Original Article

Domination Parameter of Book Graph B_{m}

B. N. Kavitha ${ }^{1}$, C. S. Nagabhushana ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sri Venkateshwara College of Engineering, Karnataka, India
${ }^{2}$ Department of Mathematics, HKBK College of Engineering, Karnataka, India

Received: 09 December 2022
Revised: 10 January 2023
Accepted: 21 January 2023
Published: 31 January 2023

Abstract

In this paper, we present results on various domination parameters like domination, split domination, perfect domination, connected domination, equitable domination, inverse domination, restrained domination, and strong domination number for the product of the start graph with path P_{2} namely B_{m}

Keywords - Book Graph B_{m}, Domination parameters.

AMS Subject Classification: 05C69

1. Introduction

In this, paper we present results on various domination parameters like domination, split domination, perfect domination, connected domination, equitable domination, inverse domination, restrained domination, and strong domination number for the product of the start graph with path, graph namely B_{m} we refer Katitha B N \& Indrani Pramod kelkar research papers [6], [7], [8], [9], [10]. [11].

1.1. Domination Parameters of Graph

Domination Number: A subset D of $V(G)$ is said to be a dominating set of G if every vertex in $V \backslash D$ is adjacent to a vertex in D. Cardinality of the minimum dominating set is called the domination number of G and is denoted by $\gamma(\mathrm{G})$.

Split domination Number[17]: A dominating set D of G is called a split dominating set if the induced subgraph $<V-D>$ is disconnected otherwise it is called non-split dominating set. Cardinality of the minimum split dominating set is called the split domination number [12] of G denoted as $\gamma_{s}(\mathrm{G})$.

Perfect domination number [1]: A dominating set D of a graph G is said to be a perfect dominating set if any vertex of G not in D is adjacent to exactly one vertex of D. Cardinality of the minimum perfect dominating set is called the perfect domination number [21], denoted as $\gamma_{\mathrm{pt}}(\mathrm{G})$.

Equitable domination number [23]: A dominating set D of $V(G)$ is called an equitable dominating set of a graph G if for every $v \in V-D$, there exists a vertex $u \in D$ such that $u v \in E(G)$ and $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$. The minimum cardinality of an equitable dominating set of G is called equitable domination number [18] of G and is denoted by $\gamma^{\mathrm{e}}(\mathrm{G})$.

Inverse domination number [18] : Consider a dominating set D of G, if the induced Subgraph < V - $\mathrm{D}>$ contains a dominating set D_{1} of G, then D_{1} is called an inverse dominating set with respect to D. Cardinality of the minimum inverse dominating set is called the inverse domination number [13] of G and is denoted as $\gamma^{-1}(\mathrm{G})$.

Restrained domination number [3]: Let $G=(V, E)$ be a graph. A restrained dominating set is a set $S \subseteq V$ where every vertex in $V-S$ is adjacent to vertex in S as well as another vertex inV $-S$. The restrained domination number [1] of G. denoted by $\gamma_{\mathrm{r}}(\mathrm{G})$, is the smallest cardinality of a restrained dominating set of G.

Connected domination number [20]: A dominating set D of a graph G is such that induced subgraph of D is a connected graph then D is a connected dominating set of G. Cardinality of the minimum connected dominating set is called the connected domination number [15] of G denoted as $\gamma_{C}(G)$.

Strong domination number [5]: Let $G=(V, E)$ a graph A set $D \subseteq V$ is strong dominating set of G's if for every vertex $v \in V-D$ there is a vertex $u \in D$ with $u v \in E$ and $d(u, G) \geq d(v, G)$. The strong domination number [5] $\gamma_{s t}(G)$ is defined as the minimum cardinality of a strong dominating set.

Weak domination number [4]: Let $G=(V, E)$ a graph A set $D \subseteq V$ is weak dominating set of G if for every vertex $v \in V-$ D there is a vertex $u \in D$ with $u v \in E$ and $d(u, G) \leq d(v, G)$. The weak domination number [4] $\gamma_{w k}(G)$ is defined as the minimum cardinality of a weak dominating set.

2. Domination Parameters of Book Graph

The cross product of star of S_{m+1} and path P_{2} is called a book graph by [6],[7],[8],[9],[10],[11], denoted as B_{m}. Suppose vertex set of $S_{m+1}=\left\{v, u_{1}, u_{2}, \ldots \ldots u_{m}\right\}$ and Path $P_{2}=\left\{w_{1}, w_{2}\right\}$ then vertex set of B_{m} can be written as,

$$
V\left(B_{m}\right)=\left\{\left(v, w_{1}\right),\left(v, w_{2}\right),\left(u_{1}, w_{1}\right),\left(u_{1}, w_{2}\right),\left(u_{2}, w_{1}\right),\left(u_{2}, w_{2}\right) \ldots \ldots\left(u_{i}, w_{1}\right)\left(u_{i}, w_{2}\right)\right\},
$$

$|\mathrm{V}|=2 \mathrm{~m}+2$
The edge set of B_{m} contains edges of four types
(i) Central edges $\mathrm{f}=\left\{\left(\left(\mathrm{v}, \mathrm{w}_{1}\right)\left(\mathrm{v}, \mathrm{w}_{2}\right)\right)\right\}$
(ii) Star edges at $\mathrm{w}_{1} \quad \mathrm{~g}_{\mathrm{i}}^{1}=\left\{\left(\left(\mathrm{v}, \mathrm{w}_{1}\right)\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right)\right)\right.$

Where $i=1,2,3, \ldots \ldots \ldots \ldots m\}$
(iii) Star edges at $w_{2} \quad g_{i}^{2}=\left\{\left(\left(v, w_{2}\right)\left(u_{i}, w_{2}\right)\right)\right.$ where $\left.i=1,2,3, \ldots \ldots \ldots \ldots m\right\}$
(iv) Path edges $h_{i}=\left\{\left(\left(u_{i}, w_{1}\right)\left(u_{i}, w_{2}\right)\right)\right.$ where $\left.i=1,2, \ldots \ldots \ldots \ldots m\right\}$

$$
\begin{aligned}
|\mathrm{E}| & =\left|\mathrm{f}_{\mathrm{i}}\right|+\left|\mathrm{g}_{\mathrm{i}}^{1}\right|+\left|\mathrm{g}_{\mathrm{i}}^{2}\right|+\left|\mathrm{h}_{\mathrm{i}}\right| \\
& =1+\mathrm{m}+\mathrm{m}+\mathrm{m}=3 \mathrm{~m}+1
\end{aligned}
$$

Thus, the book graph B_{m} has $2 m+2$ vertices and $3 m+1$ edges.
Theorem 2.1 Domination number of B_{m} is

$$
\gamma\left(B_{m}\right)=2 \text { for } m \geq 3
$$

Proof. We know that the book graph is cross product of S_{m+1} and P_{2} with $2 m+2$ vertices and $3 m+1$ edges. In book $\operatorname{graph}\left(\mathrm{v}, \mathrm{w}_{1}\right)$ and $\left(\mathrm{v}, \mathrm{w}_{2}\right)$ are adjacent to m distinct vertices each with the type of edges $\mathrm{g}_{\mathrm{i}}^{1}$ and $\mathrm{g}_{\mathrm{i}}^{2}$ for $i=1,2,3, \ldots \ldots . m$ respectively. Neighbourhoods of $\left(\mathrm{v}, \mathrm{w}_{1}\right)$ and ($\mathrm{v}, \mathrm{w}_{2}$) satisfy, $\mathrm{N}\left[\left(\mathrm{v}, \mathrm{w}_{1}\right)\right] \cup \mathrm{N}\left[\left(\mathrm{v}, \mathrm{w}_{2}\right)\right]=\mathrm{V}$ and $\mathrm{N}\left[\left(\mathrm{v}, \mathrm{w}_{1}\right)\right] \cap \mathrm{N}\left[\left(\mathrm{v}, \mathrm{w}_{2}\right)\right]=$ \emptyset.Therefore $\left(v, w_{1}\right)$ and $\left(v, w_{2}\right)$ together dominate all vertices of $B_{m} . D=\left\{\left(v, w_{1}\right),\left(v, w_{2}\right)\right\}$ is a minimal dominating set as no single vertex of D dominate all vertices of B_{m}. Therefore, the domination number of book graph is

$$
\gamma\left(B_{m}\right)=2
$$

Lemma 2.2. Perfect domination number of book graph is

$$
\gamma_{P}\left(B_{m}\right)=2 \text { form } \geq 3
$$

Proof. From theorem 2.1, $D=\left\{\left(v, w_{1}\right),\left(v, w_{2}\right)\right\}$ is a minimal dominating set of B_{m}.
D is a perfect dominating set if $\forall v \in V-D$, v is adjacent to exactly one vertex of D. Consider
$V-D=\left\{\left(u_{i}, w_{1}\right),\left(u_{i}, w_{2}\right) i=1,2,3, \ldots \ldots \ldots m\right\}$. Here all vertices $\left(u_{i}, w_{1}\right) i=1,2, \ldots . m$ are dominated by $\left(v, w_{1}\right)$ and vertices $\left(u_{i}, w_{2}\right) i=1,2, \ldots \ldots \ldots$ are dominated by $\left(v, w_{2}\right)$. Thus, every vertex of $V-D$ is adjacent to exactly one vertex of D . So, D satisfies the condition for perfect domination. Therefore, D is a minimal perfect dominating set, giving perfect domination number of book graph B_{m} as $|\mathrm{D}|=2$.

$$
\therefore \gamma_{\mathrm{P}}\left(\mathrm{~B}_{\mathrm{m}}\right)=2=\gamma\left(\mathrm{B}_{\mathrm{m}}\right) .
$$

Lemma 2.3. The split domination number of B_{m} is

$$
\gamma_{s}\left(B_{m}\right)=2 \text { form } \geq 3,
$$

Proof. From theorem 2.1, minimal dominating set of B_{m} is $D=\left\{\left(v, w_{1}\right),\left(v, w_{2}\right)\right\}$. For D to be a split dominating set, we need $V-$ Dto be a disconnected graph. We observe that removal of the vertices of D from the graph B_{m} gives m-disconnected components path P_{2}. Hence D is the minimal split dominating set of B_{m} giving $\gamma_{s}\left(B_{m}\right)=2$ for $m \geq 3$.

Illustration: For a book graph B_{6} we have 14 vertices dominated by two vertices of the dominating set
$\mathrm{D}=\left\{\left(\mathrm{v}, \mathrm{w}_{1}\right),\left(\mathrm{v}, \mathrm{w}_{2}\right)\right\}$ including the centre vertex of each copy of the star graph dominating all the vertices of

Fig. 1 Graph \boldsymbol{B}_{6}

Fig. 2 Split Graph $B_{6}-D$
Lemma 2.4. Equitable domination number of book graph is

$$
\gamma^{\mathrm{e}}\left(\mathrm{~B}_{\mathrm{m}}\right)=\mathrm{m}+1
$$

Proof: From theorem 2.1 $D=\left\{\left(\mathrm{v}, \mathrm{w}_{1}\right),\left(\mathrm{v}, \mathrm{w}_{2}\right)\right\}$ is a minimal dominating set of B_{m}.
For D to be an equitable dominating set, we need if for every, $v \in V-D$ there exist a vertex $u \in D$ such that $u v \in E(G)$ and $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$.
Consider $\mathrm{V}-\mathrm{D}=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{2}\right)\right.$ where $\left.\mathrm{i}=1,2,3, \ldots \ldots \ldots \ldots \mathrm{~m}\right\}$. Consider a vertex $\left(\mathrm{u}_{1}, \mathrm{w}_{1}\right)$ there exist a vertex $\left\{\left(\mathrm{v}, \mathrm{w}_{1}\right)\right\}$ in D such that $\left(u_{1} w_{1}\right)$ is adjacent to $\left(v, w_{1}\right)$ with $\operatorname{deg}\left(v, w_{1}\right)=m+1 \operatorname{anddeg}\left(u_{1}, w_{1}\right)=2$.
$\left|\operatorname{deg}\left(v, w_{1}\right)-\operatorname{deg}\left(u_{1}, w_{1}\right)\right|=m+1-2 \nsubseteq 1$ for $m \geq 3$
Therefore for $\left(u_{1}, w_{1}\right)$, a vertex chosen from $V-D$, equitable domination condition is not satisfied. This shows that D does not satisfy the equitable domination condition and so D is not an equitable dominating set.
Next consider vertex $\left(v, w_{1}\right)$ which dominates $m+1$ vertices $\left\{\left(v, w_{2}\right)\left(u_{1}, w_{1}\right) i=1,2, \ldots \ldots \ldots m\right\}$. Add $\left(v, w_{1}\right)$ set D_{1}, to get equitable dominating set, we need to add m vertices from B_{m} which are not dominated by (v, w_{1}) so we get an extended set $D_{1}=\left\{\left(v, w_{1}\right),\left(u_{i}, w_{2}\right), i=1,2 \ldots \ldots \ldots m\right.$, with $\left|D_{1}\right|=m+1$ and
$V-D_{1}=\left\{\left(v, w_{2}\right)\left(u_{i}, w_{1}\right) i=1,2, \ldots \ldots \ldots m\right\} A s\left(v, w_{1}\right)$ dominates all vertices of $V-D_{1}$, it is clear that D_{1} is a dominating set of B_{m} of cardinality $m+1$.

Fig. 3 Equitable domination number of \boldsymbol{B}_{6}
To check if D_{1} satisfies equitable domination condition, consider a vertex $\left(v, w_{2}\right) \in V-D$, with $\mathrm{d}\left(\mathrm{v}, \mathrm{w}_{2}\right)=\mathrm{m}+1$ which is adjacent to $\left(\mathrm{v}, \mathrm{w}_{1}\right) \in \mathrm{D}$ withd $\left(\mathrm{v}, \mathrm{w}_{1}\right)=\mathrm{m}+1$.
$\therefore\left|\mathrm{d}\left(\mathrm{v}, \mathrm{w}_{2}\right)-\mathrm{d}\left(\mathrm{v}, \mathrm{w}_{1}\right)\right|=0 \leq 1$ \qquad (1)
$\operatorname{Next}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right) \in \mathrm{V}-\mathrm{D}$ is adjacent to $\left(u_{i}, w_{2}\right) \in D$. Hered $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right)=2$ and $\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{2}\right)=2$.
$\therefore\left|\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{2}\right)-\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right)\right|=0 \leq 1$
From (1) and (2), it is clear that D_{1} is a dominating set of B_{m} which satisfies equitable condition and any subset of D_{1} will not be a dominating set, as all vertices in induced graph D_{1} are isolated. This implies that D_{1} is the minimal equitable dominating set of cardinality $m+1$ giving,

$$
\gamma^{e}\left(B_{m}\right)=m+1
$$

Lemma 2.5: Inverse domination number of book graph B_{m} is

$$
\gamma^{-1}\left(B_{m}\right)=m . \text { Form } \geq 3
$$

Proof: From theorem 2.1, $D=\left\{\left(v, w_{1}\right),\left(v, w_{2}\right)\right\}$ is a minimal dominating set of B_{m}.
ConsiderV - D $=\left\{\left(u_{i}, w_{1}\right),\left(u_{i}, w_{2}\right)\right.$ for $i=1,2,3$, \qquad .. m$\}$. Observe that $\mathrm{V}-\mathrm{D}$ hasm components, each one is a paths on two vertices say, $\mathrm{C}_{1}=\left[\left(\mathrm{u}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{w}_{2}\right)\right], \mathrm{C}_{2}=\left[\left(\mathrm{u}_{2}, \mathrm{w}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{w}_{2}\right)\right]$, \qquad
$C_{m}=\left[\left(u_{m}, w_{1}\right),\left(u_{m}, w_{2}\right)\right]$. To get a minimal dominating set for $V-D$, from each of these components one vertex should be included to dominating set, say D^{\prime}. Consider one such choice of dominating set for $\mathrm{V}-\mathrm{D}$ as
$\mathrm{D}^{\prime}=\left\{\left(\mathrm{u}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{w}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{w}_{1}\right), \ldots\left(\mathrm{u}_{\mathrm{m}}, \mathrm{w}_{1}\right)\right\}=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right)\right.$ fori $\left.=1,2,3 \ldots \ldots \mathrm{~m}\right\} \mathrm{D}^{\prime}$ is a dominating set of $\mathrm{V}-\mathrm{D}$ with minimum cardinality so D^{\prime} is an inverse dominating set with respect to D . Thus, inverse domination number of B_{m} is

$$
\gamma^{-1}\left(B_{m}\right)=\left|D^{\prime}\right|=m
$$

Lemma 2.6. Restrained domination number of book graph B_{m} is

$$
\gamma_{r}\left(B_{m}\right)=2 \text { For } m \geq 3
$$

Proof. From theorem 2.1, we know that the domination number of graph B_{m} is $\gamma\left(B_{m}\right)=2$ with dominating set $\mathrm{D}=\left\{\left(\mathrm{v}, \mathrm{w}_{1}\right),\left(\mathrm{v}, \mathrm{w}_{2}\right)\right\}$.
For D to be a restrained dominating set we require, for all $v \in V-D$ is adjacent to a vertex in D as well as another vertex in V-D.
ConsiderV - $\mathrm{D}=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{2}\right), \mathrm{i}=1,2,3\right.$ \qquad $m\}$. $\left(u_{i}, w_{1}\right)$ is adjacent one vertex $\left(\mathrm{v}, \mathrm{w}_{1}\right)$ in D and also adjacent to one vertex $\left(u_{i}, w_{2}\right)$ in (V-D). Similarly, $\left(u_{i}, w_{2}\right)$ vertex is adjacent to ($\left.v, w_{2}\right)$ in D and ($\left.u_{i}, w_{1}\right)$ inV $-D$.
Therefore, for every vertex in $V-D$ it is true that it is adjacent to one vertex in D and one vertex in
$\mathrm{V}-\mathrm{D}$. Therefore, the dominating set D itself forms restrained dominating set of the minimal cardinality. Hence restrained domination number of B_{m} is

$$
\gamma_{\mathrm{r}}\left(\mathrm{~B}_{\mathrm{m}}\right)=2
$$

Lemma 2.7. The connected domination number of book graph is

$$
\gamma_{c}\left(B_{m}\right)=2 \text { For } m \geq 3
$$

Proof. From theorem 2.1 the domination number of B_{m} is $\gamma\left(B_{m}\right)=2$, with minimal dominating set
$D=\left\{\left(v, w_{1}\right),\left(v, w_{2}\right)\right\}$. As $\left(v, w_{1}\right)$ is adjacent to $\left(v, w_{2}\right)$, the dominating set is a connected graph. Therefore, the dominating set D itself forms a connected dominating set of minimal cardinality. Hence connected domination number of B_{m} is, $\gamma_{c}\left(B_{m}\right)=2$

Lemma 2.8. Strong domination number of book graph B_{m} is

$$
\gamma_{s t}\left(B_{m}\right)=2
$$

Proof. From theorem 2.1, the minimal dominating set of book graph is.
$\mathrm{D}=\left\{\left(\mathrm{v}, \mathrm{w}_{1}\right),\left(\mathrm{v}, \mathrm{w}_{2}\right)\right\}$ For D to be a strong dominating set we require for $u \in D$, if every vertex $x \in V-D$ such that $u x \in$ $E\left(B_{m}\right)$ and $\operatorname{deg}(u) \geq \operatorname{deg}(x)$.

Consider $V-D=\left\{\left(u_{i}, w_{1}\right),\left(u_{i}, w_{2}\right)\right\}$ for $\left.i=1,2,3, \ldots \ldots . m\right\}$. We have $d\left(v, w_{1}\right)=m+1, d\left(v, w_{2}\right)=m+1$ and for every vertex in $V-D, d\left(u_{i}, w_{1}\right)=2, d\left(u_{i}, w_{2}\right)=2$ for $i=12,3, \ldots \ldots m$. In B_{m} we have, $\left(u_{i}, w_{1}\right)$ is adjacent to $\left(v, w_{1}\right)$ in D with $d\left(v, w_{1}\right) \geq d\left(u_{i}, w_{1}\right)$. Similarly, $\left(u_{i}, w_{2}\right)$ is adjacent to $\left(v, w_{2}\right)$ in D with $d\left(v, w_{2}\right) \geq d\left(u_{i}, w_{2}\right)$.This clearly shows that the minimal dominating se D satisfies the strong domination condition. Hence strong domination number of book graph is

$$
\gamma_{s t}\left(B_{m}\right)=2
$$

3. Results

Sl no	Domination parameters	Book Graph $\mathbf{B}_{\mathbf{m}}$
1	Domination number γ	2
2	Split domination number γ_{s}	2
3	Perfect domination number γ_{p}	2
4	Equitable domination number γ^{e}	$(\mathrm{m}+1) \gamma^{\mathrm{e}}\left(\mathrm{P}_{2}\right)$
5	Inverse domination number γ^{-1}	$\mathrm{~m} \gamma^{-1}\left(\mathrm{P}_{2}\right)$
6	Restrained dominationnumber γ_{r}	2
7	Connected domination number γ_{c}	2
8	Strong domination number γ_{st}	2
9	Hinge domination number γ_{h}	2

4. Conclusion

Various domination parameters for Book graph are equal to the domination number. The dominating set of star graph contains only its central vertex, by the definition of the product graph of star graph with path P_{2}, the dominating set extends to be the subgraph attached to the centre vertex. The relationship between the domination numbers of book graph are as follows:

$$
\gamma\left(B_{m}\right)=\gamma_{s}\left(B_{m}\right)=\gamma_{p t}\left(B_{m}\right)=\gamma_{r}\left(B_{m}\right)=\gamma_{c}\left(B_{m}\right)=\gamma_{s t}\left(B_{m}\right)=\gamma_{h}\left(B_{m}\right)=\left|V\left(P_{2}\right)\right|
$$

References

[1] E. J. Cockayne et al., "Perfect Domination in Graphs," Journal of Combinatorics, Information and System Sciences, vol. 1, no. 8, pp. 136-148, 1993.
[2] E. J. Cockayne, "Domination of Undirected Graphs-A Survey," Theory and Applications of Graphs, pp. 141-147, 1978. Crossref, https://doi.org/10.1007/BFb0070371
[3] G. S. Domke et al., "Restrained Domination in Graphs," Discrete Mathematics, vol. 203, no. 1-3, pp. 61-69, 1999. Crossref, https://doi.org/10.1016/S0012-365X(99)00016-3
[4] Nandi M, Parui S and A. Adhikari, "The Domination Numbers of Cylindrical Grid Graphs," Applied Mathematics and Computation, vol. 217, no. 10, pp. 4879-4889, 2011. Crossref, https://doi.org/10.1016/j.amc.2010.11.019
[5] S. K. Vaidya, and S. H. Karkar, "On Strong Domination Number of Graphs," Applications and Applied Mathematics: An International Journal, vol. 12, no. 1, pp. 604-612, 2017.
[6] B. N. Kavitha, and Indrani Kelkar, "Equitable Domination to the Cross Product of Special Graph," International Journal of Science Technology \& Engineering, vol. 3, no. 10, 2017.
[7] B. N. Kavitha, and Indrani Kelkar, "Split and Equitable Domination in Book Graph and Stacked Book Graph," International Journal of Advanced Research in Computer Science, vol. 8, no. 6, pp. 108-112, 2017. Crossref, https://doi.org/10.26483/ijarcs.v8i6. 4475
[8] B. N. Kavitha, Indrani Kelkar, and K. R. Rajanna, "Perfect Domination in Book Graph and Stacked Book Graph," International, Journal of Mathematics, Trends and Technology, vol. 56, no. 7, pp. 511-514, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V56P564
[9] B. N. Kavitha, and Indrani Kelkar, "Hinge Domination Number of a Graph," International Journal of Engineering Research and Application, vol. 8, no. 7, pp. 70-71, 2018. Crossref, https://doi.org/10.9790/9622-0807027071
[10] B. N. Kavitha, and Indrani Kelkar, "Hinge Domination of Cross Product Special Graph," International Journal of Engineering Research and Application. vol. 10, no. 7, pp. 20-23, 2020. Crossref, https://doi.org/10.9790/9622-1007012023
[11] B. N. Kavitha, and Indrani Kelkar, "Zagreb Indices of Book Graph and Stacked Book Graph," International Journal of Engineering, Science and Mathematics, vol. 9, no. 6, pp. 25-39, 2020.
[12] B. N. Kavitha, Indrani Pramod Kelkar, and K. R. Rajanna, "Vulnerability Parameter of Book Graph," International Journal of Mathematics Trends and Technology, vol. 66, no. 5, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I5P501
[13] B. N. Kavitha, C. S. Nagabhushana, and K. Rashmi, "Domination Zagreb Indices of a Book Graph and Stacked Book Graph," International Journal of Mathematical Trends and Technology, vol. 68, no. 5, pp. 17-21, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I5P504
[14] B. N. Kavitha, K. Srinivasa Rao, and C. S. Nagabhushana, "Some Degree-based Connectivity Indices of Tadpole Graph," International Journal of Recent Technology and Engineering, vol. 8, no. 2S6, 2019. Crossref, https://doi.org/10.35940/ijrte.B1094.0782S619
[15] B. N. Kavitha, C. S. Nagabhushana, and K. S. Onkarappa, "Zagreb Indices of Lollipop Graph," International Journal of Creative Research Thought, vol. 11, no. 1, p. 1, 2023.
[16] Kulli, and Janakiram, "The Split Domination Number of a Graph," Graph Theory Notes of New York XXXII, pp. 16-19, 1997.
[17] V. R. Kulli, and S. C. Sigarkanti, "Inverse Domination in Graphs," National Academy Science Letters, vol. 14, no. 12, pp. 473-475, 1991.
[18] J.H. Hattingh and R.C. Laskar, On weak domination in graphs, Manuscript.Google Scholar
[19] E. Sampathkumar, and H. B. Walikar, "The Connected Domination Number of a Graph," Journal of Mathematical and Physical Sciences, vol. 13, no. 6, pp. 607-613, 1979.
[20] R. Todeschini, and V. Consonni, "Molecular Descriptors for Chemoinformatics," Wiley, 2009.
[21] V. G. Vizing, "The Cartesian product of graphs, Vycisl, Equitable Domination on Graphs," Kragujevac Journal of Mathematics, vol. 35, no. 1, pp. 191-197, 2011.
[22] V. Swaminathan, and K. M. Dharmalingam, "Degree Equitable Domination on Graphs," Kragujevac Journal of Mathematics, vol. 35, no, 1, pp. 191-197, 2011.
[23] H. B. Walker, B. D. Acharya, and E. Sampathkumar, "Recent Developments in the Theory of Domination in Graphs," MRI Lecture Notes in Math, Mehta Research Institute of Mathematics, vol. 1, 1979.
[24] Stacked Book Graph website, 2022. [Online]. Available: https://mathworld.wolfram.com/search/?q=Stacked+Book+Graph

