proof is given using the lemma 3.1.

Lemma 3.8

If N is a Boolean near ring, then $x y x=x y$ for all $x, y \in N$.
Proof:
Let N be a Boolean near ring. Let $x, y \in N$.
$\operatorname{Now}(x y x-x y) x y=x y x^{2} y-x y x y$

$$
\begin{aligned}
& =x y x y-x y x y \\
& =(x y)^{2}-(x y)^{2} \\
& =0 .
\end{aligned}
$$

That is $(x y x-x y) x y=0$.
By Lemma 3.1, $x y(x y x-x y)=x y 0$
Also $(x y x-x y) x y x=x y x^{2} y x-x y x y x=x y x y x-x y x y x=0$.
That is $(x y x-x y) x y x=0$.
By lemma 3.1, $x y x(x y x-x y)=x y x 0$
Now $\begin{aligned} x y x-x y & =(x y x-x y)^{2}=(x y x-x y)(x y x-x y) \\ & =x y x(x y x-x y)-x y(x y x-x y) \\ & =x y x 0-x y 0 \text { (By equation (1) and (2)) }\end{aligned}$

$$
\begin{equation*}
=(x y x-x y) 0 \tag{3}
\end{equation*}
$$

That is $x y x-x y=(x y x-x y) 0$
Now $(x y x-x y) x=0$.
$\Rightarrow(x y x-x y) 0 x=0$. (By equation (3))
$\Rightarrow(x y x-x y) 0=0$.
$\Rightarrow x y x-x y=0$. (By equation (3))
Hence $x y x=x y$ for all $x, y \in N$.

Lemma 3.9

If N is a Boolean near ring, then $x^{m} y^{n} x^{m}=x^{m} y^{n}$ for all $x, y \in N$ where $m \geq 1, n \geq 1$ are fixed integers.

Proof:

Let N be a Boolean near ring. Let $x, y \in N$.
Now $\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) x^{m} y^{n}=x^{m} y^{n} x^{m} x^{m} y^{n}-x^{m} y^{n} x^{m} y^{n}$

$$
\begin{align*}
& =x^{m} y^{n}\left(x^{m}\right)^{2} y^{n}-x^{m} y^{n} x^{m} y^{n} \\
& =x^{m} y^{n} x^{m} y^{n}-x^{m} y^{n} x^{m} y^{n} \\
& =0 \tag{1}
\end{align*}
$$

That is $\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) x^{m} y^{n}=0$
By Lemma 3.1, $x^{m} y^{n}\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right)=x^{m} y^{n} 0$
Also

$$
\begin{align*}
\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) x^{m} y^{n} x^{m} & =x^{m} y^{n} x^{m} x^{m} y^{n} x^{m}-x^{m} y^{n} x^{m} y^{n} x^{m} \tag{2}\\
& =x^{m} y^{n}\left(x^{m}\right)^{2} y^{n} x^{m}-x^{m} y^{n} x^{m} y^{n} x^{m} \\
& =x^{m} y^{n} x^{m} y^{n} x^{m}-x^{m} y^{n} x^{m} y^{n} x^{m} \\
& =0 .
\end{align*}
$$

That is $\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) x^{m} y^{n} x^{m}=0$.
Again, by Lemma 3.1,
$x^{m} y^{n} x^{m}\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right)=x^{m} y^{n} x^{m} 0$
Now $x^{m} y^{n} x^{m}-x^{m} y^{n}=\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right)^{2}$
$=\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right)\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right)$
$=x^{m} y^{n} x^{m}\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right)-x^{m} y^{n}\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right)$
$=x^{m} y^{n} x^{m} 0-x^{m} y^{n} 0$.
That is $x^{m} y^{n} x^{m}-x^{m} y^{n}=\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) 0$
Now $\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) x^{m}=x^{m} y^{n} x^{m} x^{m}-x^{m} y^{n} x^{m}$

$$
\begin{aligned}
& =x^{m} y^{n}\left(x^{m}\right)^{2}-x^{m} y^{n} x^{m} \\
& =x^{m} y^{n} x^{m}-x^{m} y^{n} x^{m} \\
& =0
\end{aligned}
$$

That is $\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) x^{m}=0$
$\Rightarrow\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) 0 x^{m}=0$ (By equation (4))
$\Rightarrow\left(x^{m} y^{n} x^{m}-x^{m} y^{n}\right) 0=0$
$\Rightarrow x^{m} y^{n} x^{m}-x^{m} y^{n}=0$ (By equation (4))
$\Rightarrow x^{m} y^{n} x^{m}=x^{m} y^{n}$ for all $x, y \in N$.

Theorem 3.10

Let N be a Boolean near ring. If N is commutative then N is pseudo commutative.

Proof:

Let N be a Boolean near ring. Let $x, y, z \in N$.
Now, $y(z-x z) x=y(z x-x z x)$

$$
\begin{aligned}
& =y(z x-x z)(\text { By lemma 3.8) } \\
& =y(z x-z x) \\
& =y 0
\end{aligned}
$$

That is $y(z-x z) x=y 0$.
$\Rightarrow(z-x z) y(z-x z) x=(z-x z) y 0$
$\Rightarrow(z-x z) y x=z y 0-x z y 0$ (By lemma 3.8)
$\Rightarrow z y x-x z y x=z y 0-x z y 0$
$\Rightarrow z y x-x z(y x)=z y 0-x z y 0$
$\Rightarrow z y x-x z(x y)=z y 0-x z y 0$ (Since N is commutative)
$\Rightarrow z y x-(x z x) y=z y 0-x z y 0$
$\Rightarrow z y x-(x z) y=z y 0-x z y 0$ (By lemma 3.8)
$\Rightarrow z y x-x(z y)=z y 0-x z y 0$
$\Rightarrow z y x-x y z=z y 0-x z y 0$
Also, $x(z-x z) x=x(z x-x z x)$

$$
\begin{aligned}
& =x(z x-x z)(\text { By lemma 3.8) } \\
& =x(z x-z x) \\
& =x 0
\end{aligned}
$$

That is $x(z-x z) x=x 0$.
$\Rightarrow x(z-x z)=x 0$ (By lemma 3.8)
$\Rightarrow y x(z-x z)=y x 0$
Now $y x(z-x z) y x=y x(z-x z)($ By Lemma 3.8) $=y x 0$ (By equation (2))
That is $y x(z-x z) y x=y x 0$
Now $(z-x z) y x(z-x z) y x=(z-x z) y x 0$
$\Rightarrow[(z-x z) y x]^{2}=(z-x z) y x 0$
$\Rightarrow(z-x z) y x=(z-x z) y x 0$ (Since N is Boolean)
$\Rightarrow z y x-x z y x=z y x 0-x z y x 0$
$\Rightarrow z y x-x z(y x)=z y x 0-x z(y x) 0$
$\Rightarrow z y x-x z(x y)=z y x 0-x z(x y) 0$ (Since N is commutative)
$\Rightarrow z y x-(x z x) y=z y x 0-(x z x) y 0$
$\Rightarrow z y x-x z y=z y x 0-x z y 0$ (By Lemma 3.8)
$\Rightarrow z y x-x(z y)=z y x 0-x z y 0$
$\Rightarrow z y x-x y z=z y x 0-x z y 0$ (Since N is commutative)
By equation (1) and (3) we get
$\Rightarrow z y 0=z y x 0$ for all $y, z \in N$
Replacing x by y and y by z in equation (4), we get
$\Rightarrow z z 0=z z y 0$
$\Rightarrow z^{2} 0=z^{2} y 0$
$\Rightarrow z 0=z y 0$ (Since N is Boolean) for all $z, y \in N$
From equation (1) we get
$z y x-x y z=z y 0-x z y 0$ $=z 0-x z 0$ (By equation (5))
$=z 0-(x z) 0$
$=z 0-(z x) 0$
$=z 0-z 0$ (By equation (5))
$=0$
That is $z y x-x y z=0$
$\Rightarrow z y x=x y z$
Hence N is pseudo commutative.

References

[1] R. Balakrishnan and S. Suryanarayanan, "On P_{K} and P_{k}^{\prime} Near - Rings", Bull. Malaysian Math., Sc. Soc. (Second Series), vol. 23, pp. $9-24,2000$.
[2] C. Dhivya and D. Radha, " β_{6} Near Rings", Science, Technology and Development, vol. 11, no. 05, pp. 438-443, 2022.
[3] S. Geetha and G. Gopalakrishnamoorthy, "On Quasi - Weak Commutative Near - Rings Iii", Advances in Mathematics: Scientific Journal, vol. 8, no. 3, pp. 423 - 429, 2019.
[4] G. Gopalakrishnamoorthy, M. Kamaraj Ands. Geetha, "On Quasi Weak Commutative Near-Rings", International Journal of Mathematics Research, vol. 5, no. 5, pp. 431-440, 2013.
[5] Gratzer and George, "Universal Algebra", Van Nostrand, 1968.
[6] Gunter Pilz,, "Near Rings", North Holland, Amsterdam, 1983.
[7] D.J. Hansen and Jiang Luh, "Boolean Near Rings and Weak Commutativity," J. Austral. Math. Soc. (Series A), vol. 47, pp. 103 107, 1989.
[8] Neal. H. Mccoy, "Theory of Rings", Macmillan \& Co, 1970.
[9] D. Radha, C. Dhivya, M. Vinutha, K. Muthu Maheswari and S.R. Veronica Valli, "A Study on R-Near Ring", Journal of Emerging Technologies and Innovative Research (Jetir), vol. 6, no. 12, pp. 434-439, 2019.
[10] D. Radha and C. Dhivya, "On S-Near Rings and S'-Near Rings with Right Bipotency", Jetir, vol. 6, no. 2, pp. 952-1000, 2019.
$[11]$ D. Radha, M. Vinutha and C. Raja Lakshmi, "A Study on Gs-Near Ring," Journal of Emerging Technologies and Innovative Research (Jetir), vol. 6, no. 2, pp. 2349-5162, 2019.
[12] D. Radha, C. Dhivya and S.R. Veronica Valli, "A Study on Quasi Weak Commutative Gamma Near Rings," Journal of Emerging Technologies and Innovative Research, vol. 6, no. 6, pp. 2349-5162, 2019.
[13] D. Radha, M. Vinutha and C. Dhivya, "On Prime Semi Near Rings", Journal of Emerging Technologies and Innovative Research (Jetir), vol. 6, no. 6, pp. 2349-5162, 2019.
[14] D. Radha and C. Dhivya, "Role of α_{1} and α_{2} Near Ring in Boolean S-Near Ring", International Multidisciplinary Innovative Research Journal, vol. 4, no. 1, pp. 2456-4613, 2019.
[15] D. Radha and C. Dhivya, "On Unit B_{2} Near Rings," Studies in Indian Place Names, vol. 40, no. 70, pp. 3413-3418, 2020.
[16] D. Radha and C. Dhivya, "A Study on Cm (2,2) Near Ring," Science, Technology and Development, vol. 10, no. 03, pp. 626633, 2021.
[17] D. Radha, C. Dhivya and S. Shiny, "Some Results on S ${ }_{1}$-Near Rings", Science, Technology and Development, vol. 10, no. 04, pp. 191-195, 2021.
[18] D. Radha and C. Dhivya, "On Some Characterizations of Cm' (2,2) Near Ring", Science, Technology and Development, vol. 10, no. 11, pp. 104-111, 2021.
$[19]$ D. Radha and C. Dhivya, "On Some Characterizations of R-Near Rings", in Proc. Icamipr 2, pp. 235-240.
[20] D. Radha and C. Dhivya, "The Algebraic Structures of Cm (2,2) Near Ring", in Proc. Icmmmhpcst, pp. 409-412.
[21] G. Sugantha and R. Balakrishnan, " β_{1} Near-Rings," International Journal of Algebra, vol. 08, no. 01, pp. 1-7, 2014.
[22] G. Sugantha and R. Balakrishnan, " β_{2} Near-Rings," Ultra Scientist, vol. 26(1)A, pp. 63-68, 2014.
[23] S. Uma, R. Balakrishnan, and T. Tamizh Chelvam, "Pseudo Commutative Near-Rings," Scientia Magna, vol. 6, no. 2, pp. 75-85, 2010.
[24] Yong Uk Cho, "On Semicentral Idempotents in Near Rings," Applied Mathematical Sciences, vol. 9, no. 77, pp. 3843 - 3846, 2015.
[25] Yong Uk Cho, "Properties of Semicentral Idempotent Near-Rings," Far East Journal of Mathematical Sciences, vol. 100, no. 3, pp. $463-468,2016$.

