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Abstract - Let 𝐺 be a nontrivial connected graph. A dominating set 𝑆 ⊆ 𝑉(𝐺) is called a doubly connected dominating set of 𝐺 

if both ⟨𝑆⟩ and ⟨𝑉(𝐺)\𝑆⟩ are connected. If every distinct vertices 𝑢 and v from 𝑉(𝐺)\𝑆, |𝑁𝐺(𝑢) ∩ 𝑆| = |𝑁𝐺(𝑣) ∩ 𝑆|, then 𝑆 is 

called a fair doubly connected dominating set of 𝐺. Furthermore, the fair doubly connected domination number, denoted by 

γ𝑓𝑐𝑐(𝐺), is the minimum cardinality of a fair doubly connected dominating set of G. A fair doubly connected dominating set of 

cardinality 𝛾𝑓𝑐𝑐(𝐺) is called 𝛾𝑓𝑐𝑐-set. In this paper, we characterized the fair doubly connected domination in the corona and 

Cartesian product of two graphs and give some important results. 

Keywords - Dominating set, Doubly connected dominating set, Fair dominating set, Fair doubly connected dominating set. 

 

1. Introduction 
Domination in graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [1]. Following an article [2] by Ernie 

Cockayne and Stephen Hedetniemi in 1977, the domination in graphs became an area of study by many researchers. A subset 𝑆 

of 𝑉(𝐺) is a dominating set of G if for every 𝑣 ∈ 𝑉(𝐺)\𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑣 ∈ 𝐸(𝐺), that is, 𝑁[𝑆] = 𝑉(𝐺). The 

domination number 𝛾(𝐺) of 𝐺 is the smallest cardinality of a dominating set of G. Some studies on domination in graphs were 

found in the papers [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. 

 

One variant of domination is the doubly connected domination in graphs. A dominating set S ⊆ 𝑉(𝐺) is called a doubly 

connected dominating set of G if both ⟨𝑆⟩ and ⟨𝑉(𝐺)\𝑆⟩ are connected. The minimum cardinality of a doubly connected 

dominating set of G, denoted by 𝛾𝑐𝑐(𝐺), is called the doubly connected domination number of G. A doubly connected dominating 

set of cardinality 𝛾𝑐𝑐(𝐺) is called a 𝛾𝑐𝑐 −set of G. Doubly connected domination in graphs is found in the papers [25, 26, 27]. 

In 2011, Caro, Hansberg and Henning [28] introduced fair domination and 𝑘-fair domination in graphs. A dominating subset 

S of V(𝐺) is a fair dominating set in G if all the vertices not in S are dominated by the same number of vertices from S, that is, 

|𝑁(𝑢) ∩ 𝑆| = |𝑁(𝑣) ∩ 𝑆| for every two distinct vertices 𝑢 and 𝑣 from 𝑉(𝐺)\𝑆 and a subset 𝑆 of 𝑉(𝐺) is a 𝑘-fair dominating set 

in G if for every vertex 𝑣 ∈ 𝑉(𝐺)\𝑆, |𝑁(𝑣) ∩ 𝑆| = 𝑘. The minimum cardinality of a fair dominating set of G, denoted by 

γ𝑓𝑑(𝐺),  is called the fair domination number of G. A fair dominating set of cardinality 𝛾𝑓𝑑(𝐺) is called 𝛾𝑓𝑑-set. Some studies on 

fair domination in graphs were found in the paper [29, 30, 31, 32]. 

In this paper, we introduced the study of fair doubly connected domination in graphs. A dominating set S ⊆ 𝑉(𝐺) is called 

doubly connected dominating set of G if both ⟨𝑆⟩ and ⟨𝑉(𝐺)\𝑆⟩ are connected. A doubly connected dominating set is called a 

fair doubly connected dominating set of G if every distinct vertices 𝑢 and 𝑣 from V(𝐺)\S,  |𝑁𝐺(𝑢) ∩ 𝑆| = |𝑁𝐺(𝑣) ∩ 𝑆|. 

Furthermore, the fair doubly connected domination number, denoted by γ𝑓𝑐𝑐(𝐺), is the minimum cardinality of a fair doubly 

connected dominating set of G. A fair doubly connected dominating set of cardinality γ𝑓𝑐𝑐(𝐺) is called γ𝑓𝑐𝑐-set. In this paper, we 

characterize the fair doubly connected domination in the corona and Cartesian product of two graphs and give some important 

results. 
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For the general terminology in graph theory, readers may refer to [33]. A graph G is a pair (𝑉(𝐺),  𝐸(𝐺)), where 𝑉(𝐺) 

is a finite nonempty set called the vertex-set of G and 𝐸(𝐺) is a set of unordered pairs {𝑢, 𝑣} (or simply 𝑢𝑣) of distinct elements 

from 𝑉(𝐺) called the edge-set of 𝐺. The elements of 𝑉(𝐺) are called vertices and the cardinality |𝑉(𝐺)| of 𝑉(𝐺) is the order of 

𝐺. The elements of 𝐸(𝐺) are called edges and the cardinality |𝐸(𝐺)| of 𝐸(𝐺) is the size of G. If |𝑉(𝐺)| = 1, then 𝐺 is called a 

trivial graph. If 𝐸(𝐺) = ∅, then 𝐺 is called an empty graph. The open neighborhood of a vertex 𝑣 ∈ 𝑉(𝐺) is the set 𝑁𝐺(𝑣) =
{𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}.  The elements of 𝑁𝐺(𝑣) are called neighbors of 𝑣. The closed neighborhood of 𝑣 ∈ 𝑉(𝐺) is the set 

𝑁𝐺[𝑣] = 𝑁𝐺(𝑣) ∪ {𝑣}. If 𝑋 ⊆ 𝑉(𝐺), the open neighborhood of 𝑋 in 𝐺 is the set 𝑁𝐺(𝑋) = ⋃ 𝑁𝐺(𝑣).𝑣∈𝑋  The closed neighborhood 

of 𝑋 in 𝐺 is the set 𝑁𝐺[𝑋] = ⋃ 𝑁𝐺[𝑣]𝑣∈𝑋 = 𝑁𝐺(𝑋) ∪ 𝑋. When no confusion arises, 𝑁𝐺[𝑥] [resp. 𝑁𝐺(𝑥)] will be denote by 𝑁[𝑥] 

[resp. 𝑁(𝑥)]. 

2. Results 
In the paper of Cyman et al [25], they define that for each connected graph 𝐺 the set of all vertices of 𝐺 is a doubly connected 

dominating set of 𝐺. Moreover, Caro et al. [28] mentioned that a fair dominating set 𝑆 = 𝑉(𝐺) is a k-fair dominating set since 

vacuously every vertex in 𝑉(𝐺)\𝑆 = ∅ satisfies the desired property. Thus, following the results of Cyman et al. and Caro et al., 

all connected nontrivial graphs has a fair doubly connected dominating set. 

 

Definition 2.1 A dominating set 𝑆 ⊆ 𝑉(𝐺) is called a doubly connected dominating set of 𝐺 if both ⟨𝑆⟩ and ⟨𝑉(𝐺)\𝑆⟩ are 

connected. A doubly connected dominating set is called a fair doubly connected dominating set of 𝐺 if every distinct vertices 𝑢 

and 𝑣 from 𝑉(𝐺)\𝑆, |𝑁𝐺(𝑢) ∩ 𝑆| = |𝑁𝐺(𝑣) ∩ 𝑆|. 

Definition 2.2 The corona of two graphs 𝐺 and 𝐻, denoted by 𝐺 ∘ 𝐻, is the graph obtained by taking one copy of 𝐺 of order 𝑛 

and 𝑛 copies of 𝐻, and then joining the 𝑖 − 𝑡ℎ copy of 𝐻. For every 𝑣 ∈ 𝑉(𝐺), we denote by 𝐻𝑣  the copy of 𝐻 whose vertices 

are joined or attached to the vertex 𝑣. 

Remark 2.3 If 𝑆 = 𝑉(𝐺 ∘ 𝐻), then 𝑆 is a fair doubly connected dominating set of 𝐺 ∘ 𝐻. 

The following is the result for the fair doubly connected dominating set in the corona of one trivial graph and a connected 

graph. 

Proposition 2.4 Let 𝐺 = 𝐾1 and 𝐻 be a nontrivial connected graph. Then a nonempty 𝑆 ⊆ 𝑉(𝐺 ∘ 𝐻) is a fair doubly connected 

dominating set of 𝐺 ∘ 𝐻 if and only if one of the following is satisfied. 

(i) 𝑆 = 𝑉(𝐺 ∘ 𝐻). 

(ii) 𝑆 = 𝑉(𝐺) 

(iii) 𝑆 is an |𝑆|-fair dominating set of 𝐻 and the ⟨𝑆⟩ is connected 

Proof: Suppose that a nonempty 𝑆 ⊆ 𝑉(𝐺 ∘ 𝐻) is a fair doubly connected dominating set of 𝐺 ∘ 𝐻. 

Case 1. If 𝑆 = 𝑉(𝐺 ∘ 𝐻), then we are done with statement (𝑖). 

Case 2. If  𝑆 ≠ 𝑉(𝐺 ∘ 𝐻), then 𝑆 ⊂ 𝑉(𝐺 ∘ 𝐻). Consider that 𝑆 = 𝑉(𝐺). Then we are done with statement (𝑖𝑖). Next, consider 

that 𝑆 ≠ 𝑉(𝐺). Then 𝑆 ⊆ 𝑉(𝐻). If 𝑆 = 𝑉(𝐻), then ⟨𝑆⟩ is connected since 𝐻 is connected. Let 𝑉(𝐺) = {𝑥}. Then 𝑉(𝐺 ∘ 𝐻)\𝑆 =

𝑉(𝐺 ∘ 𝐻)\𝑉(𝐻) = 𝑉(𝐺). Thus, |𝑁𝐺∘𝐻(𝑥) ∩ 𝑆| = |𝑉(𝐻)|, that is, 𝑆 = 𝑉(𝐻), is an |𝑆|-fair dominating set of 𝐻. This shows 

statement (𝑖𝑖𝑖). If 𝑆 ≠ 𝑉(𝐻), then 𝑆 ⊂ 𝑉(𝐻). Since 𝑆 is a fair doubly connected dominating set of 𝐺 ∘ 𝐻, ⟨𝑆⟩ is connected and 

|𝑁𝐺∘𝐻(𝑥) ∩ 𝑆| = |𝑆| = |𝑁𝐺∘𝐻(𝑦) ∩ 𝑆| for all 𝑥, 𝑦 ∈ 𝑉(𝐺 ∘ 𝐻)\𝑆. Since 𝑆 ⊂ 𝑉(𝐻), 𝑆 is an |𝑆|-fair dominating set of 𝐻. This 

shows statement (𝑖𝑖𝑖). 

For the converse, suppose that statement (𝑖) is satisfied. Then 𝑆 = 𝑉(𝐺 ∘ 𝐻). By Remark 2.3, 𝑆 is a fair doubly connected 

dominating set of 𝐺 ∘ 𝐻.  

Suppose that statement (𝑖𝑖) is satisfied. Then 𝑆 = 𝑉(𝐺). Since 𝐺 = 𝐾1, 𝑆 = 𝑉(𝐾1), that is, ⟨𝑆⟩ is trivially connected. Since 

𝑉(𝐺 ∘ 𝐻)\𝑆 = 𝑉(𝐺 ∘ 𝐻)\𝑉(𝐺) = 𝑉(𝐻), 

given that 𝐻 is connected, it follows that ⟨𝑉(𝐺 ∘ 𝐻)\𝑆⟩ is connected. Thus, 𝑆 is a doubly connected dominating set by definition 

2.1. Further, 𝑆 ≠ 𝑉(𝐺 ∘ 𝐻), that is, 𝑆 ⊂ 𝑉(𝐺 ∘ 𝐻).  This implies that 𝑉(𝐺 ∘ 𝐻)\𝑆 ≠ ∅. Since 𝐻 is nontrivial, |𝑉(𝐻)| ≠ 1. Let 
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𝑢, 𝑢′ ∈ 𝑉(𝐺 ∘ 𝐻)\𝑆. Then |𝑁𝐺∘𝐻(𝑢) ∩ 𝑆| = 1 = |𝑁𝐺∘𝐻(𝑢′) ∩ 𝑆| for all 𝑢, 𝑢′ ∈ 𝑉(𝐺 ∘ 𝐻)\𝑆. Hence, 𝑆 is a fair dominating set of 

𝐺 ∘ 𝐻, that is, 𝑆 is a fair doubly connected dominating set of 𝐺 ∘ 𝐻. 

Suppose that statement (𝑖𝑖𝑖) is satisfied. Then 𝑆 is an |𝑆|-fair dominating set of 𝐻 and the ⟨𝑆⟩ is connected, that is 𝑆 ⊆ 𝑉(𝐻). 

𝐶𝑎𝑠𝑒 1. If 𝑆 = 𝑉(𝐻), then ⟨𝑉(𝐺 ∘ 𝐻)\𝑆⟩ = 𝐺 is trivially connected. Since ⟨𝑆⟩ is connected, it follows that 𝑆 is a doubly 

connected dominating set of 𝐺 ∘ 𝐻. Now, 𝑆 is an |𝑆|-fair dominating set of 𝐻, implies that 𝑆 is an |𝑆|-fair dominating set of 𝐺 ∘

𝐻. That is, 𝑆 is a fair doubly connected dominating set of 𝐺 ∘ 𝐻. 

𝐶𝑎𝑠𝑒 2. If 𝑆 ≠ 𝑉(𝐻), then 𝑆 ⊂ 𝑉(𝐻). Let 𝑢 ∈ 𝑉(𝐻)\𝑆 and 𝑉(𝐺) = {𝑣}. Then 𝑢, 𝑣 ∈ 𝑉(𝐺 ∘ 𝐻)\𝑆. This implies that 𝑢𝑣 ∈

𝐸(𝐺 ∘ 𝐻)\𝑆 for all 𝑢 ∈ 𝑉(𝐻)\𝑆 ⊂ 𝑉(𝐺 ∘ 𝐻)\𝑆. Thus, ⟨𝑉(𝐺 ∘ 𝐻)\𝑆⟩ is connected. Since ⟨𝑆⟩ is connected, it follows that 𝑆 is a 

doubly connected dominating set of 𝐺 ∘ 𝐻. 

Now, 𝑆 is an |𝑆|-fair dominating set of 𝐻, implies that 

|𝑁𝐺∘𝐻(𝑢) ∩ 𝑆| = |𝑁𝐻(𝑢) ∩ 𝑆| = |𝑆| = |𝑁𝐻(𝑢′) ∩ 𝑆| = |𝑁𝐺∘𝐻(𝑢′) ∩ 𝑆| 

for all 𝑢, 𝑢′ ∈ 𝑉(𝐻)\𝑆 ⊂ 𝑉(𝐺 ∘ 𝐻)\𝑆. Note that |𝑁𝐺∘𝐻(𝑣) ∩ 𝑆| = |𝑆| with 𝑣 ∈ 𝑉(𝐺) ⊂ 𝑉(𝐺 ∘ 𝐻)\𝑆. Thus, |𝑁𝐺∘𝐻(𝑥) ∩ 𝑆| =

|𝑁𝐺∘𝐻(𝑦) ∩ 𝑆| for all 𝑥, 𝑦 ∈ 𝑉(𝐺 ∘ 𝐻)\𝑆, that is, 𝑆 is a fair dominating set of 𝐺 ∘ 𝐻. Hence, 𝑆 is a fair doubly connected 

dominating set of 𝐺 ∘ 𝐻. ∎ 

The next result is an immediate consequence of Proposition 2.4. 

Corollary 2.5 Let 𝐺 = 𝐾1 and 𝐻 be a nontrivial connected graph. Then, 𝛾𝑓𝑐𝑐(𝐺 ∘ 𝐻) = 1. 

Proof: Let 𝑆 = 𝑉(𝐺) = {𝑥}. Then ⟨𝑆⟩ is trivially connected. Since 𝐻 is connected, 

⟨𝑉(𝐺 ∘ 𝐻)\𝑆⟩ = ⟨𝑉(𝐺 ∘ 𝐻)\𝑉(𝐺)⟩ = 𝐻 

is connected. Thus, 𝑆 is a doubly connected dominating set of 𝐺 ∘ 𝐻. Let 𝑢, 𝑢′ ∈ 𝑉(𝐺 ∘ 𝐻)\𝑆. Then 𝑢, 𝑢′ ∈ 𝑉(𝐻). Thus, 

|𝑁𝐺∘𝐻(𝑢) ∩ 𝑆| = |𝑆| = |𝑁𝐺∘𝐻(𝑢′) ∩ 𝑆| 

for all 𝑢, 𝑢′ ∈ 𝑉(𝐺 ∘ 𝐻)\𝑆, that is, 𝑆 is a fair dominating set of 𝐺 ∘ 𝐻. Hence, 1 ≤ 𝛾𝑓𝑐𝑐(𝐺 ∘ 𝐻) ≤ |𝑆| = 1, that is, 𝛾𝑓𝑐𝑐(𝐺 ∘ 𝐻) =

1. ∎ 

Definition 2.6 The Cartesian product of two graphs 𝐺 and 𝐻, denoted by 𝐺□𝐻, is the graph with vertex set 𝑉(𝐺□𝐻) =

𝑉(𝐺) × 𝑉(𝐻) and edge-set 𝐸(𝐺□𝐻) if and only if either 𝑢1, 𝑢2 ∈ 𝐸(𝐺) and 𝑣1 = 𝑣2 or 𝑢1 = 𝑢2 and 𝑣1, 𝑣2 ∈ 𝐸(𝐻). 

Remark 2.7 If 𝑆 = 𝑉(𝐺□𝐻), then 𝑆 is a fair doubly connected dominating set of 𝐺□𝐻. 

 The following results are needed for the characterization of fair doubly connected dominating set in the Cartesian 

product of two graphs. 

Theorem 2.8 Let 𝐺 and 𝐻 be nontrivial connected graphs. Then a nonempty 𝑆 ⊆ 𝑉(𝐺𝐻) is a fair doubly connected dominating 

set of 𝐺□𝐻 if 𝑆′ is a fair dominating set, ⟨𝑆′⟩ is connected subgraph and one of the following is satisfied. 

(i) 𝑆 = 𝑆′ × 𝑉(𝐻) where 𝑆′ ⊆ 𝑉(𝐺) and ⟨𝑉(𝐺)\𝑆′⟩ is connected. 

(ii) 𝑆 = 𝑉(𝐺) × 𝑆′ where 𝑆′ ⊆ 𝑉(𝐻) and ⟨𝑉(𝐻)\𝑆′⟩ is connected. 

Proof: Suppose statement (𝑖) is satisfied. Then 𝑆 = 𝑆′ × 𝑉(𝐻) where 𝑆′ ⊆ 𝑉(𝐺) and ⟨𝑉(𝐺)\𝑆′⟩ is connected. Further, 𝑆′ is a 

fair dominating set of 𝐺, and ⟨𝑆′⟩ is connected subgraph of 𝐺. Then 

𝑉(𝐺□𝐻)\𝑆 = (𝑉(𝐺) × 𝑉(𝐻)) \(𝑆′ × 𝑉(𝐻)) 

                            = (𝑉(𝐺)\𝑆′) × 𝑉(𝐻), since 𝑆′ ⊆ 𝑉(𝐺). 

If 𝑆′ = 𝑉(𝐺), then 𝑆 = 𝑉(𝐺) × 𝑉(𝐻) = 𝑉(𝐺□𝐻). By Remark 2.7, 𝑆 is a fair doubly connected dominating set of 𝐺□𝐻. 
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If 𝑆′ ≠ 𝑉(𝐺), then 𝑆′ ⊂ 𝑉(𝐺) and 𝑉(𝐺)\𝑆′ ≠ ∅. Since ⟨𝑉(𝐺)\𝑆′⟩ is connected and 𝐻 is connected implies that 

(𝑉(𝐺)\𝑆′) × 𝑉(𝐻) is connected, it follows that ⟨𝑉(𝐺□𝐻)\𝑆⟩ is connected. Similarly, since 𝑆 = 𝑆′ × 𝑉(𝐻) where ⟨𝑆′⟩ is 

connected and 𝐻 is connected, it follows that ⟨𝑆⟩ is connected. Further, 𝑆′ is a dominating set of 𝐺 implies that 𝑆 = 𝑆′ × 𝑉(𝐻) 

is a dominating set of 𝐺□𝐻. Hence, 𝑆 is a doubly connected dominating set of 𝐺□𝐻. 

Let (𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝑉(𝐺□𝐻)\𝑆. Then 𝑢, 𝑢′ ∈ 𝑉(𝐺)\𝑆′ and 𝑣, 𝑣′ ∈ 𝑉(𝐻). Since 𝑆′ is an |𝑆′|-fair dominating set of 𝐺, it 

follows that |𝑁𝐺(𝑢) ∩ 𝑆′| = |𝑁𝐺(𝑢′) ∩ 𝑆′| for all 𝑢, 𝑢′ ∈ 𝑉(𝐺)\𝑆′. Thus, for all 𝑣, 𝑣′ ∈ 𝑉(𝐻), 

|𝑁𝐺□𝐻(𝑢, 𝑣) ∩ 𝑆| = |𝑁𝐺□𝐻(𝑢′, 𝑣′) ∩ 𝑆| for all (𝑢, 𝑣), (𝑢′𝑣′) ∈ 𝑉(𝐺□𝐻)\𝑆, 

that is, 𝑆 is a fair dominating set of 𝐺□𝐻. Accordingly, 𝑆 is a fair doubly connected dominating set of 𝐺□𝐻. 

Suppose that statement (𝑖𝑖) is satisfied. Then 𝑆 = 𝑉(𝐺) × 𝑆′ where 𝑆′ ⊆ 𝑉(𝐻) and ⟨𝑉(𝐻)\𝑆′⟩ is connected. Further, 𝑆′ is 

a fair dominating set of 𝐻, and ⟨𝑆′⟩ is connected subgraph of 𝐻. Then 

𝑉(𝐺□𝐻)\𝑆 = (𝑉(𝐺) × 𝑉(𝐻))\(𝑉(𝐺) × 𝑆′) 

                                     = (𝑉(𝐺) × (𝑉(𝐻)\𝑆′)), since 𝑆′ ⊆ 𝑉(𝐻). 

 If 𝑆′ = 𝑉(𝐻), then 𝑆 = 𝑉(𝐺) × 𝑉(𝐻) = 𝑉(𝐺□𝐻). By Remark 2.7, 𝑆 is a fair doubly connected dominating set of 𝐺□𝐻. 

If 𝑆′ ≠ 𝑉(𝐻), then 𝑆′ ⊂ 𝑉(𝐻) and 𝑉(𝐻)\𝑆′ ≠ ∅. Since 𝐺 is connected and ⟨𝑉(𝐻)\𝑆′⟩ is connected implies that 

𝑉(𝐺) × (𝑉(𝐻)\𝑆′) is connected, it follows that ⟨𝑉(𝐺□𝐻)\𝑆⟩ is connected. Similarly, since 𝐺 is connected and 𝑆 = 𝑉(𝐺) × 𝑆′ 

where ⟨𝑆′⟩ is connected, it follows that ⟨𝑆⟩ is connected. Further, 𝑆′ is a dominating set of 𝐻 implies that 𝑆 = 𝑉(𝐺) × 𝑆′ is a 

dominating set of 𝐺□𝐻. Hence, 𝑆 is a doubly connected dominating set of 𝐺□𝐻. 

Let (𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝑉(𝐺□𝐻)\𝑆. Then 𝑢, 𝑢′ ∈ 𝑉(𝐺) and 𝑣, 𝑣′ ∈ 𝑉(𝐻)\𝑆′. Since 𝑆′ is an |𝑆′|-fair dominating set of 𝐻, it 

follows that |𝑁𝐻(𝑣) ∩ 𝑆′| = |𝑁𝐻(𝑣′) ∩ 𝑆′| for all 𝑣, 𝑣′ ∈ 𝑉(𝐻)\𝑆′. Thus, for all 𝑢, 𝑢′ ∈ 𝑉(𝐺), 

|𝑁𝐺□𝐻(𝑢, 𝑣) ∩ 𝑆| = |𝑁𝐺□𝐻(𝑢′, 𝑣′) ∩ 𝑆| for all (𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝑉(𝐺□𝐻)\𝑆, 

that is, 𝑆 is a fair dominating set of 𝐺□𝐻. Accordingly, 𝑆 is a fair doubly connected dominating set of 𝐺□𝐻. ∎ 

The following result, is an immediate consequence of Theorem 2.8. 

Corollary 2.9 Let 𝐺 and 𝐻 be a connected graphs of order 𝑚 ≥ 2 and 𝑛 ≥ 2, respectively. If 𝑆′ is a minimum fair doubly 

connected dominating set of 𝐺 or 𝐻. Then 

𝛾𝑓𝑐𝑐(𝐺□𝐻) = min {|𝑆′|𝑛, 𝑚|𝑆′|} 

Proof: Suppose that 𝑆′ is a minimum fair doubly connected dominating set of 𝐺 or 𝐻. If 𝑆′ is a minimum fair doubly connected 

dominating set of 𝐺, then 𝑆′ ⊆ 𝑉(𝐺) is a fair dominating set, ⟨𝑆′⟩ is connected, ⟨𝑉(𝐺)\𝑆′⟩ is connected, and 𝑆 = 𝑆′ × 𝑉(𝐻). By 

Theorem 2.8 (𝑖), 𝑆 is a fair doubly connected dominating set of 𝐺□𝐻. This implies that 𝛾𝑓𝑐𝑐(𝐺□𝐻) ≤ |𝑆|. 

If 𝑆 = 𝑆′ × 𝑉(𝐻) is a minimum fair doubly connected dominating set of 𝐺□𝐻, then 𝛾𝑓𝑐𝑐(𝐺□𝐻) = |𝑆| = |𝑆′ × 𝑉(𝐻)| =

|𝑆′| ⋅ |𝑉(𝐻)| = |𝑆′|𝑛. 

If 𝑆 = 𝑆′ × 𝑉(𝐻) is not a minimum fair doubly connected dominating set of 𝐺□𝐻, then consider that 𝑆′ is a minimum fair 

doubly connected dominating set of 𝐻, that is, 𝑆′ ⊆ 𝑉(𝐻) is a fair dominating set, ⟨𝑆′⟩ is connected, ⟨𝑉(𝐻)\𝑆′⟩ is connected, 

and 𝑆 = 𝑉(𝐺) × 𝑆′. By Theorem 2.8 (𝑖𝑖), S is a fair doubly connected dominating set of 𝐺□𝐻. This implies that 𝛾𝑓𝑐𝑐(𝐺□𝐻) ≤

|𝑆|. 

Since 𝑆 = 𝑆′ × 𝑉(𝐻) is not a minimum fair doubly connected dominating set of 𝐺□𝐻, it is clear that 𝑆 = 𝑉(𝐺) × 𝑆′ is a 

minimum fair doubly connected dominating set of 𝐺□𝐻. Thus, 𝛾𝑓𝑐𝑐(𝐺□𝐻) = |𝑆| = |𝑉(𝐺) × 𝑆′| = |𝑉(𝐺)| ⋅ |𝑆′| = 𝑚|𝑆′|. ∎ 

The next result is a direct consequence of Corollary 2.9. 
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Corollary 2.10 Let 𝐺 and 𝐻 be a complete graph of order 𝑚 ≥ 2 and 𝑛 ≥ 2, respectively. Then 𝛾𝑓𝑐𝑐(𝐺□𝐻) =min {𝑚, 𝑛}. 

3. Conclusion and Recommendations 

In this paper, we introduced a new parameter of domination of graphs- the fair doubly connected domination in graphs. The 

fair doubly connected domination in the corona and Cartesian product of two graphs were characterized. The exact fair doubly 

connected domination number resulting from the corona and Cartesian product of two graphs were computed. This study will 

pave a way to new researches such bounds and other binary operations of two connected graphs. Other parameters involving fair 

doubly connected domination in graphs may also be explored. Finally, the characterization of a fair doubly connected domination 

in graphs of the lexicographic product, and its bounds are promising extension of this study. 
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