Research Article

A Note on Majority Coloring of Digraphs with Large Indegree

Mengyuan Wang ${ }^{1}$, Shufei Wu ${ }^{2}$
${ }^{1,2}$ School of Mathematics and Information Science, Henan Polytechnic University, Henan, China

Received: 23 November 2022 Revised: 28 December 2022 Accepted: 06 January 2023 Published: 18 January 2023

Abstract

A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbours. It was conjectured by Kreutzer et al. that every digraph has a majority 3-coloring. This conjecture is far from being resolved. We showed that every digraph D with minimum outdegree at least $28 \ln |D|$ has a majority 3-coloring. We also considered the natural generalized $\frac{1}{k}$-majority coloring problem.

Keywords - Majority coloring, Chernoff bound, Local lemma.

1. Introduction

In this paper, all digraphs are finite and simple (loopless and without parallel edges, but antiparallel edges are allowed). Let D be a digraph with vertex set $V(D)$ and edge set $E(D)$. For two vertices $v_{i}, v_{j} \in V(D)$, we say v_{i} dominates v_{j} if $v_{i} v_{j} \in$ $E(D)$. The vertices which dominate a vertex v are its in-neighbours, those which are dominated by v are its out-neighbours. These sets are denoted by $N^{-}(v)$ and $N^{+}(v)$, respectively. The outdegree of a vertex v, denoted by $d^{+}(v)$, is $\left|N^{+}(v)\right|$. Then we use $\delta^{+}\left(\Delta^{+}\right)$to denote the minimum (maximum) outdegree of D. The indegree $d^{-}(v)$ of v, minimum (maximum) indegree $\delta^{-}\left(\Delta^{-}\right)$of D can be defined similarly. For more problems and results concerning graph colorings, see $[1,8,11,13,16,19]$.

A majority coloring of a digraph is a function that assigns each vertex v a color, such that at most half the out-neighbours of v receive the same color as v. This type of coloring has received widespread attentions since it was first introduced by van der Zypen [24] in 2016. A significant progress was made by Kreutzer et al. [18], they showed that every digraph has a majority 4-coloring and raised the following conjecture.

Conjecture 1.1 Every digraph has a majority 3-coloring.

The conjecture would be best possible, as evidenced by an odd directed cycle. Girão et al. [14] studied Conjecture 1.1 for tournaments, the oriented complete graphs. They showed that every tournament can be 3 -coloured in such a way that all but at most 7 vertices receive the same colour as at most half of their out-neighbours. They also proved that every tournament with minimum outdegree 55 has a majority 3-coloring. Anastos et al. [3] proved Conjecture 1.1 for digraphs with maximum outdegree at most 4 or digraphs with chromatic number at most 6 or dichromatic number at most 3 . In [18], the authors proved that every n-vertex digraph G with minimum outdegree $\delta^{+}>72 \ln (3 n)$ has a majority 3-coloring. Xia et al. [2] showed that every r-regular digraph with minimum outdegree $r>36 \ln (2 n)$ has a majority 3 -coloring. In this paper, we prove the followings.

Theorem 1.2 Every digraph D with minimum outdegree $\delta^{+}>28 \ln n$ has a majority 3-coloring.
For a positive real α, a digraph D is α-almost-regular if $\max \left\{\Delta^{+}, \Delta^{-}\right\} \leq \alpha \min \left\{\delta^{+}, \delta^{-}\right\}$.
Theorem 1.3 Every α-almost-regular digraph D with minimum outdegree $\delta^{+} \geq \max \{740,56 \ln 12 \alpha\}$ has a majority 3-coloring. Moreover, at most half the out-neighbours of each vertex receive the same color.

In [18], the authors also generalized the concept of majority coloring. For $k \geq 2$, $\mathrm{a} \frac{1}{k}$-majority coloring of a digraph is a function that assigns a color to each vertex v, such that at most $\frac{d^{+}(v)}{k}$ out-neighbours of v receive the same color as v. A digraph D is $\frac{1}{k}$-majority m-colorable if there exists a $\frac{1}{k}$-majority coloring of D using m colors. Note that for a regular tournament of $2 k-1$ vertices, any $\frac{1}{k}$-majority coloring must be a proper vertex coloring, thus $2 k-1$ colors are necessary. The following conjecture (if true) would be best possible.

Conjecture 1.4 Every digraph is $\frac{1}{k}$-majority $(2 k-1)$-colorable.
Girão et al. [14] proved that every digraph is $\frac{1}{k}$-majority $2 k$-colorable for all $k \geq 2$. Xia et al. [2] proved that every digraph D with minimum outdegree $\delta^{+}>\frac{2 k^{2}(2 k-1)^{2}}{(k-1)^{2}} \ln [(2 k-1) n]$ is $\frac{1}{k}$-majority $(2 k-1)$-colorable. We improve the minimum outdegree condition and prove the following.

Theorem 1.5 Every digraph D with minimum outdegree $\delta^{+}>\frac{2 k(4 k-1)(2 k-1)}{3(k-1)^{2}} \ln [(2 k-1) n]$ is $\frac{1}{k}$-majority $(2 k-1)$-colorable, and at most $\frac{d^{+}(v)}{k}$ out-neighbours of each vertex receive the same color.

The majority coloring were also generalized to list-colorings [3,4,7,17,23], countable graphs [6,15]. For more problems and results, see $[1,5,6,9,10,21,22]$.

2. Results

In this section, we prove our main results. Our proof will depend on the Multiplicative Chernoff Bound.
Lemma 2.1 Let X_{1}, \ldots, X_{n} be independent random variables with

$$
\mathbb{P}\left(X_{i}=1\right)=p_{i}, \quad \mathbb{P}\left(X_{i}=0\right)=1-p_{i}
$$

We consider the sum $X=\sum_{i=1}^{n} X_{i}$, with expectation $\mu=\sum_{i=1}^{n} p_{i}$. Then we have

$$
\begin{gathered}
\mathbb{P}(X \geq \mu+\lambda) \leq e^{-\frac{\lambda^{2}}{2(\mu+\lambda / 3)}} \\
\mathbb{P}(X \leq \mu-\lambda) \leq e^{-\frac{\lambda^{2}}{2 \mu}}
\end{gathered}
$$

Now we give a proof of Theorem1.2.
Proof of Theorem 1.2 Independently and uniformly color each vertex of D with one of $\{1,2,3\}$ at random. Let $X(v)$ be the random variable that counts the number of out-neighbours of v, which receives the same color as v. It is obvious that the expectation of $X(v)$ is $\mu=\frac{d^{+}(v)}{3}$. Let $B(v)$ be the indicator random variable with $B(v)=1$ if $X(v)>\frac{d^{+}(v)}{2}$ and $B(v)=0$ otherwise. Let $B=\sum_{v \in V(D)} B(v)$.

By Lemma1.2, we use the bound of (1) with $\lambda=\frac{d^{+}(v)}{6}$,

$$
\begin{aligned}
\mathbb{P}\left(X(v)>\frac{d^{+}(v)}{2}\right)^{6} & =\mathbb{P}\left(X(v)>\frac{d^{+}(v)}{3}+\frac{d^{+}(v)}{6}\right) \\
& \leq \exp \left\{-\frac{d^{+}(v)}{28}\right\}
\end{aligned}
$$

Then the expectation of B is

$$
\begin{aligned}
\mathbb{E}(B) & =\sum \mathbb{P}\left(X(v)>\frac{d^{+}(v)}{2}\right) \\
& \leq n \exp \left\{-\frac{\delta^{+}}{28}\right\}<1
\end{aligned}
$$

the last inequality holds as $\delta^{+}>28 \ln n$. Thus with positive probability we have $B=0$, which implies D has a majority 3coloring.

Next, we give a proof of Theorem 1.5.
Proof of Theorem1.5 Independently and uniformly color each vertex of D with one of $\{1,2, \ldots, 2 k-1\}$ at random. For each $c \in\{1,2, \ldots, 2 k-1\}$, let $X(v, c)$ be the random variable that counts the number of out-neighbours of v colored c. Obviously, $\mathbb{E}[X(v, c)]=\frac{d^{+}(v)}{2 k-1}$. Let $B(v, c)$ be the indicator random variable of the event that $X(v, c)>\frac{d^{+}(v)}{k}$.

By Lemma [lem-che] with $\lambda=\frac{(k-1) d^{+}(v)}{k(2 k-1)}$,

$$
\begin{aligned}
\mathbb{P}\left(X(v, c)>\frac{d^{+}(v)}{k}\right) & =\mathbb{P}\left(X(v, c)>\frac{d^{+}(v)}{2 k-1}+\frac{(k-1) d^{+}(v)}{k(2 k-1)}\right) \\
& \leq \exp \left\{-\frac{3(k-1)^{2} d^{+}(v)}{2 k(4 k-1)(2 k-1)}\right\}
\end{aligned}
$$

Let $B=\sum_{v \in V(D)} \sum_{c \in C} B(v, c)$, then

$$
\mathbb{E}(B)=\sum_{v \in V(D)} \sum_{c \in C} \mathbb{P}\left(X(v, c)>\frac{d^{+}(v)}{k}\right) \leq(2 k-1) n \exp \left\{-\frac{3(k-1)^{2} \delta^{+}}{2 k(4 k-1)(2 k-1)}\right\}<1
$$

where the last inequality holds as $\delta^{+}>\frac{2 k(4 k-1)(2 k-1)}{3(k-1)^{2}} \ln [(2 k-1) n]$. Thus with positive probability we have $B=0$, which implies D has a $\frac{1}{k}$-majority $(2 k-1)$-coloring and at most $\frac{d^{+}(v)}{k}$ out-neighbours of each vertex receive the same color.

We use the following weighted version of the Local Lemma to give a proof of Theorem 1.3.
Lemma 2.2 (see[12]). Let $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ be a set of 'bad' events, such that each B_{i} is mutually independent of $\mathcal{B} \backslash$ $\left(D_{i} \cup\left\{B_{i}\right\}\right)$, for some subset $D_{i} \subseteq \mathcal{B}$. If we have numbers $t_{1}, \ldots, t_{n} \geq 1$ and a real number $p \in\left[0, \frac{1}{4}\right]$ such that for $1 \leq i \leq n$,

$$
\text { (a) } \mathbb{P}\left(B_{i}\right) \leq p^{t_{i}} \text { and }(b) \sum_{B_{j} \in D_{i}}(2 p)^{t_{j}} \leq \frac{t_{i}}{2}
$$

then with positive probability, none of the events in \mathcal{B} occur.
Proof of Theorem1.3 Let $p=\exp \left\{-\frac{\delta^{+}}{28}\right\}$. Since $\delta^{+} \geq \max \{740,56 \ln 12 \alpha\}$, we have $p \in\left[0, \frac{1}{4}\right]$. Independently and uniformly color each vertex of D with one of $\{1,2,3\}$ at random. For each $c \in\{1,2,3\}$, let $X(v, c)$ be the random variable that counts the number of out-neighbours of v colored c. Clearly, $\mathbb{E}(X(v, c))=\frac{d^{+}(v)}{3}$. Let $B(v, c)$ be the event that $X(v, c)>\frac{d^{+}(v)}{2}$. Let $\mathcal{B}=$ $\{B(v, c): v \in V(D), c \in\{1,2,3\}\}$ be our set of events. Let $t(v, c)=t_{v}=\frac{d^{+}(v)}{\delta^{+}}$be the associated weight. Then $t_{v} \geq 1$. It suffices to prove that conditions (a) and (b) of Lemma 2.2 hold.

Note that $X(v, c)$ is determined by $d^{+}(v)$ independent trials, by Lemma 2.1 with $\lambda=\frac{d^{+}(v)}{6}$,

$$
\mathbb{P}(B(v, c)) \leq \exp \left\{-\frac{d^{+}(v)}{28}\right\}=\exp \left\{-\frac{t_{v} \delta^{+}}{28}\right\}=p^{t_{v}}
$$

Thus condition (a) is satisfied.
For each event $B(v, c)$, let $D(v, c)$ be the set of events $B\left(w, c^{\prime}\right) \in \mathcal{B}$ such that v and w have a common out-neighbour. Then $B(v, c)$ is mutually independent of $\mathcal{B} \backslash(D(v, c) \cup\{B(v, c)\})$. Since $t_{w} \geq 1$,

$$
\sum_{B\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{t_{w}} \leq \sum_{B\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{1}=2 p|D(v, c)| \leq 6 p d^{+}(v) \Delta^{-}
$$

where the last inequality follows from the fact that there are three colors and each out-neighbour of v has indegree at most Δ^{-}. Since D is α-almost regular, we have $\Delta^{-} \leq \alpha \delta^{+}$. Therefore,

$$
\sum_{B\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{t_{w}} \leq 6 p d^{+}(v) \Delta^{-} \leq 6 \alpha\left(\delta^{+}\right)^{2} t_{v} \exp \left\{-\frac{\delta^{+}}{28}\right\}
$$

Note that $\delta^{+} \geq \max \{740,56 \ln 12 \alpha\}$, which implies

$$
\delta^{+} \geq 28 \ln (12 \alpha)+56 \ln \delta^{+}
$$

this further implies $6 \alpha\left(\delta^{+}\right)^{2} t_{v} \exp \left\{-\frac{\delta^{+}}{28}\right\} \leq \frac{t_{v}}{2}$. Hence, (b) is satisfied.
We conclude that every α-almost-regular digraph D with minimum outdegree $\delta^{+} \geq \max \{740,56 \ln 12 \alpha\}$ has a majority 3coloring. Moreover, at most half the out-neighbours of each vertex receive the same color.

The following result, also proved by the weighted Local Lemma, shows the existence of a $\frac{1}{k}$-majority $(2 k-1)$-coloring if we further limiting the maximum indegree of a digraph D.

Theorem2.3 Every digraph D with minimum outdegree $\delta^{+} \geq \frac{2 k(4 k-1)(2 k-1) \ln 4}{3(k-1)^{2}}$ and maximum indegree at most $\frac{\exp \left\{\frac{3(k-1)^{2} \delta^{+}}{2 k(4 k-1)(2 k-1)}\right\}}{4(2 k-1) \delta^{+}}$ has a $\frac{1}{k}$-majority $(2 k-1)$-coloring. Moreover, at most $\frac{d^{+}(v)}{k}$ out-neighbours of each vertex receive the same color.

Define $p=\exp \left\{-\frac{3(k-1)^{2} \delta^{+}}{2 k(4 k-1)(2 k-1)}\right\}$. Since

$$
\delta^{+} \geq \frac{2 k(4 k-1)(2 k-1) \ln 4}{3(k-1)^{2}}
$$

we have $p \in\left[0, \frac{1}{4}\right]$.
Independently and uniformly color each vertex of D with one of $\{1,2, \ldots, 2 k-1\}$ at random. For each $c \in\{1,2, \ldots, 2 k-1\}$, let $X(v, c)$ be the random variable that counts the number of out-neighbours of v colored c. Clearly, $\mathbb{E}(X(v, c))=\frac{d^{+}(v)}{2 k-1}$. Let $B(v, c)$ be the event that $X(v, c)>\frac{d^{+}(v)}{k}$. Let $\mathcal{B}:=\{B(v, c): v \in V(D), c \in\{1,2, \ldots, 2 k-1\}\}$ be our set of events. Let $t_{v}=$ $\frac{d^{+}(v)}{\delta^{+}}$be the associated weight. Then $t_{v} \geq 1$. It suffices to prove that conditions (a) and (b) hold.

Note that $X(v, c)$ is determined by $d^{+}(v)$ independent trials. By Lemma 2.1 with $\lambda=\frac{(k-1) d^{+}(v)}{k(2 k-1)}$,

$$
\mathbb{P}(B(v, c)) \leq \exp \left\{-\frac{3(k-1)^{2} d^{+}(v)}{2 k(4 k-1)(2 k-1)}\right\}=\exp \left\{-\frac{3(k-1)^{2} t_{v} \delta^{+}}{2 k(4 k-1)(2 k-1)}\right\}=p^{t_{v}}
$$

Thus condition (a) is satisfied.
For each event $B(v, c)$, let $D(v, c)$ be the set of all events $B\left(w, c^{\prime}\right) \in \mathcal{B}$ such that v and w have a common out-neighbour. Then $B(v, c)$ is mutually independent of $\mathcal{B} \backslash(D(v, c) \cup\{B(v, c)\})$.

Since each out-neighbour of v has indegree at most $\Delta^{-} \leq \frac{\exp \left\{\frac{3(k-1)^{2} \delta^{+}}{2 k(2 k-1)(4 k-1)}\right\}}{4(2 k-1) \delta^{+}}$, we have $|D(v, c)| \leq(2 k-1) d^{+}(v) \Delta^{-}=$ $(2 k-1) \delta^{+} t_{v} \Delta^{-}$. Thus,

$$
\sum_{B\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{t_{w}} \leq \sum_{B\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{1}=2 p|D(v, c)| \leq 2 p(2 k-1) \delta^{+} t_{v} \Delta^{-} \leq \frac{t_{v}}{2}
$$

We conclude that every digraph D with minimum outdegree $\delta^{+} \geq \frac{2 k(2 k-1)(4 k-1) \ln 4}{3(k-1)^{2}}$ and maximum indegree at most $\frac{\exp \left\{\frac{3(k-1)^{2} \delta^{+}}{2 k(2 k-1)(4 k-1)}\right\}}{4(2 k-1) \delta^{+}}$has a $\frac{1}{k}$-majority $(2 k-1)$-coloring. Moreover, at most $\frac{d^{+}(v)}{k}$ out-neighbours of each vertex receive the same color.

Corollary 2.4. Every r-regular digraph D with $r \geq g(k)$ has a $\frac{1}{k}$-majority $(2 k-1)$-coloring, where $g(k)$ can be determined by the function equation $r=\frac{\exp \left\{\frac{3 r(k-1)^{2}}{2 k(2 k-1)(4 k-1)}\right\}}{(8 k-4) r}$. Moreover, at most $\frac{r}{k}$ out-neighbours of each vertex receive the same color.

References

[1] Noga Alon, Jørgen Bang-Jensen, and Stéphane Bessy, "Out-Colorings of Digraphs," Journal of Graph Theory, vol. 93, no. 1, pp. 88-112.
[2] Xia Weihao et al., "Majority Coloring of R-Regular Digraph," Chinese Quarterly Journal of Mathematics, vol. 37, no. 2, pp. 142-146, 2022. Crossref, https://doi.org/10.13371/j.cnki.chin.q.j.m.2022.02.004
[3] Michael Anastos et al., "Majority Colorings of Sparse Digraphs," The Electronic Journal of Combinatorics, vol. 28, no. 2, pp. 1-17, 2021. Crossref, https://doi.org/10.37236/10067
[4] Marcin Anholcer, Bartłomiej Bosek, and Jarosław Grytczuk, "Majority Choosability of Digraphs," The Electronic Journal of Combinatorics, vol. 24, pp. 1-5, 2017. Crossref, https://doi.org/10.37236/6923
[5] M. Anholcer, B. Bosek, and J. Grytczuk, "Majority Colorings of Infinite Digraphs," Acta Mathematica Universitatis Comenianae, vol. 88, pp. 371-376, 2019.
[6] M. Anholcer, B. Bosek, and J. Grytczuk, "Majority Choosability of Countable Graphs," 2020. Crossref, https://arxiv.org/abs/2003.02883
[7] Marcin Anholcer et al., "A Note on Generalized Majority Colorings," 2022. Crossref, https://doi.org/10.48550/arXiv.2207.09739
[8] József Beck, "An Algorithmic Approach to the LováSz Local Lemma," Random Structures and Algorithms, vol. 2, pp. 343-365, 1991. Crossref, https://doi.org/10.1002/rsa. 3240020402
[9] Julien Bensmail, Ararat Harutyunyan, and Ngoc Khang Le, "List Coloring Digraphs," Journal of Graph Theory, vol. 87, no. 4, pp. 492508, 2018. Crossref, https://doi.org/10.1002/jgt. 22170
[10] BartłomiejBosek, JarosławGrytczuk, and GabrielJakóbczak, "Majority Coloring Game," Discrete Applied Mathematics, vol. 255, pp. 1520, 2019.
[11] O.V.Borodin et al., "Acyclic Coloring of 1-Planar Graphs," Discrete Applied Mathematics, vol. 114, pp. 29-41, 2001. Crossref, https://doi.org/10.1016/S0166-218X(00)00359-0
[12] Herman Chernoff, "A Note on an Inequality Involving the Normal Distribution," The Annals of Probability, vol. 9, no. 3, pp. 533-535, 1981. Crossref, https://doi.org/10.1214/aop/1176994428
[13] Guillaume Fertin, André Raspaud, and Bruce Reed, "Star Coloring of Graphs," Journal of Graph Theory, vol. 47, no. 3, pp. 163-182, 2004.
[14] António Girão, Teeradej Kittipassorn, and kamil Popielarz, "Generalized Majority Colorings of Digraphs," Combinatorics, Probability and Computing, vol. 26, pp. 850-855, 2017. Crossref, https://doi.org/10.1017/S096354831700044X
[15] J. Haslegrave, "Countable Graphs Are Majority 3-Choosable, " Discussiones Mathematicae Graph Theory, 2021. Crossref, https://doi.org/10.7151/dmgt. 2383
[16] G. Jothilakshmi et al., "Distance R-Coloring and Distance R-Dominator Coloring Number of a Graph," International Journal of Mathematical Trends and Technology, vol. 5, pp. 242-246, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V5P505
[17] Fiachra Knox, and Robert Šámal, "Linear Bound for Majority Colorings of Digraphs," The Electronic Journal of Combinatorics, vol. 25, no. 3, pp. 1-4, 2018. Crossref, https://doi.org/10.37236/6762
[18] S. Kreutzer et al., "Majority Colorings of Digraphs," The Electronic Journal of Combinatorics, vol. 24, pp. 1-9, 2017.
[19] Bojan Mohar, "Acyclic Colorings of Locally Planar Graphs," European Journal of Combinatorics, vol. 26, no. 3-4, pp. 491-503, 2005. Crossref, https://doi.org/10.1016/j.ejc.2003.12.016
[20] Michael Molloy, and Bruce Reed, "Graph Coloring and the Probabilistic Method," Algorithms and Combinatorics, vol. $23,2002$.
[21] V. Neumann-Lara, "The Dichromatic Number of a Digraph," Journal of Combinatorial Theory, Series B, vol. 33, no. 3, pp. 265-270, 1982. Crossref, https://doi.org/10.1016/0095-8956(82)90046-6
[22] P. D. Seymour, "On the Two-Coloring of Hypergraphs," Quarterly Journal of Mathematics, vol. 25, no. 1, pp. 303-311, 1974. Crossref, https://doi.org/10.1093/qmath/25.1.303
[23] R. M. Steiner, "Cycle Structure and Colorings of Directed Graphs," Technical University Berlin (Germany), 2021.
[24] D. Van Der Zypen, Majority Coloring for Directed Graphs, 2016. [Online]. Available: https://mathoverflow.net/questions/233014/majority-coloring-for-directed-graphs

