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Abstract - In this paper, we first give a matrix representation of certain class of truncated Toeplitz operators in the 

case      and then we use this matrix representation to determine the numerical ranges and the numerical radius of 

such operators. 

 

Keywords - Model space, Truncated toeplitz operator, Numerical range, Numerical radius. 

 

1. Introduction 
Truncated Toeplitz operators have long ago appeared in literature as a model operators for completely nonunitary 

contractions with defect numbers one and for their commutant. Since 2007, D. Sarason  gave in his seminal paper [1], the 

algebraic properties of such operators and raised interesting questions. The truncated Toeplitz operators  live on the 

coinvariant subspace of the shift operator  of the form   
         for some inner function  . Such spaces are also 

called model spaces.  For more details on the truncated Toeplitz operators see [1,2,5,6,7,8,9,10,11,12,22,23,27]. This work 

organized as follow: in the preliminary section, we give the generalities of model spaces and theirs operators. In third 

section, we give the matrix representation of truncated Toeplitz operators on the finite dimensional case, namely when  
  . In the last section, we study the numerical range and the numerical radius of Truncated Toeplitz operators on the finite 

dimensional case. 

 

2. Preliminaries 
Let    denote the complex plane,   denote the unit disc and let   denote the unit circle.   is the usual Hardy space, 

the subspace of       of normalized Lebesgue measure    on   whose harmonic extensions to   are holomorphic. A 

function which is analytic and bounded in   is said to be inner if | |      -almost everywhere on   in the sense of 

nontangential boundary values. For an inner function u   
 , the model space is defined by  

        . In other 

words  
                  , its reproducing kernel being defined by (see [1]) 

 

  
  

       

    
                                  (1) 

 

with    .  This function verifies      
        for all     

 . For inner function  ,   
  has an conjugation operator 

denoted    defined  by ( see  [1]) 

                                              (2) 

 

with   . The kernel conjugate reproducing of    
  on   

 denoted by    
  and defined by (see [1]) 

 

   
  

      

   
                                  (3) 

 

with    . Given         , we then define the truncated Toeplitz operator    to be the operator that sends   to 

       for all     
 , where     is the projection of        onto   

 . Truncated Toeplitz operators have many of the same 

properties as ordinary Toeplitz operators. The truncated Toeplitz operator is defined by density on   
    

    ,  where 

  is the space of analytic and bounded functions on  . In  other words               for all      
  . For f    

each the shift operator is defined by        
 
for    . Its adjoint  is the backward shift defined by       

      

 
. 

The compression on    
 of the shift operator is the operator      which is a truncated Toeplitz operator with symbol   that 

is to say      .  Its adjoint is the operator    
  which is a truncated Toeplitz operator of symbol . The operator    

commutes with truncated Toeplitz operators. 
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For   an bounded operator on  , the numerical range of    is the set defined and denoted by 

 

     {            ‖ ‖   }                                   (4) 

 

It is a very important tool  to study the properties of operators. In 1918, Toeplitz proved that the boundary       is a 

convex curve. In 1919, Haussdorff gave his now classic theorem for convexity of    . The numerical radius of   is 

defined by 

        {| |       }                                 (5) 

 

For more details on the numerical ranges and numerical radius of some operators  see [3,4,14,15,16,17,18,19,20]. 

 

For       ,   the usual tensor of     and    is defined by              for all     and the product of two 

tensors is defined by                        for all       . 

 

In what follows, we denote by TTO: truncated Toeplitz operator and by TTOs:  truncated Toeplitz operators. The 

following results are in [1] and in  [2]. 

 

Proposition 2.1. [1]  (1)  Let    . Then     
    

  is a TTO with symbol 
 

   
 and   

     
   is a TTO with symbol  

 

   
 

(2) Let     such that   has an angular derivative in the sense of Caratheodory (ADC) at the point  . Then   
    

   is a 

TTO with symbol    
    

   . 

These three operators are TTOs of rank-one. 

 

Remark  2.2.  The function   is said to have an angular derivative in the sense of Caratheodory (ADC) at the point      

if   has a nontangential limit of unit modulus at   and     has a nontangential limit       at   . 

 

Lemma 2.3. [2]  Let     
 . Then  

                                                  (6) 

Lemma 2.4. [2]  For    ,  

     
      

        
                                      (7) 

 

Definition 2.5. [2] For     with  0    {               }. An operator is of type   if it is in  . 

For more details on truncated Toeplitz operators of type    see [2] (section 4.1). 

 

Remark 2.6. By [2], the TTOs in proposition 1 are of type      . 

The following results give properties concerning numerical ranges and numerical radius of all operators   and  . 

 

Proposition 2.7. [3] For all bounded operators   and   on complex Hilbert space ,  and    , we have  the following 

properties:  

1.                    
2.                   

3.       {        }  

 

Remark 2.8.  In finite dimension, we have                 . 

Lemma  2.9. [3] Let   an bounded operator in complex Hilbert space  . Then  

 

                                                  (8) 

 

Lemma 2.10. [4] The following inequality is hold:  

   {∑       
   
         ∑   

      
   }     

 

   
                    (9) 

with R: set of real numbers. 

 

Remark 2.11. The two inequalities in equation 8 and 9 are very important for the results concerning the numerical radius. 

 

3. Matrix representations of TTOs in the case where u = z
n 

If     , the  model space   
  is finite dimensional. In this case,   is a finite order Blaschke product and    

     
  

    {               }
  

. So if      
  then 
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     ∑  ̂        
                                (10) 

where ̂   : the Fourier  coefficients of the function   (see [27], example 4.5).  The matrix representation of an TTO 

  of symbol  with respect to the orthonormal basis   {               } of      
 is given by (see [1], page 2) 

 

  (  )  

(

 
 
 
 
 
 

 ̂    ̂     ̂      ̂      ̂      ̂     

 ̂    ̂    ̂      ̂      ̂      ̂     

 ̂    ̂    ̂     ̂      ̂      ̂     
 ̂    ̂    ̂     ̂      ̂      ̂     

       
 ̂      ̂      ̂       ̂    ̂     ̂    

 ̂      ̂      ̂       ̂    ̂    ̂    

 ̂      ̂      ̂       ̂    ̂    ̂   )

 
 
 
 
 
 

             (11) 

 

Example 3.1.  (1) The matrix representation of shift operator     is given by  

       

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

                        (12) 

(2) The matrix representation of backward shift operator      is given by  

       

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

                           (13) 

Proof. Let      
 .  Under equation 10,  we have  

(1)      ∑  ̂       ̂         
   . By identification, we get  ̂      and  ̂      for all   . We obtain  

the matrix in equation 12. 

(2)      ∑  ̂      ∑  ̂          
     ̂         ̂          

   . By identification, we get  ̂       and 

 ̂      for all    and equation 13 is obtained. 

 

In the following, we denote by    the matrix of     and by  the matrix of   . The following result generalizes the matrix 

representation of a TTO as a function     and . 

 

Proposition  3.2.  Let     
 . Then  

        ̂     ∑   ̂       ̂          
                         (14) 

Proof.  For   

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

 , it’s not difficult to verify that    

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

  … and   

 

     

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

. Similarly, for    

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

 we obtain 
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(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

  … and        

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

 . 

 

So under equation 11, we have  

        ̂      ̂      ̂           ̂           ̂       ̂            ̂         

  

 

                

  ̂     ∑   ̂       ̂          
   

    

as desired.

  

Remark 3.3. (1) If           then           … and                . 

(2) If        , then     ( 
  

) , … and         ( 
    

). 

 

Let      such that     and      
  . In this case      ∑  ̂        

    (see equation 10) and by equation 6, we have  

 

                               ∑  ̂          
   ∑  ̂        ∑  ̂          

   
   
   Then    

        ∑  ̂       ∑  ̂           
   

   
                      (15) 

 

The matrix representation of a TTO            of type    is given by  

 

  (        )  

(

 
 
 
 
 
 

 ̂     ̂       ̂        ̂     ̂     ̂   

 ̂    ̂     ̂        ̂     ̂     ̂   

 ̂    ̂    ̂      ̂     ̂     ̂   
 ̂    ̂    ̂      ̂     ̂     ̂   

       
 ̂      ̂      ̂       ̂     ̂       ̂     

 ̂      ̂      ̂       ̂    ̂     ̂     

 ̂      ̂      ̂       ̂    ̂    ̂   )

 
 
 
 
 
 

    

 (16)
 

The following proposition gives the general form of a matrix representation of an TTO of type . 

Proposition 3.4.  Let      such that     and       
 . Then   

                           

(17) 

Proof.  We pose  

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

.  So    

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

… and  

     

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

. In the proof of the proposition 3.4, we have         ,            , 

… and             . So by equation 15 and 16, we have    (       )   ̂     ∑   ̂        ̂      
   

        as desired. 

The following example gives some matrix representations of TTOs of rank-one (TTOs of type      ). 

 

 

 

 









1

1

)(ˆ)(ˆ)0(ˆ)(
n

k

knk

CS
NknMkIAMa

u
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Example 3.5. (1) Let     and we think that   has an ADC at the point . We have 

     
    

   

(

 
 
 
 
 
 

                 

                

                 

                  

       

                 

                

                )

 
 
 
 
 
 

                                                     (18)
 

      

 

(3) Let   . We obtain  

      
    

   

(

 
 
 
 
 

                          

                          

                            

                            

       
                 

                

                 )

 
 
 
 
 

                                                    (19)
 

 

Proof.  From [2] (example 5.3, page 14), these two operators are of type         so of type     because          and 

for    has an  ADC at the point      then    
  

   
  

  
  
             

  
. We determine the Fourier coefficients 

of  
  

           
  

. From equation 15,  we get    
  

           
  

 ∑  ̂          ∑  ̂      
   

   
   

     So by equations 1, 7 and  3, we obtain  

  
  

           
  

 
      

    
     (    

  
       

  
) 

                                              
      

    
   (    

  
     

  
) 

                                              
      

    
   ( 

     

   
   ) 

                                              
      

    
   (

                 

   
) 

                                              
      

    
   (  

         

   
) 

                                                                       (                      ) 

                                                                                              

 

By identification (see the matrix in equation 16),  ̂     ,  ̂      ,  ̂       , … ̂            and     ̂   
    ,    ̂        , …   ̂        . We get the matrix in equation 18. 

(2) for all    , we get   
  

   
  

  
   

            
  

  with    
  

          
  

 ∑  ̂          ∑  ̂      
   

   
   

     . 

So under equations 1, 7 and 3, we have   

   
  

          
  

 
     

   
   

 

 
(  

  
   

  
) 

                                      
     

   
    

 
(
      

    
  ) 

                                                                                                

 

By identification (see the matrix in equation 16),    ̂        ,   ̂        ,     ̂        ,    ̂        and  

   ̂         

   ̂          , …   ̂         . We obtain the matrix in equation 19. 

The following result generalizes the matrix of TTOs of rank-one to the power          . 
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Theorem 3.6.   

1. Let    .  If        has an  ADC at the point  , then 

2.  

  (  
  

   
  

)
 
       (  

  
   

  
)                                            (20) 

with           . 

For   , then 

  (   
  

   
  

)
 
             (   

  
   

  
)                            (21) 

with            . 

  

Proof.  1. For     and      has an ADC at the point , we have  

(  
  

   
  

)
 
 (  

  
   

  
)(  

  
   

  
)(  

  
   

  
)
   

 

                             
  

   
  

 (  
  

   
  

)(  
  

   
  

)
   

 

                            
  

   (  
  

   
  

)(  
  

   
  

)
   

 

                          (  
  

   )
 
(  

  
   

  
)(  

  
   

  
)
   

 

                              

                          (  
  

   )
   

(  
  

   
  

) 

From equation 1, (  
  

   )
   

 (
      

    
)
   

 (                     )
   

     because      . 

Thus,  (  
  

   
  

)
 
     (  

  
   

  
)  which implies  (  

  
   

  
)
 
       (  

  
   

  
). 

3. For    , we get 

(   
  

   
  

)
 
 (   

  
   

  
)(   

  
   

  
)(   

  
   

  
)
   

 

                                 
  

   
  

 (   
  

   
  

)(   
  

   
  

)
   

 

                                
  

   (   
  

   
  

)(   
  

   
  

)
   

 

                                 

                             (   
  

   )
   

(   
  

   
  

) 

By equation 3,    
     

         

   
            Thus, (   

  
   )

   
           which implies   (   

  
 

  
  

)
 
             (   

  
   

  
)  and the result follows. 

 

4. Numerical ranges and numerical radius of TTOs in the case where u = z
n
  

 In this section, we denote by     :  the numerical range of  TTOs  and         its numerical radius. Since,      

we have  
  is finite dimensional and by remark 2.8, we get      

    
       

       
  for all TTOs    

and   
 

. Let       
  such that                     and ‖ ‖   

 
where       with            . So ‖ ‖  

|                |  √∑ |  |
    

      and  

      {        ‖ ‖  ‖                ‖  √∑ |  |
    

     }. 

The following result gives the numerical range of shift operator and its adjoint. 
 

Lemma 4.1. For the shift operator     and its adjoint    , we have 
 

                                                                                                           (22) 

 

Proof.  By equations 4 and 12, we obtain        {       ‖ ‖  ‖                ‖  √∑ |  |
    

     }  with  

        

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

                                      

 ∑      
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Similarly, we have         {       ‖ ‖  ‖                ‖  √∑ |  |
    

     } and using equation 13, we obtain  

 

        

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

                                      

 ∑      

   

   

 

and result follows. 
 

The following result characterizes the numerical range of a TTO. 

Lemma 4.2.  Let    a TTO of symbol . Then its numerical range is given by 

 

       ̂    ∑   ̂     ̂             
                                                  (23) 

 

Proof. By proposition 2.7 and equation 14, we have  

       ̂    ∑  ̂     ̂          

   

   

 

 

                 ̂    ∑   ̂          ̂             
    

 

 From equation 22, we get           which implies           , … and                 . Thus, 

       ̂    ∑   ̂     ̂             
    as desired. 

 

Theorem  4.3. The numerical range of an TTO   of symbol    is a disk of radius  

 

  | ̂   |  ∑ | ̂     ̂    |   
                                                                            (24) 

 

Proof.  Under equation 23, we obtain        ̂    ∑   ̂     ̂             
   and in the proof of lemma 4.1, we 

get      {∑   
   
        ∑ |  |

      
   }. Since  

 

         

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

                         ∑      

   

   

 

 

… and             

(

 
 
 
 
 

       
       
       
       
       
       
       
       )

 
 
 
 
 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

 

(

 
 
 
 
 

  

  

  

  

 
    

    

    )

 
 
 
 
 

         we obtain  

 

         ̂      ̂     ̂     ∑       
   
      ̂     ̂     ∑       

   
          ̂       ̂            . 

Using the fact |  ||    |  
 

 
 |  |

  |    |
   and  ∑   

   |  |
   , we have ∑ |  |

     
   |    |    with   

           . 
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Then |       |  | ̂   |  |  ̂     ̂     |  |  ̂     ̂     |     |  ̂       ̂      |
 
as desired. 

We have the following corollary. 

 

Corollary 4.4.  Let    a TTO of symbol . Then the numerical radius of     is given by the inequality 

 

      | ̂   |  ∑ | ̂     ̂    |   
        

   

    
 
                                        (25)         

                                                          

Proof. Under equation 9, we have        
 

   
. Thus, from equation 8, we obtain            

   
 . By equation 5, 

we get          {| |        } and by equation 23, we have        | ̂   |  ∑ | ̂     ̂    |        
    

| ̂   |  ∑ | ̂     ̂    |   
        

   
  as desired.  

 

The following results characterize the numerical ranges and numerical radius of   TTOs of type . 

 

Theorem 4.5 The numerical range of an of   TTO of type      such that      is given by  

              ̂         ∑  ̂           
   

                                         

(26) 

 

Proof. Using equation 17,  we have              ̂    ∑   ̂           ̂             
   .  Under equation 

22, we obtain                ̂    ∑   ̂           ̂             
     ̂         ∑  ̂           

    

as desired. 

The numerical radius of an TTO of type   is given by the following inequality. 

 

Corollary 4.6.  The numerical radius of a TTO of type      such that      is given by  

 

             | ̂   |     | | ∑ | ̂   |      

   

   
                                       (27) 

 

Proof.  The proof  is immediate using equations  5,  9,  8 and  26. 

 

The following result gives us generalizations of the numerical ranges of rank-one TTOs. 

 

Theorem 4.7. The numerical ranges of rank-one TTOs are discs of radius    . 

Proof. (1)  Let    . We assume that   has an ADC at the point . We know that   
  

   
  

 is of type      (see remark 

2.6). So by equation 26, we 

have (  
  

   
  

)   ̂            ∑  ̂          ̂          ∑  ̂           
   

   
   . Thus,  

 

   
  

   
  

      ̂            ̂   ∑       
   
     ̂   ∑       

   
         ̂             (See the proof of 

theorem 4.3). Since∑ |  |
     
   |    |   , we obtain |   

  
   

  
    |  | ̂   |    | ̂   |  | ̂   |     | ̂   

  |   because| |   . By equation 18, we get  ̂     ,  ̂     , ̂      , …and  ̂           . Therefore, 

|   
  

   
  

    |     (| |  |  |      |    |)               . 

 

(2) )  Let    . Under remark 2.6, we have    
  

   
  

 is of type     ,  according to the above , we obtain 

|    
  

   
  

    |  | ̂   |    | ̂   |  | ̂   |     | ̂     |  . By equation 19, we get ̂        ,   ̂    

    , ̂        , …and  ̂       . Then, |   
  

   
  

    |  |    |    |    |  |    |              

       . 

 

5. Conclusion 
 From the matrices of the compression on model space    

  of  shift operator  denoted     and its adjoint  denoted   , 

we obtain general  formulas concerning  numerical ranges and  numerical radius of  the truncated Toeplitz operator     

with symbol   and the truncated Toeplitz  operator  of  type  called            with symbol          in the case  the 

inner function      . These results are important in engineering science and quantum physics. 
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