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Abstract - In this paper, we compute the first and second hyper Gourava indices, sum connectivity Gourava index, product 

connectivity Gourava index, general first and second Gourava indices of certain windmill graphs such as Kulli cycle windmill 

graph, Kulli path windmill graph, French windmill graph and Dutch windmill graph. 
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1. Introduction  
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). For a vertex v, the degree dG(v) is the 

number of vertices adjacent to v.  

 

A topological index is a numerical parameters mathematically derived from the graph structure. It is a graph invariant. The 

topological indices have their applications in various disciplines of Science and Technology, see [1]. 

 

In [2], Kulli defined the first and second Gourava indices of a graph G as  

  

𝐺𝑂1(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑑𝐺(𝑢)𝑑𝐺(𝑣)]

𝑢𝑣∈𝐸(𝐺)

,    

𝐺𝑂2(𝐺) = ∑ (𝑑𝐺(𝑢) + 𝑑𝐺(𝑣))

𝑢𝑣∈𝐸(𝐺)

(𝑑𝐺(𝑢)𝑑𝐺(𝑣)) 

  

The first and second hyper Gourava indices were introduced in [3] and they are defined as 

𝐻𝐺𝑂1(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑑𝐺(𝑢)𝑑𝐺(𝑣)]2

𝑢𝑣∈𝐸(𝐺)

, 

𝐻𝐺𝑂2(𝐺) = ∑ [(𝑑𝐺(𝑢) + 𝑑𝐺(𝑣))𝑑𝐺(𝑢)𝑑𝐺(𝑣)]2

𝑢𝑣∈𝐸(𝐺)

 

  

  

The sum connectivity Gourava index of a graph G is defined as [4] 

𝑆𝐺𝑂(𝐺) = ∑
1

√𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑑𝐺(𝑢)𝑑𝐺(𝑣)
𝑢𝑣∈𝐸(𝐺)

, 

  

In [5], Kulli proposed the product connectivity Gourava index of a graph G and it is defined as  

𝑃𝐺𝑂(𝐺) = ∑
1

√(𝑑𝐺(𝑢) + 𝑑𝐺(𝑣))(𝑑𝐺(𝑢)𝑑𝐺(𝑣))
𝑢𝑣∈𝐸(𝐺)

 

               

The general first and second Gourava indices [6] of a graph G are defined as 

 

                                                           𝐺𝑂1
𝑎(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑑𝐺(𝑢)𝑑𝐺(𝑣)]𝑎,

𝑢𝑣∈𝐸(𝐺)
                                                (1) 
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                                                            𝐺𝑂2
𝑎(𝐺) = ∑ [(𝑑𝐺(𝑢) + 𝑑2(𝑣))𝑑𝐺(𝑢)𝑑𝐺(𝑣)]𝑎

𝑢𝑣∈𝐸(𝐺)
,                                                  (2)

 where a is a real number. 

 Recently, some indices were studied, for example, in [9,10,11,12,13,14,15,16,17,18]. 

 

  In this paper, we compute Gourava indices, hyper Gourava indices, sum connectivity Gourava index, product 

connectivity Gourava index, general Gourava indices of certain windmill graphs. 

  

2. Results for Kulli Cycle Windmill Graphs 
The Kulli cycle windmill graph is the graph obtained by taking m copies of the graph K1 + Cn for  with a vertex K1 

in common and it is denoted by    This graph is presented in Fig. 1. 

 

1

2

3

4

m

 
 

Fig. 1 Kulli cycle windmill graph   

 

 Let    be a wheel windmill graph with mn+1 vertices and 2mn edges, , .  

 

  The graph C has two types of edges as given Table 1. 

 
Table 1. Edge partition of   

dG(u), dG(v) \ uv  E(G) (3, 3) (3, mn ) 

Number of edges mn mn 

 

Theorem 1. The general first Gourava index of  is  𝐶𝑛+1
𝑚  given by 

 𝐺𝑂1
𝑎(𝐶𝑛+1

𝑚 ) = 𝑚𝑛[15𝑎 + (3 + 𝑚𝑛)𝑎] (3) 

 

Proof: Let  𝐶 = 𝐶𝑛+1
𝑚  By using equation (1) and Table 1, we obtain 

 

𝐺𝑂1
𝑎(𝐶𝑛+1

𝑚 ) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑑𝐺(𝑢)𝑑𝐺(𝑣)]𝑎

𝑢𝑣∈𝐸(𝐶)

 

                                                      = [(3 + 3) + (3 × 3)]𝑎𝑚𝑛 + [3 + 𝑚𝑛 + 3𝑚𝑛]𝑎𝑚𝑛 

= [(3 + 3) + (3 × 3)]𝑎𝑚𝑛 + [3 + 𝑚𝑛 + 3𝑚𝑛]𝑎𝑚𝑛 

                                   = mn[15𝑎 + (3 + 𝑚𝑛)𝑎] 
   

     We obtain the following results by using Theorem 1. 

 

  Corollary 1.1. The first Gourava index of  𝐶𝑛+1
𝑚   is 

 

 𝐺𝑂1(𝐶𝑛+1
𝑚 ) = 18𝑚𝑛 + 4𝑚2𝑛2  
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 Corollary 1.2. the first hyper Gourava index of  is 

 

 𝐻𝐺𝑂1(𝐶𝑛+1
𝑚 ) = 16𝑚3𝑛3 + 24𝑚2𝑛2 + 234𝑚𝑛 

 

 Corollary 1.3. The sum connectivity Gourava index of 𝐶𝑛+1
𝑚    is 

 

 𝑆𝐺𝑂(𝐶𝑛+1
𝑚 ) = 𝑚𝑛[

1

√15
 +

1

√3+4𝑚𝑛
] 

 

Proof: Put a = 1, 2, –½ in equation (3), we obtain the desired results. 

 

Theorem 2. The general second Gourava index of  is given by 

  𝐺𝑂2
𝑎(𝐶𝑛+1

𝑚 ) = 𝑚𝑛 [54𝑎 + (9𝑚𝑛 + 3𝑚2𝑛2)𝑎] (4) 

 

Proof: Let 𝐶 = 𝐶𝑛+1
𝑚   By using equation (2) and Table 1, we deduce  

                    𝐺𝑂2
𝑎(𝐶𝑛+1

𝑚 ) = ∑ [(𝑑2(𝑢) + 𝑑2(𝑣))(𝑑2(𝑢)𝑑2(𝑣))]𝑎
𝑢𝑣∈𝐸(𝐶)

 

= [(3 + 3)(3 × 3)]𝑎𝑚𝑛 + [(3 + 𝑚𝑛)(3 × 𝑚𝑛)]𝑎𝑚𝑛 

               = 𝑚𝑛 [54𝑎 + (9𝑚𝑛 + 3𝑚2𝑛2)𝑎] 
 

The following results are obtained by using Theorem 2. 
 

Corollary 2.1. The second Gourava index of 𝐶𝑛+1
𝑚     is 

 

 𝐺𝑂2(𝐶𝑛+1
𝑚 ) = 3𝑚3𝑛3 + 9𝑚2𝑛2 + 54𝑚𝑛 

 

Corollary 2.2. The second hyper Gourava index of 𝐶𝑛+1
𝑚    is 

 

 𝐻𝐺𝑂2(𝐶𝑛+1
𝑚 ) = 9𝑚5𝑛5 + 54𝑚4𝑛4 + 81𝑚3𝑛3 + 2916𝑚𝑛 

 

Corollary 2.3. The product connectivity Gourava index of  is 

 

  𝑃𝐺𝑂(𝐶𝑛+1
𝑚 ) = 𝑚𝑛[

1

√54
 +

1

√9𝑚𝑛+3𝑚2𝑛2
] 

 

Proof: Put a = 1, 2, –½ in equation (4), we get the desired results. 

 

3. Results For Kulli Path Windmill Graphs  
The Kulli path windmill graph [20] is the graph obtained by taking m copies of the graph K1+Pn with a vertex K1 in common 

and it is denoted by  𝑃𝑛+1
𝑚

 
This graph is shown in Fig. 2. The Kulli path windmill graph 𝑃3

𝑚 is a friendship graph. 

 
 

Fig. 2 Kulli path windmill graph  
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Let 𝑃 = 𝑃𝑛+1
𝑚  m≥2, n≥5. Then P has mn+1 vertices and 2mn – m edges. The graph P has four types of 2-distance degree 

of edges as given Table 2. 

 
Table 2. Edge partition of  

d2(u), d2(v) \ uv  E(G) (2,  3) (3,  3) (mn, 2) (mn, 3) 

Number of edges 2m mn – 3m 2m mn – 2m 

 

Theorem 3. The general first Gourava index of 𝑃𝑛+1
𝑚   is 

 

𝐺𝑂1
𝑎(𝑃𝑛+1

𝑚 ) = 𝑚[29(15)𝑎 − 3(15)𝑎 + 2(2 + 3𝑚𝑛)𝑎 − 2(3 + 4𝑚𝑛)𝑎] + 𝑚𝑛 [(15)𝑎 + (3 + 4𝑚𝑛)𝑎]         (5) 

                                                         

Proof: Let 𝑃 = 𝑃𝑛+1
𝑚   By using equation (1) and Table 2, we deduce 

 

𝐺𝑂1
𝑎(𝑃𝑛+1

𝑚 ) = ∑ [𝑑2(𝑢) + 𝑑2(𝑣) + 𝑑2(𝑢)𝑑2(𝑣)]𝑎

𝑢𝑣∈𝐸(𝑃)

 

 

            = [2 + 3 + (2 × 3)]𝑎2𝑚 + [3 + 3 + (3 × 3)]𝑎(𝑚𝑛 − 3𝑚) + 
[𝑚𝑛 + 2 + (𝑚𝑛 × 2)]𝑎2𝑚 + [𝑚𝑛 + 3 + (𝑚𝑛 × 3)]𝑎(𝑚𝑛 − 2𝑚) 

   = 𝑚[29(15)𝑎 − 3(15)𝑎 + 2(2 + 3𝑚𝑛)𝑎 − 2(3 + 4𝑚𝑛)𝑎] + 𝑚𝑛 [(15)𝑎 + (3 + 4𝑚𝑛)𝑎] 
 

We obtain the following results by using Theorem 3. 

 

Corollary 3.1. The first Gourava index of of 𝑃𝑛+1
𝑚   is 

 

        𝐺𝑂1(𝑃𝑛+1
𝑚 ) = 4𝑚2𝑛2 + 18𝑚𝑛 − 25𝑚 − 2𝑚2𝑛 

 

Corollary 3.2. The first hyper Gourava index of 𝑃𝑛+1
𝑚   is 

 

             𝐻𝐺𝑂1(𝑃𝑛+1
𝑚 ) = 16𝑚3𝑛3 − 14𝑚3𝑛2 + 24𝑚2𝑛2 − 24𝑚2𝑛 + 234𝑚𝑛 − 443𝑚 

 

Corollary 3.3. The sum connectivity Gourava index of 𝑃𝑛+1
𝑚   

   

        𝑆𝐺𝑂(𝑃𝑛+1
𝑚 ) = 𝑚 [

2

√11
−

3

√15
+

2

√3𝑚𝑛+2
−

2

√4𝑚𝑛+3
 ] + mn [

1

√15
 +

1

√3+4𝑚𝑛
]  

 

Proof: Put a = 1, 2, –½ in equation (5), we get the desired results. 

 

Theorem 4. The general second leap Gourava index of 𝑃𝑛+1
𝑚     is   

 

   𝐺𝑂2
𝑎(𝑃𝑛+1

𝑚 ) = 𝑚[2(30)𝑎 − 3(54)𝑎 + 2(2 + 3𝑚𝑛)𝑎 − 2(3 + 4𝑚𝑛)𝑎] + 𝑚𝑛 [(54)𝑎 + (3 + 4𝑚𝑛)𝑎]     (6)                                                                   

 

Proof: Let  𝑃 = 𝑃𝑛+1
𝑚   . From equation (2) and by using Table 2, we obtain 

𝐺𝑂2
𝑎(𝑃𝑛+1

𝑚 ) = ∑ [(𝑑2(𝑢) + 𝑑2(𝑣))(𝑑2(𝑢)𝑑2(𝑣))]
𝑎

𝑢𝑣∈𝐸(𝑃)

 

= [(2 + 3) × (2 × 3)]𝑎2𝑚 + [(3 + 3) × (3 × 3)]𝑎(𝑚𝑛 − 3𝑚) 

+[𝑚𝑛 + 2 + (𝑚𝑛 × 2)]𝑎2𝑚 + [𝑚𝑛 + 3 + (𝑚𝑛 × 3)]𝑎(𝑚𝑛 − 2𝑚) 

                                           = 𝑚[2(30)𝑎 − 3(54)𝑎 + 2(2 + 3𝑚𝑛)𝑎 − 2(3 + 4𝑚𝑛)𝑎] + 𝑚𝑛 [(54)𝑎 + (3 + 4𝑚𝑛)𝑎] 
 

Corollary 4.1. The second Gourava index of 𝑃𝑛+1
𝑚   is 

 

 𝐺𝑂2(𝑃𝑛+1
𝑚 ) = 4𝑚2𝑛2 + 57 𝑚𝑛 − 2𝑚2𝑛 − 104𝑚 

 

Corollary 4.2. The second hyper Gourava index of  𝑃𝑛+1
𝑚   is 

 

 𝐻𝐺𝑂2(𝑃𝑛+1
𝑚 ) = 16𝑚3𝑛3 + 24𝑚2𝑛2 − 14𝑚3𝑛2 − 24𝑚2𝑛 + 2925𝑚𝑛 − 6958𝑚 
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Corollary 4.3. The product connectivity Gourava index of 𝑃𝑛+1
𝑚   is 

 

  𝑃𝐺𝑂(𝑃𝑛+1
𝑚 ) = 𝑚 [

2

√30
−

3

√54
+

2

√3𝑚𝑛+2
−

2

√4𝑚𝑛+3
 ] + mn [ 

1

√54
 +

1

√3+4𝑚𝑛
] 

 

Proof: Put a = 1, 2, –½ in equation (6), we get the desired results. 

 

4. Results for French Windmill Graphs  
The French windmill graph 𝐹𝑛

𝑚  is the graph obtained by taking 𝑚 ≥ 2 copies of Kn, 𝑛 ≥ 2with a vertex  in common. The 

graph 𝐹𝑛
𝑚  is presented in Fig. 3. The French windmill graph 𝐹3

𝑚  is called a friendship graph. 

                                                       

                                                               
Fig. 3 French windmill graph   

 

Let F  be a French windmill graph 𝐹𝑛
𝑚. Then F has 1+ m(n – 1) vertices and  ½mn(n – 1) edges, 𝑚 ≥ 2, 𝑛 ≥ 2. In F, there 

are two types of edges as given in Table 3. 

 
Table 3.  Edge partition of F. 

 

Theorem 5. The general first Gourava index of 𝐹𝑛
𝑚    is 

𝐺𝑂1
𝑎(𝐹𝑛

𝑚) = [(𝑛 − 1)(1 + 𝑚𝑛)]𝑎(𝑛 − 1)𝑚 + [(𝑛 − 1)(𝑛 + 1)]𝑎  
1

2
(𝑛 − 1)(𝑛 − 2)                                 (7) 

                                                                              

Proof: Let 𝐹 = 𝐹𝑛
𝑚 . From equation (1) and by using Table 3, we have  

𝐺𝑂1
𝑎(𝐹𝑛

𝑚) = ∑ [𝑑2(𝑢) + 𝑑2(𝑣) + 𝑑2(𝑢)𝑑2(𝑣)]𝑎

𝑢𝑣∈𝐸(𝐹)

 

= [(𝑛 − 1) + (𝑛 − 1)𝑚 + (𝑛 − 1)(𝑛 − 1)𝑚]𝑎(𝑛 − 1)𝑚 

+[(𝑛 − 1) + (𝑛 − 1) + (𝑛 − 1)(𝑛 − 1)]𝑎
1

2
𝑚(𝑛 − 1)(𝑛 − 2) 

                                           = [(𝑛 − 1)(1 + 𝑚𝑛)]𝑎(𝑛 − 1)𝑚 + [(𝑛 − 1)(𝑛 + 1)]𝑎  
1

2
(𝑛 − 1)(𝑛 − 2) 

 

The following results are obtained by using Theorem 5. 

 

Corollary 5.1. The first Gourava index of 𝐹𝑛
𝑚 is 

 

 𝐺𝑂1(𝐹𝑛
𝑚) = (𝑛 − 1)2 [𝑚 + 𝑚2𝑛 +

1

2
 (𝑛 + 1)(𝑛 − 2)] 

 

dG(u), dG(v) \ uv  E(G)   
Number of edges  
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Corollary 5.2. The first hyper Gourava index of  is 
 

 𝑆𝐺𝑂(𝐹𝑛
𝑚) = (𝑛 − 1)3 [(1 + 𝑚𝑛)2 +

1

2
 (𝑛 + 1)3(𝑛 − 2)] 

 

Corollary 5.3. The sum connectivity Gourava index of  𝐹𝑛
𝑚  is 

 

  𝑆𝐺𝑂(𝐹𝑛
𝑚) = [ 

𝑚√𝑛−1

√1+𝑚𝑛
 +

𝑚(𝑛−2)√𝑛−1

2√𝑛+1
] 

 

Proof: Put a = 1, 2, –½ in equation (7), we get the desired results. 
 

Theorem 6. The general second Gourava index of 𝐹𝑛
𝑚  is 

 

 𝐺𝑂2
𝑎(𝐹𝑛

𝑚) = (𝑛 − 1)3𝑎+1 [ 𝑚𝑎+1 (1 + 𝑚)𝑎 + 2𝑎−1 (𝑛 − 2)]                                                                 (8) 

 

Proof: Let  𝐹 = 𝐹𝑛
𝑚   By using equation (2) and Table 3, we obtain  

𝐺𝑂2
𝑎(𝐹𝑛

𝑚) = ∑ [(𝑑2(𝑢) + 𝑑2(𝑣))(𝑑2(𝑢)𝑑2(𝑣))]
𝑎

𝑢𝑣∈𝐸(𝐹)

 

= [((𝑛 − 1) + (𝑛 − 1)𝑚)(𝑛 − 1)(𝑛 − 1)𝑚]
𝑎

(𝑛 − 1)𝑚 

+[((𝑛 − 1) + (𝑛 − 1))(𝑛 − 1)(𝑛 − 1)]𝑎
1

2
𝑚(𝑛 − 1)(𝑛 − 2) 

  

                          = (𝑛 − 1)3𝑎+1 [ 𝑚𝑎+1 (1 + 𝑚)𝑎 + 2𝑎−1 (𝑛 − 2)] 
 

 We obtain the following results by using theorem 6. 
 

Corollary 6.1. The second Gourava index of 𝐹𝑛
𝑚  is 

 

 𝐺𝑂2(𝐹𝑛
𝑚) = (𝑛 − 1)4[𝑛 − 2 + 𝑚2 + 𝑚3 ] 

 

Corollary 6.2. The second hyper Gourava index of 𝐹𝑛
𝑚  is 

 

 𝐻𝐺𝑂2(𝐹𝑛
𝑚) = (𝑛 − 1)7[𝑚3(1 + 𝑚)2 + (2𝑛 − 4)]  

 

Corollary 6.3. The product connectivity Gourava index of  𝐹𝑛
𝑚   is 

 

 𝑃𝐺𝑂(𝐹𝑛
𝑚) =

1

√𝑛−1
[ 

√𝑚

√1+𝑚
 + 2−

3

2 (𝑛 − 2)] 

 

Proof: Put a = 1, 2, –½ in equation (8), we get the desired results 

 

5. Results for Dutch Windmill Graphs  
 The Dutch windmill graph  𝐷𝑛

𝑚 m ∈2, n ∈ 5 is the graph obtained by taking m copies of the cycle Cn with a vertex in 

common, see Fig. 4. 

   

 

Fig. 4 Dutch windmill graph  
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Let    be a Dutch windmill graph with 1 + mn – m vertices and mn edges, , . Then G has two types 

of edges as given in Table 4. 
Table 4.  Edge partition of    

 

Theorem 7. The general first Gourava index of 𝐷𝑛
𝑚   is 

 

   𝐺𝑂1
𝑎(𝐷𝑛

𝑚) = 8𝑎𝑚 (𝑛 − 2) + (2 + 3𝑚)𝑎 2𝑚                                                                             (9) 
 

Proof: Let 𝐺 = 𝐷𝑛
𝑚 . From equation (1) and by using Table 4, we have 

  

𝐺𝑂1
𝑎(𝐷𝑛

𝑚) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑑𝐺(𝑢)𝑑𝐺(𝑣)]𝑎

𝑢𝑣∈𝐸(𝐺)

 

 

= [2 + 2 + (2 × 2)]𝑎(𝑛 − 2)𝑚 + [2 + 𝑚 + 2𝑚]𝑎2𝑚 

 

                                                             = 8𝑎𝑚 (𝑛 − 2) + (2 + 3𝑚)𝑎 2𝑚 

 

We obtain the following results by using Theorem 7. 
 

Corollary 7.1. The first Gourava index of  𝐷𝑛
𝑚  is 

 

 𝐺𝑂1(𝐷𝑛
𝑚) = 6𝑚2 + 8𝑚𝑛 + 4𝑚 − 16 

 

Corollary 7.2. the first hyper Gourava index of 𝐷𝑛
𝑚   is 

 

 𝐻𝐺𝑂1(𝐷𝑛
𝑚) = 18𝑚3 + 24𝑚2 + 64𝑚𝑛 + 8𝑚 − 128 

 

Corollary 7.3. The sum connectivity Gourava index of 𝐷𝑛
𝑚  is 

 

 𝑆𝐺𝑂(𝐷𝑛
𝑚) = [ 

𝑚(𝑛−2)

√8
 +

2𝑚

√2+3𝑚
] 

 

Proof: Put a = 1, 2, –½ in equation (9), we obtain the desired results. 
 

Theorem 8. The general second Gourava index of 𝐷𝑛
𝑚   is 

 

 𝐺𝑂2
𝑎(𝐷𝑛

𝑚) = 8𝑎𝑚 (𝑛 − 2) + (2𝑚)𝑚+1 (2 + 𝑚)𝑎                                                                     (10) 

 

Proof: Let 𝐺 = 𝐷𝑛
𝑚 . From equation (1) and by using Table 4, we have  

 

𝐺𝑂2
𝑎(𝑃𝑛+1

𝑚 ) = ∑ [(𝑑2(𝑢) + 𝑑2(𝑣))(𝑑2(𝑢)𝑑2(𝑣))]
𝑎

𝑢𝑣∈𝐸(𝑃)

 

 

= [(2 + 2) × (2 × 2)]𝑎(𝑛 − 2)𝑚 + [(2 + 𝑚) × (2 × 𝑚)]𝑎2𝑚 
 

                                        = 8𝑎𝑚 (𝑛 − 2) + (2𝑚)𝑚+1 (2 + 𝑚)𝑎   
  

The following results are obtained by using Theorem 8. 

 

Corollary 8.1. The second Gourava index of 𝐷𝑛
𝑚   is 

 

 𝐺𝑂2(𝐷𝑛
𝑚) = 4𝑚3 + 8𝑚2 + 8𝑚𝑛 − 16 

 

Corollary 8.2. The second hyper Gourava index of 𝐷𝑛
𝑚   is 

 

 𝐻𝐺𝑂2(𝐷𝑛
𝑚) = 8𝑚5 + 32𝑚4 + 32𝑚3 + 64𝑚𝑛 − 128 

dG(u), dG(v) \ uv  E(G) (2, 2)         (2, m ) 

Number of edges m(n – 2)  2m 
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Corollary 8.3. The product connectivity Gourava index of 𝐷𝑛
𝑚   is 

 

 𝑃𝐺𝑂(𝐷𝑛
𝑚) = [ 

𝑚(𝑛−2)

√8
+

√2𝑚

√2+𝑚
]  

 

Proof: Put a = 1, 2, –½ in equation (10), we get the desired results. 

6. Conclusion 
 The first and second hyper Gourava indice computed , sum connectivity Gourava index, product connectivity Gourava 

index, general first and second Gourava indices of certain windmill graphs such as Kulli cycle windmill graph, Kulli path 

windmill graph, French windmill graph and Dutch windmill graph.
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