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Abstract - Ring theory plays a vital role in mathematics, physics, chemistry, and computer science. Ring theory has 

applications in geometry, symmetry and transformation puzzles like Rubik's Cube. Also the vector space and partial differential 

equations has many applications in mathematics, engineering etc. Partial differential equations are used in problems involving 

functions of several variables, such as heat or sound, elasticity, electrodynamics, fluid flow, etc. In this article we have 

established relation between first order partial differential equations and ring theory, vector space. If 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) is the 

given first order partial differential equation, the set of all partial differential equations 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) which are compatible 

with 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  form ring structure under usual addition and multiplication of two functions. Furthermore this ring is 

commutative. Also if we use usual vector addition of functions and scalar multiplication then this newly formed set is a vector 

space.  
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1. Introduction  
The problem of characterizing rings of commuting ordinary differential operators (ODO) was introduced and investigated 

by Burchnal and Chaundy. On the structure of compatible rational functions introduced by Shaoshi Chen, Ruyong Feng, and  

Ziming Li. (Shaoshi Chen, 2011). Phoolan Prasad defined first order partial differential equations: a simple approach for 

beginners. This is infinite dimension again, but relating sturm-liouville to symmetric matrices, and solving 𝐴𝑥 = 𝑏 by 

eigenvector expansions is fun. This kind of problem comes up in Electrodynamics (Electrical Engineering), fluids 

(mechanical/civil/chemical engr.), and quantum mechanics (electrical/materials/chemical engineering). Etc. 

 

In This article first we defined collection of all partial differential equations 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) which are compatible 

with 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) . In next part, by defining trivial operation of function we proved that it form ring structure and vector 

space.    

 

2. Basic Definitions 
2.1. Group structure 

A non-empty set G with operation ∗ is said to be group if it satisfies following four conditions: 

a) Closure property hold with respect to ∗ i.e. 𝑥 ∗ 𝑦 is in G ,for every 𝑥 , 𝑦 ∈ G 

b) Associativity property hold with respect to ∗ i.e.( 𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧)  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 , 𝑦 , 𝑧 ∈ G 

c) Identity element exits in G i.e. there is e in G such that 𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥 = 𝑥 for all x ∈ G  

d) Inverse element exits in G i.e. there is x’ in G such that 𝑥 ∗ 𝑥’ = 𝑥’ ∗ 𝑥 = 𝑒 for all x ∈ G. 

2.2. Abelian Group 

Group G is Abelian group if 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥, for every 𝑥, 𝑦 ∈ G. 

 

2.3. Ring Structure 

A non-empty set R with operations " + " 𝑎𝑛𝑑 ". "  is said to be ring if it satisfies following three conditions: 

R1) R is an Abelian group 

R2) Multiplication is associative i.e.( 𝑥. 𝑦). 𝑧 = 𝑥. (𝑦. 𝑧), ∀ 𝑥 , 𝑦 , 𝑧 ∈R 
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R3) Left and right distributive laws holds.  

i.e.  𝑥. (𝑦 + 𝑧) = 𝑥. 𝑦 + 𝑥. 𝑧 𝑎𝑛𝑑 (𝑥 + 𝑦). 𝑧 = 𝑥. 𝑧 + 𝑦. 𝑧 , ∀ 𝑥 , 𝑦 , 𝑧 ∈ R. 

We say that (𝑅, +, . ) is a ring. 

 2.4. Commutative Ring 

We say that, ring (𝑅, +, . ) is commutative ring, if multiplication is commutative. 

 2.5. Vector Space 

A non-empty set together with two operations vector addition and scalar multiplication is a vector space if it satisfies the 

following properties. 

i. For any 𝑢, 𝑣 ∈ 𝑉, 𝑢 + 𝑣 ∈ 𝑉 (Closure under addition) 

ii. For  𝑣 ∈ 𝑉 and scalar 𝛼, 𝛼𝑣 ∈ 𝑉 (Closure under scalar Multiplication) 

iii. For any 𝑢, 𝑣 ∈ 𝑉, 𝑢 + 𝑣 = 𝑣 + 𝑢 ( Commutative Property) 

iv. For any 𝑢, 𝑣, 𝑤 ∈ 𝑉, 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) = 𝑤 (Associativity Property) 

v. There is zero vector 0 in V such that 𝑢 + 0 = 0 + 𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉 (Existence of Identity Element in V) 

vi. For any 𝑣 ∈ 𝑉, ∃ 𝑢 ∈ 𝑉  such that 𝑢 + 𝑣 = 0 (Existence of additive Inverse) 

vii. The scalar 1 satisfies 1. 𝑣 = 𝑣, ∀𝑣 ∈ 𝑉 (Multiplicative Identity) 

viii. For 𝑣 ∈ 𝑉 and scalars 𝛼, 𝛽 , (𝛼𝛽)𝑣 = 𝛼(𝛽𝑣) (Associativity of Multiplication) 

ix. For  𝑢, 𝑣 ∈ 𝑉 and scalar 𝛼, 𝛼(𝑢 + 𝑣) =  𝛼𝑢 +  𝛼𝑣 (Distributivity over vector addition) 

x. For 𝑣 ∈ 𝑉 and scalars 𝛼, 𝛽 , (𝛼 + 𝛽)𝑣 = 𝛼𝑣 + 𝛽𝑣 (Distributive over scalar addition) 

2.6. Compatible 

Consider the partial differential equation 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0, where 𝑧 =  𝑧(𝑥, 𝑦) and 𝑝 =  
𝜕𝑧

𝜕𝑥
 , 𝑞 =  

 𝜕𝑧

 𝜕𝑦
.  

The partial differential equations 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0 and 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 are said to be compatible if they have a 

common solution. 

The necessary and sufficient condition that the two partial differential equation  𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0 and 

𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 are compatible if [𝑓, 𝑔] = 0. 

Where,  [𝑓, 𝑔] =  
∂(f,g)

∂(x,p)
  +  𝑝 

∂(f,g)

∂(z,p)
  +   

∂(f,g)

∂(y,q)
  +  𝑞 

∂(f,g)

∂(z,q)
 

                        =     |
𝑓𝑥 𝑓𝑝

𝑔𝑥 𝑔𝑝
|  +  𝑝 |

𝑓𝑧 𝑓𝑝

𝑔𝑧 𝑔𝑝
|  +   |

𝑓𝑦 𝑓𝑞

𝑔𝑦 𝑔𝑞
|  +  𝑞 |

𝑓𝑧 𝑓𝑞

𝑔𝑧 𝑔𝑞
| 

                        =  (𝑔𝑝𝑓𝑥 − 𝑔𝑥𝑓𝑝 + p 𝑔𝑝𝑓𝑧 − 𝑝𝑔𝑧𝑓𝑝 + 𝑔𝑞𝑓𝑦 − 𝑔𝑦𝑓𝑞 +  𝑞𝑔𝑞𝑓𝑧 − 𝑞𝑔𝑧 𝑓𝑞) 

2.7. New Ring Structure of Compatible System 

Result 1:  

Consider the set  𝑅 = { 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0: [𝑓, 𝑔] = 0} where  𝑔 𝑖𝑠 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 } 

i.e. the set of all P.D.E.’s f which are compatible with g. Then the set R is a ring with respect to trivial addition of functions and 

multiplication. 

Proof:  

Let 𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) , ℎ = ℎ(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) ∈  𝑅 . 

Therefore, [𝑓, 𝑔] = 0 and [ℎ, 𝑔] = 0       

 i.e. 𝑔𝑝𝑓𝑥 − 𝑔𝑥𝑓𝑝 + p 𝑔𝑝𝑓𝑧 − 𝑝𝑔𝑧𝑓𝑝 + 𝑔𝑞𝑓𝑦 − 𝑔𝑦𝑓𝑞 +  𝑞𝑔𝑞𝑓𝑧 − 𝑞𝑔𝑧 𝑓𝑞 = 0   and 𝑔𝑝 ℎ𝑥 − 𝑔𝑥ℎ𝑝 + p 𝑔𝑝ℎ𝑧 −

 𝑝𝑔𝑧ℎ𝑝+𝑔𝑞ℎ𝑦−𝑔𝑦ℎ𝑞 + 𝑞𝑔𝑞ℎ𝑧 − 𝑞𝑔𝑧 ℎ𝑞 = 0   ------- (1.1) 

Consider, 
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[𝑓 +  ℎ , 𝑔] = 
∂(f+h,g)

∂(x,p)
  +  𝑝 

∂(f+h,g)

∂(z,p)
  +   

∂(f+h,g)

∂(y,q)
 +  𝑞 

∂(f+h,g)

∂(z,q)
 

=     |
𝑓𝑥 + ℎ𝑥 𝑓𝑝 + ℎ𝑝

𝑔𝑥 𝑔𝑝
| + 𝑝 |

𝑓𝑧 + ℎ𝑧 𝑓𝑝 + ℎ𝑝

𝑔𝑧 𝑔𝑝
| + 

       |
𝑓𝑦 + ℎ𝑦 𝑓𝑞 + ℎ𝑞

𝑔𝑦 𝑔𝑞
| + 𝑞 |

𝑓𝑧 + ℎ𝑧 𝑓𝑞 + ℎ𝑞

𝑔𝑧 𝑔𝑞
| 

= 𝑔𝑝(𝑓𝑥 + ℎ𝑥)  − 𝑔𝑥(𝑓𝑝 + ℎ𝑝)+ p [𝑔𝑝(𝑓𝑧 + ℎ𝑧) − 𝑔𝑧(𝑓𝑝 + ℎ𝑝)] + 

 𝑔𝑞(𝑓𝑦 + ℎ𝑦) − 𝑔𝑦(𝑓𝑞 + ℎ𝑞) + 𝑞[𝑔𝑞(𝑓𝑧 + ℎ𝑧) + 𝑔𝑧(𝑓𝑞 + ℎ𝑞)] 

= 𝑔𝑝𝑓𝑥 + 𝑔𝑝 ℎ𝑥 − 𝑔𝑥𝑓𝑝 − 𝑔𝑥ℎ𝑝+ p 𝑔𝑝𝑓𝑧 +  p 𝑔𝑝ℎ𝑧 − 𝑝𝑔𝑧𝑓𝑝 −   𝑝𝑔𝑧ℎ𝑝 +  

 𝑔𝑞𝑓𝑦 + 𝑔𝑞ℎ𝑦 − 𝑔𝑦𝑓𝑞 − 𝑔𝑦ℎ𝑞 + 𝑞𝑔𝑞𝑓𝑧 + 𝑞𝑔𝑞ℎ𝑧 − 𝑞𝑔𝑧𝑓𝑞 − 𝑞𝑔𝑧 ℎ𝑞 

= (𝑔𝑝𝑓𝑥 − 𝑔𝑥𝑓𝑝 + p 𝑔𝑝𝑓𝑧 − 𝑝𝑔𝑧𝑓𝑝 + 𝑔𝑞𝑓𝑦 − 𝑔𝑦𝑓𝑞 +  𝑞𝑔𝑞𝑓𝑧 − 𝑞𝑔𝑧 𝑓𝑞) +  

   ( 𝑔𝑝 ℎ𝑥 − 𝑔𝑥ℎ𝑝 + p 𝑔𝑝ℎ𝑧 −  𝑝𝑔𝑧ℎ𝑝+𝑔𝑞ℎ𝑦−𝑔𝑦ℎ𝑞 + 𝑞𝑔𝑞ℎ𝑧 − 𝑞𝑔𝑧 ℎ𝑞)  

= 0 + 0                                                                                                            ---------- by (1.1)        

= 0 

             Therefore, 𝑓 +  ℎ ∈  𝑅                                                                    ------------    (1.2)                

Now for any 𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) , ℎ = ℎ(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) and 𝑘 = 𝑘(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  ∈  𝑅 . 

As, 𝑓 + (ℎ +  𝑘) = (𝑓 +  ℎ) + 𝑘 for any , ℎ , 𝑘 . 

Therefore, associativity property holds in R.                                                ------------     (1.3) 

Now consider, 0 = 0(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) and  

 [0 , 𝑔] =  
∂(0,g)

∂(x,p)
 +  𝑝 

∂(0,g)

∂(z,p)
  +   

∂(0,g)

∂(y,q)
 +  𝑞 

∂(0,g)

∂(z,q)
 

            =     |
0 𝑓𝑝

𝑔𝑥 𝑔𝑝
| + 𝑝 |

0 𝑓𝑝

𝑔𝑧 𝑔𝑝
| +  |

0 𝑓𝑞

𝑔𝑦 𝑔𝑞
| + 𝑞 |

0 𝑓𝑞

𝑔𝑧 𝑔𝑞
| 

            = 0 + 0 + 0 + 0 

           = 0 

Therefore,  ∈  𝑅 . 

Also,  + 0 =  0 +  𝑓 =  𝑓 , for any 𝑓 ∈  𝐺 . 
 Hence 𝑒 =  0 is an identity element in 𝐺 .                                                        ----------- (1.4) 

Now consider,  

[−𝑓 , 𝑔] =  
∂(−f,g)

∂(x,p)
 +  𝑝 

∂(−f,g)

∂(z,p)
  +   

∂(−f,g)

∂(y,q)
 +  𝑞 

∂(−f,g)

∂(z,q)
 

           =     |
−𝑓𝑥 −𝑓𝑝

𝑔𝑥 𝑔𝑝
| + 𝑝 |

−𝑓𝑧 −𝑓𝑝

𝑔𝑧 𝑔𝑝
| +  |

−𝑓𝑦 −𝑓𝑞

𝑔𝑦 𝑔𝑞
| + 𝑞 |

−𝑓𝑧 −𝑓𝑞

𝑔𝑧 𝑔𝑞
| 

           = −𝑔𝑝𝑓𝑥 + 𝑔𝑥𝑓𝑝 − p 𝑔𝑝𝑓𝑧 + 𝑝𝑔𝑧𝑓𝑝  −  𝑔𝑞𝑓𝑦 + 𝑔𝑦𝑓𝑞  −  𝑞𝑔𝑞𝑓𝑧 + 𝑞𝑔𝑧 𝑓𝑞 

           = −  (𝑔𝑝𝑓𝑥 − 𝑔𝑥𝑓𝑝 + p 𝑔𝑝𝑓𝑧 − 𝑝𝑔𝑧𝑓𝑝 + 𝑔𝑞𝑓𝑦 − 𝑔𝑦𝑓𝑞 +  𝑞𝑔𝑞𝑓𝑧 − 𝑞𝑔𝑧 𝑓𝑞) 

           =  0                                                                              --------by (1.1) 

Therefore, −𝑓 ∈  𝐺. 



Sagar Waghmare et al. / IJMTT, 68(9), 60-65, 2022 

 

63 

As , 𝑓 +  (−𝑓)  =  (−𝑓)  +  𝑓 =  0 =  𝑒 , for any 𝑓 

Hence inverse element exists for every element in R.                     -----------(1.5)  

From (1.2), (1.3), (1.4) and (1.5) R is group w.r.t. usual addition of functions.      

For any partial differential equations 𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 𝑎𝑛𝑑 𝑔 =  𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

We have, 

 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  +  𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  (𝑓 + 𝑔)(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

                                                       = (𝑔 + 𝑓)(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

                                                =  𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) +  𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

Therefore, 

 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  +  𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) =  𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) +  𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  ….. (1.6) 

 Hence R is Abelian group with respect to trivial addition of functions. 

Therefore, R1 holds. 

For any partial differential equations 

 𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞), 𝑔 =  𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)𝑎𝑛𝑑 𝑘 =  𝑘(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

We have, 

 𝑓 + (ℎ +  𝑘) = (𝑓 +  ℎ) + 𝑘  

Therefore, multiplication is associative. 

Hence, R2 holds. 

We have,  

𝑓. (ℎ +  𝑘) = 𝑓. ℎ + 𝑓. 𝑘 𝑎𝑛𝑑 (𝑓 + ℎ). 𝑘 = 𝑓. 𝑘 + ℎ. 𝑘 for any functions 𝑓, ℎ, 𝑘. 

Therefore, 𝑓. (ℎ +  𝑘) = 𝑓. ℎ + 𝑓. 𝑘 𝑎𝑛𝑑 (𝑓 + ℎ). 𝑘 = 𝑓. 𝑘 + ℎ. 𝑘 for any partial differential equations 𝑓, ℎ, 𝑘. 

Hence, left and right distributive laws hold in R. 

Hence, R3 holds. 

Therefore, R is ring with respect to vector addition and scalar multiplication. 

i.e. (𝑅, +, . ) is ring. 

Result 2: The ring (𝑅, +, . ) is commutative ring. 

Proof: For any functions 𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 𝑎𝑛𝑑 𝑔 =  𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

We have , (𝑓. 𝑔)(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞). 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

   = 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞). 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)                

                                                = (𝑔. 𝑓)(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)                   

Therefore, multiplication is commutative. 

Hence, (𝑅, +, . )is commutative ring.  

New Vector Space Structure of Compatible System: 
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Result 3: 

The set  𝑉 = { 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0: [𝑓, 𝑔] = 0, 𝑤ℎ𝑒𝑟𝑒 𝑔 𝑖𝑠 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 

i.e. the set of all P.D.E.’s f which are compatible with g, is a vector space with respect to usual vector addition and 

scalar multiplication. 

 Proof:  

From (1.2),(1.3),(1.4),(1.5) and (1.6),closure of  vector addition, associativity and commutativity of addition, 

existence of additive identity and additive inverse properties holds in V. 

Therefore we now show the remaining five properties of vector space for the set V. 

For  𝑓 ∈ 𝑉 and scalar 𝛼, consider  

[𝛼𝑓 , 𝑔] =  
∂(𝛼f,g)

∂(x,p)
 +  𝑝 

∂(𝛼f,g)

∂(z,p)
  +   

∂(𝛼f,g)

∂(y,q)
 +  𝑞 

∂(𝛼f,g)

∂(z,q)
 

              =  |
𝛼𝑓𝑥 𝛼𝑓𝑝

𝑔𝑥 𝑔𝑝
| + 𝑝 |

𝛼𝑓𝑧 𝛼𝑓𝑝

𝑔𝑧 𝑔𝑝
| +  |

𝛼𝑓𝑦 𝛼𝑓𝑞

𝑔𝑦 𝑔𝑞
| + 𝑞 |

𝛼𝑓𝑧 𝛼𝑓𝑞

𝑔𝑧 𝑔𝑞
| 

              =𝑔𝑝(𝛼𝑓𝑥) − 𝑔𝑥(𝛼𝑓𝑝) + 𝑝𝑔𝑝(𝛼𝑓𝑧) − 𝑝𝑔𝑧(𝛼𝑓𝑝) + 𝑔𝑞(𝛼𝑓𝑦) − 𝑔𝑦(𝛼𝑓𝑞) 

                       + 𝑞𝑔𝑞(𝛼𝑓𝑧) − 𝑞𝑔𝑧(𝛼𝑓𝑞) 

              = 𝛼 (𝑔𝑝𝑓𝑥 − 𝑔𝑥𝑓𝑝 + p 𝑔𝑝𝑓𝑧 − 𝑝𝑔𝑧𝑓𝑝 + 𝑔𝑞𝑓𝑦 − 𝑔𝑦𝑓𝑞  +  𝑞𝑔𝑞𝑓𝑧 − 𝑞𝑔𝑧 𝑓𝑞) 

 = 𝛼([𝑓, 𝑔])                                                                                                                                                

              = 0         ……𝑠𝑖𝑛𝑐𝑒, 𝑓 ∈ 𝑉 => [𝑓, 𝑔] = 0 

=> 𝛼𝑓 ∈ 𝑉   

Therefore, V is closed under scalar multiplication. 

For any function 𝑓 and scalar 1, it is true that (1. 𝑓) = 𝑓 

Therefore for  𝑓 ∈ 𝑉 and scalar 1, we have 

1. 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

𝑖. 𝑒.  1. 𝑓 = 𝑓 , ∀ 𝑓 ∈ 𝑉 

Also for any function 𝑓 and scalars 𝛼, 𝛽, (𝛼𝛽)𝑓 = 𝛼(𝛽𝑓) 

Hence, for 𝑓 ∈ 𝑉 and any scalars 𝛼, 𝛽, we have 

(𝛼𝛽)𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝛼(𝛽𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 

𝑖. 𝑒.  (𝛼𝛽)𝑓 = 𝛼(𝛽𝑓), ∀ 𝑓 ∈ 𝑉 

For any functions 𝑓 and ℎ and scalars 𝛼, 𝛽, left and right distributive laws  

 𝛼(𝑓 + ℎ) =  𝛼𝑓 +  𝛼ℎ 𝑎𝑛𝑑 (𝛼 + 𝛽)𝑓 = 𝛼𝑓 + 𝛽𝑓  holds. 

Therefore, left and right distributive laws hold in V 

 𝑖. 𝑒.  𝛼(𝑓 + ℎ) =  𝛼𝑓 +  𝛼ℎ 𝑎𝑛𝑑 (𝛼 + 𝛽)𝑓 = 𝛼𝑓 + 𝛽𝑓  holds for all 𝑓, 𝑔 in V and any scalars 𝛼, 𝛽. Therefore, V 

satisfies all the 10 conditions of vector space and hence V is vector space with respect to usual vector addition and 

scalar multiplication. 
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3. Conclusion and Future Work 
In this article new set is defined which contain of all partial differential equations  𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) which are compatible 

with fixed function 𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞). Using trivial addition of functions and multiplication, the given set form a commutative  

ring. Furthermore, if we use usual vector addition and scalar multiplication then this newly formed set is a vector space. In 

Future, we want to extend our work for the properties of group, ring and vector space etc. 
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