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Abstract - Let 𝐺 be a connected simple graph. A dominating subset S of 𝑉(𝐺) is a fair dominating set in 𝐺 if all the vertices not 

in 𝑆 are dominated by the same number of vertices from 𝑆. A fair dominating set  𝑆 ⊆  𝑉(𝐺) is a fair restrained dominating set 

if every vertex not in 𝑆 is adjacent to a vertex in 𝑆 and to a vertex in 𝑉(𝐺) ∖ 𝑆. Alternately, a fair dominating set 𝑆 ⊆ 𝑉(𝐺) is a 

fair restrained dominating set if 𝑁[𝑆] = 𝑉(𝐺) and  〈𝑉(𝐺) ∖ 𝑆〉 is a subgraph without isolated vertices. Let 𝐷 be a minimum fair 

restrained dominating set of 𝐺. A fair restrained dominating set 𝑆 ⊆ (𝑉(𝐺) ∖ 𝐷) is called an  inverse fair restrained dominating 

set  of G with respect to 𝐷. The  inverse fair restrained domination number of 𝐺 denoted by 𝛾𝑓𝑟𝑑
−1  (𝐺) is the minimum cardinality 

of an inverse fair restrained dominating set of 𝐺. An inverse fair restrained dominating set of cardinality  𝛾𝑓𝑟𝑑
−1  (𝐺) is called 

𝛾𝑓𝑟𝑑
−1  (𝐺)-set. In this paper, the researchers investigate the concept and give some important results on inverse fair restrained 

dominating sets under the corona of two graphs. 

Keywords - Dominating set, Fair dominating set, Fair restrained dominating set, Inverse fair restrained dominating set, Corona 

of two graphs. 

 

1. Introduction 
A Swiss mathematician Leonhard Euler first presented the fundamental thought of graphs in eighteenth era. His endeavors 

and inevitable answer for the popular Konigsberg bridge problem portrayed is ordinarily cited as root of theory of graph [35].   

  

Accordingly, one of the quickest developing area in theory of graph is the domination [36].  The analysis of dominating set 

in theory of graph was initiated by Claude Berge in 1958 and Oystein Ore in 1962. Berge wrote in his book, Theory of Graphs 

and Its Applications, about the “coefficient of external stability” referring to the domination number of a graph while on the other 

hand, Ore first used the term "domination" in his book entitled Theory of Graphs, respectively. Since then, the domination in 

graphs became an area of study by many researchers. 

 

A subset 𝑆 of 𝑉(𝐺) is a  dominating set  of 𝐺 if for every 𝑣 ∈  𝑉(𝐺) ∖ 𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑣 ∈ 𝐸(𝐺), i.e., 

𝑁[𝑆]  =  𝑉(𝐺). The  domination number  𝛾(𝐺) of 𝐺 is the smallest cardinality of a dominating set of 𝐺. Some studies on 

domination in graphs were found in the papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. 

 

In 2011, Caro, Hansberg and Henning [14] introduced fair domination and k-fair domination in graphs. A dominating subset 

𝑆 of 𝑉(𝐺) is a fair dominating set in 𝐺 if all the vertices not in 𝑆 are dominated by the same number of vertices from 𝑆, that is, 

|𝑁(𝑢)  ∩ 𝑆| = |𝑁(𝑣) ∩  𝑆| for every two distinct vertices 𝑢 and 𝑣 from 𝑉(𝐺) ∖  𝑆 and a subset 𝑆 of 𝑉(𝐺) is a 𝑘-fair dominating 

set in 𝐺 if for every vertex 𝑣 ∈  𝑉(𝐺) ∖ 𝑆, |𝑁(𝑣) ∩ 𝑆| = 𝑘. The minimum cardinality of a fair dominating set of 𝐺, denoted by 

𝛾𝑓𝑑(𝐺), is called the fair domination number of 𝐺. A fair dominating set of cardinality 𝛾𝑓𝑑(𝐺) is called 𝛾𝑓𝑑(𝐺)-set. Some studies 

on fair domination in graphs were found in the paper [15, 16].  

 

Meanwhile, the restrained domination in graphs was introduced by Telle and Proskurowski [17] indirectly as a vertex 

partitioning problem. Accordingly, a set 𝑆 ⊆ 𝑉(𝐺) is a  restrained dominating set if every vertex not in 𝑆 is adjacent to a vertex 

in 𝑆 and to a vertex in 𝑉(𝐺) ∖ 𝑆. Alternately, a subset 𝑆 of 𝑉(𝐺) is a restrained dominating set if 𝑁[𝑆] = 𝑉(𝐺) and 〈𝑉(𝐺) ∖ 𝑆〉 
is a subgraph without isolated vertices. The minimum cardinality of a restrained dominating set of 𝐺, denoted by  𝛾𝑟(𝐺), is called 
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the restrained domination number of 𝐺. A restrained dominating set of cardinality 𝛾𝑟(𝐺) is called 𝛾𝑟-set. Restrained domination 

in graphs was also found in the papers [18, 19, 20, 21, 22, 23, 24, 25]. 

 

The other variance of domination is the fair restrained dominating set which can be found in [26]. A fair dominating set 𝑆 ⊆
 𝑉(𝐺) is a fair restrained dominating set if every vertex not in 𝑆 is adjacent to a vertex in 𝑆 and to a vertex in 𝑉(𝐺) ∖ 𝑆. The 

minimum cardinality of a fair restrained dominating set of 𝐺, denoted by 𝛾𝑓𝑟𝑑(𝐺), is called the fair restrained domination number 

of 𝐺. A fair restrained dominating set of cardinality 𝛾𝑓𝑟𝑑(𝐺) is called 𝛾𝑓𝑟𝑑(𝐺)-set. 

 

Another variance of domination is the inverse dominating set. Let 𝐷 be a minimum dominating set in 𝐺. The dominating set 

𝑆 ⊆  𝑉(𝐺) ∖ 𝐷 is called an inverse dominating set with respect to 𝐷. The minimum cardinality of inverse dominating set is called 

an inverse domination number of 𝐺 and is denoted by 𝛾−1(𝐺). An inverse dominating set of cardinality 𝛾−1(𝐺) is called 𝛾−1-set 

of 𝐺. Inverse domination in graphs is found in [27, 28, 29, 30, 31, 32]. 

 

These variance of dominations led the researcher to first introduce inverse fair restrained domination in graphs in [33]. Let 

𝐷 be a minimum fair restrained dominating set of 𝐺. A fair restrained dominating set 𝑆 ⊆ (𝑉(𝐺) ∖ 𝐷) is called an inverse fair 

restrained dominating set of 𝐺 with respect to 𝐷. The inverse fair restrained domination number of 𝐺 denoted by  𝛾𝑓𝑟𝑑
−1 (𝐺) is the 

minimum cardinality of an inverse fair restrained dominating set of 𝐺. An inverse fair restrained dominating set of cardinality 

𝛾𝑓𝑟𝑑
−1 (𝐺) is called 𝛾𝑓𝑟𝑑

−1 -set.  

 

In this paper, the researchers investigate the concept and give some important results on inverse fair restrained dominating 

sets under the corona of two graphs. For the general terminology in graph theory, readers may refer to [34].  

 

A graph 𝐺 is a pair (𝑉(𝐺), 𝐸(𝐺)), where 𝑉(𝐺) is a finite nonempty set called the vertex-set of 𝐺 and 𝐸(𝐺) is a set of 

unordered pairs {𝑢, 𝑣} (or simply 𝑢𝑣) of distinct elements from 𝑉(𝐺) called the edge-set of 𝐺. The elements of 𝑉(𝐺) are called 

vertices and the cardinality |𝑉(𝐺)| of 𝑉(𝐺) is the order of 𝐺. The elements of 𝐸(𝐺) are called edges and the cardinality |𝐸(𝐺)| 
of 𝐸(𝐺) is the size of 𝐺. If |𝑉(𝐺)| = 1, then 𝐺 is called a trivial graph. If 𝐸(𝐺) = ∅, then 𝐺 is called an empty graph. The  open 

neighborhood of a vertex 𝑣 ∈ 𝑉(𝐺) is the set 𝑁𝐺(𝑣) = {𝑢 ∈  𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}. The elements of 𝑁𝐺(𝑣) are called neighbors of 

𝑣. The closed neighborhood of 𝑣 ∈  𝑉(𝐺) is the set  𝑁𝐺[𝑣] = 𝑁𝐺(𝑣) ∪ {𝑣}. If 𝑋 ⊆ 𝑉(𝐺), the open neighborhood of 𝑋 in 𝐺 is the 

set. The closed neighborhood of 𝑋 in  

𝐺 is the set. When no confusion arises, 𝑁𝐺[𝑥] [resp. 𝑁𝐺(𝑥)] will be denoted by 𝑁[𝑥] [resp. 𝑁(𝑥)]. 

 

 

 

2. Results 
Let 𝐺 and 𝐻 be graphs of order 𝑚 and 𝑛, respectively. The corona of two graphs 𝐺 and 𝐻 is the graph 𝐺 ∘ 𝐻 obtained by 

taking one copy of 𝐺 and m copies of 𝐻, and then joining the 𝑖𝑡ℎ vertex of 𝐺 to every vertex of the 𝑖𝑡ℎ copy of 𝐻. The join of 

vertex 𝑣 of 𝐺 and a copy 𝐻𝑣  of 𝐻 in the corona of 𝐺 and 𝐻 is denoted by 𝑣 +  𝐻𝑣 . 

 

Remark 2.1 For any connected graph 𝐺 and graph 𝐻, 𝑉(𝐺) is a minimum fair dominating set in 𝐺 ∘  𝐻. 

 

 The following results are needed for the characterization of an inverse fair dominating set in the corona of two graphs. 

 

Lemma 2.2 Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 = ⋃ 𝑉(𝐻𝑣)𝑣 ∈𝑉(𝐺)  and 𝐷 = 𝑉(𝐺), Then 𝑆 is an inverse fair 

restrained dominating set of 𝐺 ∘ 𝐻. 

 

Proof. Since 𝐷 =  𝑉 (𝐺), 𝐷 is a minimum fair restrained dominating set of 𝐺 ∘ 𝐻 by Remark 2.1. If 

 

      , then 𝑆 =  𝑉 (𝐺 ◦  𝐻) \ 𝐷 is a dominating set of 𝐺 ∘ 𝐻 is clear. Let x, y ∈ V (G ◦ H) \ S = V(G). 

 

 

Then |𝑁𝐺 ∘𝐻(𝑥)  ∩ 𝑆| = |𝑉(𝐻)| = | 𝑁𝐺 ∘𝐻(𝑦) ∩ 𝑆|. Hence, S is a fair dominating set of  𝐺 ∘ 𝐻. Further, for every 𝑣 ∈
𝑉(𝐺 ∘ 𝐻) ∖ 𝑆 = 𝑉(𝐺), there exists 𝑣′ ∈ 𝑉(𝐺) and 𝑢 ∈ 𝑆 such that 𝑣𝑣′ ∈  𝐸(𝐺 ∘ 𝐻) and 𝑣𝑢 ∈  𝐸(𝐺 ∘ 𝐻). This means that 𝑆 is a 

𝑁𝐺(𝑋) = ⋃ 𝑁𝐺

𝑣 ∈𝑋

(𝑣) 

 

𝑁𝐺[𝑋] = ⋃ 𝑁𝐺

𝑣 ∈𝑋

(𝑣) =  ⋃ 𝑁𝐺

𝑣 ∈𝑋

(𝑋)  ∪ 𝑋 

𝑆 = ⋃ 𝑉(𝐻𝑣)

𝑣 ∈𝑉(𝐺)
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restrained dominating set of 𝐺 ∘ 𝐻, that is, 𝑆 is a fair restrained dominating set of 𝐺 ∘ 𝐻. Since D is a minimum fair restrained 

dominating set of G◦H and 𝑆 =  𝑉 (𝐺 ∘  𝐻) \ 𝐷, it follows that 𝑆 is an inverse fair restrained dominating set of 𝐺 ∘ 𝐻. 

 

Lemma 2.3 Let 𝐺 and 𝐻 be nontrivial connected graphs. If        where 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of  

 

𝐻𝑣  for each 𝑣 ∈  𝑉 (𝐺) and 𝐷 = 𝑉 (𝐺), then 𝑆 is an inverse fair restrained dominating set of 𝐺 ◦ 𝐻 with respect to 𝐷. 

 

Proof. Since 𝐷 =  𝑉 (𝐺), 𝐷 is a minimum fair restrained dominating set of 𝐺 ∘ 𝐻. Let 𝑥, 𝑦 ∈  𝑉 (𝐻𝑣) \  𝑆𝑣 for each 𝑣 ∈  𝑉 (𝐺). 

Since 𝑆𝑣 is an | 𝑆𝑣 |-fair dominating set of 𝐻𝑣  for each 𝑣 ∈  𝑉 (𝐺), 

 

|𝑁𝐺∘𝐻(𝑥)  ∩  𝑆|  =  |𝑁𝐻𝑣(𝑥)  ∩  𝑆𝑣|  =  |𝑆𝑣|  =  |𝑁𝐻𝑣(𝑦)  ∩  𝑆𝑣|  =  |𝑁𝐺∘𝐻(𝑦)  ∩  𝑆| 
 

for all 𝑥, 𝑦 ∈  𝑉 (𝐻𝑣) \ 𝑆𝑣 for all 𝑣 ∈  𝑉 (𝐺) and 

 

|𝑁𝑣+𝐻𝑣(𝑣)  ∩  𝑆𝑣|  =  |𝑆𝑣|  =  |𝑁𝑣+𝐻𝑣 (𝑦)  ∩  𝑆𝑣| 
 

for all 𝑣 ∈  𝑉 (𝐺) and 𝑦 ∈  𝑉 (𝐻𝑣) \ 𝑆𝑣. 

 

Hence, 𝑆 is a fair dominating set of 𝐺 ∘ 𝐻. For each 𝑢 ∈  𝑉 (𝐺 ∘ 𝐻) \ 𝑆, there exists 𝑥 ∈  𝑆 and 𝑣 ∈  𝑉 (𝐺 ◦
 𝐻) \ 𝑆 such that 𝑢𝑥, 𝑢𝑣 ∈  𝐸(𝐺 ∘ 𝐻), that is, 𝑆 is a fair restrained dominating set of  𝐺 ∘ 𝐻. Since 𝐷 is a minimum fair restrained 

dominating set of  𝐺 ∘ 𝐻 and 𝑆 ⊆  𝑉 (𝐺 ∘ 𝐻) \ 𝐷, it follows that 𝑆 is an inverse fair restrained dominating set of 𝐺 ∘ 𝐻 with 

respect to 𝐷. ∎ 

 

2.4. Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 =  𝑉 (𝐺)  ∪ (⋃ 𝑆𝑣𝑣 ∈𝑉(𝐺)  where 𝑆𝑣 is a fair restrained dominating set of 

𝐻𝑣  and 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 with 𝑆𝑣 ∩ 𝐷𝑣 =  ∅ for all 𝑣 ∈  𝑉(𝐺), then 𝑆 is an inverse fair restrained dominating 

set of 𝐺 ∘ 𝐻. 

 

Proof. Since 𝐷𝑣 =  {𝑥} is a dominating set of 𝐻𝑣 , 𝐷 = ⋃ 𝐷𝑣𝑣 ∈𝑉(𝐺)  is a dominating set of 𝐺 ∘ 𝐻. Since 𝐻 is a nontrivial connected 

graph, 𝑉 (𝐻𝑣)\𝐷𝑣 ≠  ∅ for each 𝑣 ∈  𝑉 (𝐺). Let 𝑦 ∈  𝑉 (𝐻𝑣) \ 𝐷𝑣 . Then 

 

|𝑁𝐺◦𝐻(𝑣)  ∩  𝐷|  =  |𝑁 𝑣+𝐻𝑣(𝑣)  ∩  𝐷𝑣|  =  |𝑁𝑣+𝐻𝑣 (𝑦)  ∩  𝐷𝑣|  =  |𝑁𝐺∘𝐻(𝑦)  ∩  𝐷| 
 

for all 𝑣, 𝑦 ∈  𝑉 (𝐺 ◦ 𝐻) \𝐷. Hence, 𝐷 is a fair dominating set of 𝐺 ∘ 𝐻. Since 𝑉 (𝐺) is a minimum fair dominating set in 𝐺 ◦
 𝐻 and  

 

 
 

It follows that 𝐷 is also a minimum fair dominating set of 𝐺 ∘ 𝐻. Since 𝐺 and 𝐻 are nontrivial connected graphs, 𝑉 

(𝐺 ∘  𝐻)\𝐷 ≠  ∅. Let 𝑢 ∈  𝑉 (𝐺 ∘ 𝐻) \𝐷. Then there exists 𝑢′ ∈  𝑉 (𝐺 ∘ 𝐻) \𝐷 and 𝑥 ∈  𝐷 such that 𝑢𝑢′, 𝑢𝑣 ∈  𝐸(𝐺 ∘ 𝐻). 

Hence 𝐷 is a restrained dominating set of 𝐺 ∘ 𝐻, that is, 𝐷 is a minimum fair restrained dominating set of 𝐺 ∘ 𝐻. 

 

Now, 𝑆𝑣 is a fair restrained dominating set of 𝐻𝑣  implies that 𝑉 (𝑣 +  ⟨𝑆𝑣⟩) is a fair restrained dominating set of 𝑣 + 𝐻𝑣  

for all 𝑣 ∈  𝑉 (𝐺). Thus,  

 

𝑆 = 𝑉(𝐺)  ∪ ( ⋃ 𝑆𝑣 ) =

𝑣 ∈𝑉(𝐺)

⋃ 𝑉(𝑣 +  〈𝑆𝑣〉)

𝑣 ∈𝑉(𝐺)

 

 

| 𝐷 | = ቮ ⋃ 𝐷𝑣 

𝑣 ∈𝑉(𝐺)

ቮ 

        =   |𝐷𝑣|

𝑣 ∈𝑉(𝐺)

 

         = | 𝑉(𝐺)||𝐷𝑣| 
                        = |𝑉(𝐺) ⋅ 1 = |𝑉(𝐺)|  

 

𝑆 = ⋃ 𝑆𝑣

𝑣 ∈𝑉(𝐺)
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𝐷 =  ⋃ 𝐷𝑣 .

𝑣 ∈𝑉(𝐺)

 

is a fair restrained dominating set of 𝐺 ∘  𝐻. 

 

Since 𝑆𝑣  ∩  𝐷𝑣 = ∅ for all 𝑣 ∈  𝑉 (𝐺),  

 
Thus, 𝑆 ∩ 𝐷 =  ∅. Let 𝑆 ⊂ 𝑉(𝐺 ∘ 𝐻 ) ∖ 𝐷. Since 𝐷 is a minimum fair restrained dominating set, it follows that 𝑆 is an inverse 

fair restrained dominating set of 𝐺 ∘ 𝐻 with respect to 𝐷. ∎ 

 

 

Lemma 2.5 Let G and H be nontrivial connected graphs. If                           where 𝑆𝑣 is an |𝑆𝑣|-fair dominating set  

of 𝐻𝑣  and 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣  with 𝑆𝑣  ∩ 𝐷𝑣 =  ∅ for all 𝑣  ∈  𝑉(𝐺), then 𝑆 is an inverse fair restrained 

dominating set of 𝐺 ∘ 𝐻. 

Proof : Suppose that 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 . Let                             By similar reasoning that is used in the proof of  

 

Lemma 2.4, 𝐷 is a minimum fair restrained dominating set of 𝐺 ∘ 𝐻. Let 𝑥, 𝑦 ∈ 𝑉 (𝐻𝑣)\𝑆𝑣 for each 𝑣 ∈  𝑉(𝐺). Since 𝑆𝑣 is an 

|𝑆𝑣|-fair dominating set of 𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺), 

|𝑁𝐺∘𝐻(𝑥) ∩ 𝑆| =  |𝑁𝐻𝑣(𝑥) ∩ 𝑆𝑣| = |𝑆𝑣| =  |𝑁𝐻𝑣(𝑦) ∩ 𝑆𝑣| = |𝑁𝐺∘𝐻(𝑥𝑦) ∩ 𝑆| 

for all 𝑥, 𝑦 ∈  𝑉 (𝐻𝑣) \ 𝑆𝑣 and |𝑁𝐺∘𝐻(𝑣)  ∩  𝑆|  =  |𝑁𝑣+𝐻𝑣  (𝑣)  ∩ 𝑆𝑣|  =  |𝑆𝑣| for all 𝑣 ∈ 𝑉(𝐺). Thus, for all 𝑢, 𝑣 ∈  𝑉 (𝐺 ∘
𝐻) \ 𝑆, 

|𝑁𝐺∘𝐻(𝑣) ∩ 𝑆| = |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝑆𝑣| = |𝑁𝑣+𝐻𝑣(𝑢) ∩  𝑆𝑣| = |𝑁𝐺∘𝐻(𝑢) ∩ 𝑆| 

Hence, 𝑆 is a fair dominating set of 𝐺 ∘ 𝐻. Clearly, for every 𝑢 ∈ 𝑉(𝐺 ∘ 𝐻) ∖ 𝑆, theres exists 𝑥 ∈ 𝑆 and 𝑢′ ∈ 𝑉(𝐺 ∘ 𝐻) ∖ 𝑆 

such that 𝑢𝑢′, 𝑢𝑥 ∈ 𝐸(𝐺 ∘ 𝐻). Thus, 𝑆 is restrained dominating set of 𝐺 ∘ 𝐻, that is, 𝑆 is a fair restrained dominating set of 𝐺 ∘
𝐻. Since 𝑆𝑣 ∩ 𝐷𝑣 =  ∅ for all 𝑣 ∈ 𝑉(𝐺), 

 

Thus, 𝑆 ∩ 𝐷 =  ∅. Let 𝑆 ⊂ 𝑉(𝐺 ∘ 𝐻) ∖ 𝐷. Since 𝐷 is a minimum fair restrained dominating set, it follows that 𝑆 is an inverse 

fair restrained dominating set of 𝐺 ∘ 𝐻 with respect to 𝐷. ∎ 

𝑆 ∩ 𝑉 =  (𝑉(𝐺) ∪ ( ⋃ 𝑆𝑣

𝑣 ∈𝑉(𝐺)

) ∩ ( ⋃ 𝐷𝑉

𝑣 ∈𝑉(𝐺)

) 

 =  (𝑉(𝐺) ∩ ( ⋃ 𝐷𝑣

𝑣 ∈ 𝑉(𝐺)

 )) ∪ (( ⋃ 𝑆𝑣 ) ∩ ( ⋃ 𝐷𝑣

𝑣 ∈ 𝑉(𝐺)𝑣 ∈ 𝑉(𝐺)

 )) 

=  ( ⋃ ( 𝑉(𝐺) ∩  𝐷𝑣

𝑣∈𝑉(𝐺)

) ∪ ( ⋃ ( 𝑆𝑣 ∩  𝐷𝑣  )

𝑣 ∈𝑉(𝐺)

) 

=  ( ⋃ ∅
𝑣 ∈𝑣(𝐺)

) ∪ ( ⋃ ∅

𝑣 ∈𝑉(𝐺)

) 

=  ∅ 

 

 

 

𝑆 ∩ 𝐷 =  ( ⋃ 𝑆𝑣

𝑣 ∈𝑉(𝐺)

) ∩ ( ⋃ 𝐷𝑣

𝑣 ∈𝑉(𝐺)

) 

=  ⋃ (𝑆𝑣 ∩ 𝐷𝑣)

𝑣 ∈𝑉(𝐺)

 

=  ⋃ (∅)

𝑣 ∈𝑉(𝐺)

 

=  ∅ 

 

, since 𝑉(𝐺) ∩  𝐷𝑣 = ∅ 

𝑆 = ⋃ 𝑆𝑣 

𝑣 ∈𝑉(𝐺)
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𝐷 =  ⋃ 𝑉(𝐷𝑣)

𝑣 ∈𝑉(𝐺)

 

The following result, shows the characterization of an inverse fair restrained dominating set in the corona of two graphs.  

 

Theorem 2.6 Let 𝐺 and 𝐻 be nontrivial connected graphs. A nonempty subset 𝑆 of 𝑉(𝐺 ∘ 𝐻) is an inverse fair restrained 

dominating set of 𝐺 ∘ 𝐻 with respect to 𝐷 if and only if for each 𝑣 ∈ 𝑉(𝐺), one of the following is satisfied:      

 

  
Proof : Supposed that a nonempty subset 𝑆 of  𝑉(𝐺 ∘ 𝐻) is an inverse fair restrained dominating set of 𝐺 ∘ 𝐻 with respect to 𝐷. 

Then 𝐷 is a 𝛾𝑓𝑟𝑑-set of 𝐺 ∘ 𝐻 such that 𝑆 ∩  𝐷 =  ∅. Consider the following cases: 

 

Case 1: Supposed that 𝐷 = 𝑉(𝐺). Since 𝑆 ∩ 𝐷 =  ∅, let     such that 𝑆𝑣 ⊆ 𝑉(𝐻𝑣) and 𝑆𝑣 ≠ ∅. If 

 

𝑆𝑣 = 𝑉(𝐻𝑣) for each 𝑣 ∈ 𝑉(𝐺), then the proof of statement (𝑖)𝑎) is done. Suppose that 𝑆𝑣 ≠  𝑉(𝐻𝑣). Let 𝑥 ∈  𝑉 (𝐻𝑣)  ∖ 𝑆𝑣 for 

each 𝑣 ∈ 𝑉(𝐺). Since 𝑆 is a fair dominating set of 𝑉(𝐺 ∘ 𝐻), 𝑆𝑣 must be a fair dominating set of 𝐻𝑣  for each 𝑣 ∈  𝑉 (𝐺). This 

means that |𝑁𝐻𝑣(𝑥) ∩  𝑆𝑣| = | 𝑁𝐻𝑣(𝑦) ∩  𝑆𝑣| for each 𝑥, 𝑦 ∈ 𝑉(𝐻𝑣) ∖  𝑆𝑣. Since 𝑆 is a fair dominating set of 𝐺 ∘ 𝐻, 

| 𝑁𝑣+ 𝐻𝑣(𝑥) ∩  𝑆𝑣| = |𝑆𝑣| for all 𝑥 ∉ 𝑆. This implies that for all 𝑥, 𝑦 ∉  𝑆𝑣 , | 𝑁𝐻𝑣(𝑥) ∩  𝑆𝑣| = |𝑁𝐻𝑣(𝑦) ∩  𝑆𝑣| = |𝑆𝑣|, that is, 𝑆𝑣 

is an |𝑆𝑣|-fair dominating set of  𝐻𝑣  for each 𝑣 ∈ 𝑉(𝐺). This proves the statement (𝑖)𝑏). 

 

Case 2. Suppose that D 6= V (G). If D V (G), then D is not a dominating set of 𝐺 ∘ 𝐻 contrary to the definition of  

𝐷. Thus, must be 𝐷 ⊆ 𝑉(𝐺 ∘ 𝐻) ∖ 𝑉(𝐺). If 𝐷 = 𝑉(𝐺 ∘ 𝐻)\𝑉(𝐺), then     . Since 𝐻 is nontrivial, | 𝑉(𝐻)| ≥ 2 

and  

 

that is, |𝐷|  >  |𝑉 (𝐺)|. By Remark 2.1, 𝑉 (𝐺) is a minimum fair dominating set of 𝐺 ∘ 𝐻 contradicts to our assumption that 𝐷 ⊂
 𝛾𝑓𝑑- set of 𝐺 ∘ 𝐻. This implies that 𝐷 ≠ (𝐺 ∘ 𝐻) ∖ 𝑉(𝐺). Thus, 𝐷 ⊂ 𝑉(𝐺 ∘ 𝐻) ∖ 𝑉(𝐺). Let 

    where 𝐷𝑣 ⊂ 𝑉(𝐻𝑣) for all 𝑣 ∈ 𝑉(𝐺). Since 𝐷 and 𝑉(𝐺) are minimum fair dominating sets of  

𝐺 ∘ 𝐻, |𝐷| = |𝑉(𝐺)|. Thus,  

|𝑉(𝐺)| = |𝐷| = | ⋃ 𝐷𝑣

𝑣 ∈𝑉(𝐺)

| =   |𝐷𝑣| = |𝑉(𝐺)||𝐷𝑣|,

𝑣 ∈𝑉(𝐺)

 

where 𝐷𝑣 ⊂ 𝑉(𝐻𝑣) for all 𝑣 ∈ 𝑉(𝐺). This implies that |𝐷𝑣| = 1. Since 𝐷 is a dominating set of 𝐺 ∘ 𝐻, 𝐷𝑣  =  {𝑥} must be a 

dominating set of 𝐻𝑣  for all 𝑣 ∈ 𝑉(𝐺). Thus, 𝐷 =  ⋃ 𝐷𝑣𝑣 ∈𝑉(𝐺)  where 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 . Now, let 𝑆 ⊆ 

(𝑖) 𝐷 = 𝑉(𝐺) 𝑎𝑛𝑑 𝑆 =  ⋃ 𝑆𝑣

𝑣∈𝑉(𝐺)

 𝑤ℎ𝑒𝑟𝑒 

          𝑎) 𝑆𝑣 = 𝑉(𝐻𝑣), 𝑜𝑟  

          𝑏) 𝑆𝑣  𝑖𝑠 𝑎𝑛 |𝑆𝑣| − 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐻𝑣  

(𝑖𝑖) 𝐷 =  ⋃ 𝐷𝑣 𝑤ℎ𝑒𝑟𝑒 

𝑣∈𝑉(𝐺)

𝐷𝑣 = {𝑥}𝑖𝑠 𝑎 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒 𝑜𝑓 𝐻𝑣 𝑎𝑛𝑑 

         𝑎) 𝑆 = 𝑉(𝐺), 𝑜𝑟  

         𝑏) 𝑆 = 𝑉(𝐺) ∪ ( ⋃ 𝑆𝑣  

𝑣∈𝑉(𝐺)

) 𝑤ℎ𝑒𝑟𝑒 𝑆𝑣  𝑖𝑠 𝑎 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐻𝑣  𝑎𝑛𝑑  

         𝑐) 𝑆𝑣 ∩ 𝐷𝑣 = ∅ 𝑐) 𝑆 =  ⋃ 𝑆𝑣  𝑤ℎ𝑒𝑟𝑒 𝑆𝑣  𝑖𝑠 𝑎𝑛 |𝑆𝑣| − 𝑓𝑎𝑖𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑜𝑓 𝐻𝑣  𝑎𝑛𝑑

𝑣 ∈𝑉(𝐺)

  

              𝑆𝑣 ∩ 𝐷𝑣 =  ∅ 

 

|𝐷| = ቮ ⋃ 𝑉(𝐻𝑣)

𝑣∈𝑉(𝐺)

ቮ 

=   𝑉(𝐻𝑣)

𝑣 ∈𝑉(𝐺)

  

= |𝑉(𝐺)||𝑉(𝐻)| ≥ |𝑉(𝐺)| ⋅ 2 > |𝑉(𝐺)| 

 

𝐷 =  ⋃ 𝑉(𝐻𝑣)

𝑣∈𝑉(𝐺)

 

𝑆 =  ⋃ 𝑆𝑣

𝑣 ∈𝑉(𝐺)
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𝑉(𝐺 ∘ 𝐻) ∖ 𝐷. If 𝑆 = 𝑉(𝐺 ∘ 𝐻)  ∖ 𝐷 then 𝑆 is not a restrained dominating set of (𝐺 ∘ 𝐻) because 𝑉(𝐺 ∘ 𝐻) ∖ 𝑆 = 𝐷 is the union 

of isolated vertices of (𝐺 ∘ 𝐻). Thus, 𝑆  ≠ 𝑉(𝐺 ∘ 𝐻) ∖ 𝐷, that is,     

𝑆 ⊂ 𝑉(𝐺 ∘ 𝐻) ∖ 𝐷 = 𝑉(𝐺) ∪ ( ⋃ 𝑉(𝐻𝑣) ∖ 𝐷𝑣)

𝑣 ∈𝑉(𝐺)

 

, then the proof of (𝑖𝑖)𝑎) is done. Consider that 𝑉(𝐺) ⊂ 𝑆 and let 𝑆𝑣 ⊂ 𝑉(𝐻𝑣) for each 𝑣 ∈ 𝑉(𝐺) such that 𝑆 = 𝑉(𝐺) ∪
(⋃ 𝑆𝑣)𝑣 ∈𝑉(𝐺) .  If 𝑆 = 𝑉(𝐺). If 𝑆𝑣 is not fair dominating set of 𝐻𝑣  for each 𝑣 ∈ 𝑉(𝐺), then 𝑆 is not a fair dominating set of 𝐺 ∘ 𝐻 

contrary to the definition of 𝑆. Thus, 𝑆𝑣 must be a fair dominating set of 𝐻𝑣  for each 𝑣 ∈ 𝑉(𝐺). Since 𝐷 is a minimum fair 

dominating set of 𝐺 ∘ 𝐻 and 𝑆 is an inverse fair dominating set of  ∘ 𝐻, 𝑆 ∩ 𝐷 =  ∅ and 𝑉(𝐺) ∩ 𝐷𝑣 = ∅ where 𝐷𝑣  ⊂ 𝑉(𝐻𝑣) for 

all 𝑣 ∈ 𝑉(𝐺), 

 

This implies that 𝑆𝑣 ∩  𝐷𝑣 = ∅ for all 𝑣 ∈ 𝑉(𝐺). This proves statement (𝑖𝑖)𝑏). Further, consider that 𝑉 (𝐺)  ⊄  𝑆 and let 

 𝑆𝑣 ⊂  𝑉(𝐻𝑣) ∖ 𝐷𝑣  for each 𝑣 ∈ 𝑉 (𝐺) such that 𝑆 =  ⋃ 𝑆𝑣𝑣 ∈𝑉(𝐺)  . If 𝑆𝑣 is not a fair dominating set of 𝐻𝑣  for each 𝑣 ∈ 𝑉 (𝐺), 

then 𝑆 is not a fair dominating set of 𝐺 ∘ 𝐻. Thus, 𝑆𝑣 must be a fair dominating set of 𝐻𝑣  for each 𝑣 ∈ 𝑉 (𝐺). However, since 

𝑣 ∈ 𝑉 (𝐺) is not an element of 𝑆, |𝑁𝑣+𝐻𝑣(𝑣) ∩  𝑆𝑣| =  |𝑆𝑣|. Hence, for all 𝑥, 𝑦 ∈ 𝑉 (𝐺 ∘ 𝐻) ∖ 𝑆 , |𝑁𝑣+𝐻𝑣(𝑣𝑥) ∩  𝑆𝑣| =
 |𝑁𝑣+𝐻𝑣(𝑦) ∩  𝑆𝑣| = |𝑆𝑣|, that is, 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝐻𝑣  for each 𝑣 ∈ 𝑉 (𝐺) with 𝑆𝑣  ∩  𝐷𝑣 = ∅ by similar 

computations above. This proves statement (𝑖𝑖)𝑐). 
 

For the converse, suppose that statement (𝑖) is satisfied. Then 𝐷 =  𝑉 (𝐺) and 𝑆 = ⋃ 𝑆𝑣𝑣 ∈𝑉(𝐺) . Consider statement (𝑖)𝑎). 

Then 𝑆𝑣 = 𝑉(𝐻𝑣), that is 𝑆 = ⋃ 𝑉(𝐻𝑣)𝑣 ∈𝑉(𝐺) . By Lemma 2.2, S is an inverse fair restrained dominating set of 𝐺 ∘ 𝐻. Consider 

statement (𝑖)𝑏). Then 𝑆𝑣 is an |𝑆𝑣 |-fair dominating set of 𝐻𝑣 , that is, 𝑆 = ⋃ 𝑆𝑣𝑣 ∈𝑉(𝐺)  . By Lemma 2.3, 𝑆 is an inverse fair 

restrained dominating set of 𝐺 ∘ 𝐻 

 

Suppose that statement (𝑖𝑖) is satisfied. Then 𝐷 = ⋃ 𝐷𝑣𝑣 ∈𝑉(𝐺)  where 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 . Consider statement 

(𝑖𝑖)𝑎). Then 𝑆 =  𝑉 (𝐺) ∪ (⋃ 𝑆𝑣𝑣 ∈𝑉(𝐺) ) where 𝑆𝑣 is a fair restrained dominating set of 𝐻𝑣  and 𝑆𝑣  ∩  𝐷𝑣 =  ∅. By Lemma 2.4, 

𝑆 is an inverse fair restrained dominating set of 𝐺 ∘ 𝐻. Consider statement (ii)b). Then 𝑆 = ⋃ 𝑆𝑣𝑣 ∈𝑉(𝐺)  where 𝑆𝑣 is an |𝑆𝑣|-fair 

dominating set of 𝐻𝑣  and 𝑆𝑣  ∩  𝐷𝑣 =  ∅. By Lemma 2.5, 𝑆 is an  inverse fair restrained dominating set of 𝐺 ∘ 𝐻. This complete 

the proofs. ∎ 

 

The next result is an immediate consequence of Theorem 2.6 

Corollary 2.7 Let 𝐺 and 𝐻 be nontrivial connected graphs with |𝑉 (𝐺)|  =  𝑚 and |𝑉 (𝐻)|  =  𝑛, and 𝑘 =  |𝑆𝑣| where 𝑆𝑣 is a 

𝛾𝑓𝑑-set of 𝐻𝑣 for all 𝑣 ∈ 𝑉(𝐺). Then 

 

𝑆 ∩ 𝐷 =  ((𝑉(𝐺) ∪ ( ⋃ 𝑆𝑣)

𝑣 ∈𝑉(𝐺)

) ∩  ( ⋃ 𝐷𝑣

𝑣 ∈𝑉(𝐺)

) 

=  (𝑉(𝐺) ∩ ( ⋃ 𝐷𝑣

𝑣 ∈𝑉(𝐺)

 ))  ∪  (( ⋃ 𝑆𝑣

𝑣 ∈𝑉(𝐺)

 )  ∩ ( ⋃ 𝐷𝑣

𝑣 ∈𝑉(𝐺)

 ) ) 

= ( ⋃ (𝑉(𝐺) ∩ 𝐷𝑣

𝑣 ∈𝑉(𝐺)

 ))  ∪  ( ⋃ (𝑆𝑣

𝑣 ∈𝑉(𝐺)

 ∩  𝐷𝑣  ) ) 

= ( ⋃ ∅

𝑣 ∈𝑉(𝐺)

)  ∪  ( ⋃ (𝑆𝑣

𝑣 ∈𝑉(𝐺)

 ∩  𝐷𝑣  ) ) 

= ( ⋃ (𝑆𝑣

𝑣 ∈𝑉(𝐺)

 ∩  𝐷𝑣  ) ) =  ∅ 

𝛾𝑓𝑟𝑑
−1 (𝐺 ∘ 𝐻) =  {

𝑚, 𝑖𝑓 𝛾(𝐻) = 1

𝑘𝑚, 𝑖𝑓 𝛾(𝐻) ≠ 1
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Proof: Suppose that a nonempty subset 𝑆 of 𝑉(𝐺 ∘ 𝐻) is an inverse fair restrained dominating set of 𝐺 ∘ 𝐻. Then 𝛾𝑓𝑟𝑑
−1 (𝐺 ∘ 𝐻) ≤

|𝑆|. Consider the following cases:  

Case 1. Suppose that 𝛾(𝐻) = 1. Then 𝑆 = 𝑉(𝐺), by Theorem 2.6(𝑖𝑖)𝑎). This implies that 𝛾𝑓𝑟𝑑
−1 (𝐺 ∘ 𝐻)  ≤ |𝑆| = |𝑉(𝐺)|. 

Note that 𝑉(𝐺) is a 𝛾𝑓𝑑-set of 𝐺 ∘ 𝐻 by Remark 2.1. Further, for each 𝑣 ∈ 𝑉(𝐺), |𝐷𝑣| =  𝛾(𝐻𝑣) = 1 and 𝐷 =  ⋃ 𝐷𝑣𝑣 ∈ 𝑉(𝐺)  . Thus,  

|𝐷| = | ⋃ 𝐷𝑣| =   | 𝐷𝑣 |= |𝑉(𝐺)| ⋅| 𝐷𝑣|

𝑣 ∈ 𝑉(𝐺)

= |𝑉(𝐺)| ⋅ 1 = |𝑉(𝐺)|.

𝑣 ∈ 𝑉(𝐺)

 

That is, 𝐷 is also a 𝛾𝑓𝑑-set of 𝐺 ∘ 𝐻. Thus,  

|𝑉(𝐺)| = |𝐷| ≤  𝛾𝑓𝑟𝑑
−1 (𝐺 ∘ 𝐻) ≤ |𝑆| = |𝑉(𝐺)|. 

Hence, 𝛾𝑓𝑟𝑑
−1 (𝐺 ∘ 𝐻) = |𝑉(𝐺)| = 𝑚. 

Case 2. Suppose that 𝛾(𝐻)  ≠ 1. Let 𝑆𝑣 be a minimum k-fair dominating set of 𝐻𝑣  for all 𝑣 ∈ 𝑉 (𝐺) where 𝑘 = |𝑆𝑣| ≥ 2 (since 

𝛾(𝐻)  = 2). By Theorem 2.6 (𝑖)𝑏), 𝐷 = 𝑉(𝐺) and 𝑆 =  ⋃ 𝑆𝑣𝑣 ∈ 𝑉(𝐺) . Then, 

|𝑆| = | ⋃ 𝑆𝑣

𝑣 ∈ 𝑉(𝐺)

|   =  |𝑆𝑣|= |𝑉(𝐺)||

𝑣 ∈ 𝑉(𝐺)

|𝑆𝑣| = 𝑚𝑘 > |𝑉(𝐺)| = |𝐷|. 

Thus, |𝑆| > |𝐷|. Since |𝐷| =  𝛾𝑓𝑑(𝐺 ∘ 𝐻) ≤ 𝛾𝑓𝑟𝑑
−1 (𝐺 ∘ 𝐻) ≤ |𝑆| for all inverse fair dominating set 𝑆, it follows that the minimum 

inverse fair restrained dominating set of such 𝑆 is a 𝛾𝑓𝑟𝑑
−1 -set 𝐺 ∘ 𝐻, that is, |𝑆| =  𝛾𝑓𝑟𝑑

−1 (𝐺 ∘ 𝐻). Hence, 𝛾𝑓𝑟𝑑
−1 (𝐺 ∘ 𝐻) = |𝑆| =

𝑘𝑚. ∎ 

 

3. Conclusion and Recommendations 
In this work, the fair restrained domination in the join of two paths of order 𝑛 ≥ 2 were characterized and the exact fair 

restrained domination number resulting from this binary operation of two paths were computed. This study will result to new 

research such as bounds and other binary operations of two graphs.  Other parameters involving the inverse fair restrained 

domination in graphs may also be explored. Finally, the characterization of a fair restrained domination in graphs and its bounds 

is a promising extension of this study. 
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