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Abstract - Mathematical modelling of a Bifurcation analysis on the effect of random perturbation value of 0.64 on a 

dynamical system was investigated with the help of numerical approach of ordinary differential equation of order 45 

(ODE45) and it was observed that the proposed dynamical system was purely unstable when the length of the growing season 

ranges from 19 days to 44 days. But when the length of the growing season increases to 49 days, Bifurcation was noticed 

when the length of the growing season is 54 days up to the harvesting season (99 days) and beyond. The randomization 

equally affects the steady-state since their values are fluctuating.    

Keywords - Bifurcation, Dynamical system, Numerical approach, Steady-state, Random perturbation value and length of 

growing season.  

1. Introduction 
The history of dynamical system is not complete without mentioning the effort of [1] in Newtonian mechanics. [2] now 

said dynamical systems theory, as it is more accurately if less spectacularly called, deals with the behaviour of mathematical 

objects and [3] defines a dynamical systems as a systems that are strongly associated with time with a defined rule. See also 

[4]. In the theory of mathematical modeling and numerical simulations, a dynamical systems can be characterized basically 

as ordinary differential equations, as partial differential equations, as delay differential equation and as delay-stochastic 

differential equation; [5], [6], [7], [8], [9], however, the linking of real life problems to ordinary differential equations, delay 

differential equation is not a new concept [10] and [11]. [12], defines stability as the return to equilibrium state as determines 

by eigenvalues of the Jacobian Matrix of the model. This definition is accepted by [13] but emphasized that the type of 

stability for specific steady state solutions should be tested for continuity and partial differentiability of the interacting 

functions that are imposed on the dynamical system. The mathematical modelling of stability analysis of a dynamical systems 

with continuous time delays with the help of Lambert W-function and obtain a stable system, was investigated by [14]. 

Though [15] investigated the stability analysis of a dynamical system using iterative algorithm techniques and found a region 

of stability in a delay system. Meanwhile, to investigate steady-state solution and its type of stability of the intrinsic growth 

rate of two interacting plant species and obtained a region of stability irrespective of the changes of the intrinsic growth rates. 

But [17] studied the survival of two competing species in a polluted environment with the aid of local stability analysis and 

the outcome revealed that the competition is affected in the presence of a toxicant. See also [18]. [19] have extended the 

work of [20] with the application of a differential equation system to investigate whether or not the concept of constructing 

a feedback control with which to stabilize an unstable steady-state is applicable to stabilize a market population system. [21], 

then used feedback control in constructing a controlled so that the two unstable steady-states of two interacting stock market 

population where stabilized which aided him to investigate the relationship between intraspecific and inter-specific 

competition. But [22] studied stability of a dynamical system perturbed by white noise and obtained a local stability with the 

help of stochastic differential equation. [23], then analyzed a dynamical model using numerical approach and obtained a 

local stability. [24], looked at comparism between analytical and numerical result of stability analysis of a dynamical system 

and obtained an unstable system with the help of ODE45 numerical techniques and see also [25]. Meanwhile, in this paper, 

we consider mathematical modelling of Bifurcational analysis of a dynamical system: Alternative numerical approach.          

2. Mathematical Formulation 
The following multi-parameter continuous first order nonlinear dynamical system was considered. 

𝑑𝑥

𝑑𝑡
= ∝1 𝑥 − β1𝑥2 − 𝑟1𝑥𝑦 − k1𝑥2𝑦 

 
𝑑𝑦

𝑑𝑡
= ∝2 𝑦 − β2𝑦2 − 𝑦2𝑥𝑦 − k2𝑥𝑦2   
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Where the initial condition x(o) =  𝑥0 > 0 and y(0) =  𝑦0 > 0 and all parameters are assumed to be positive constants 

which can be any real constant.  

• x(t) specifies the biomass of cowpea at time t in the unit of days 

• y(t) specify the biomass of groundnut at time t in the unit of days 

• ∝1 and ∝2 species the growth rate of cowpea and groundnut respectively 

• β1 and β2 specifies the intra-competition coefficient of cowpea and groundnut respectively 

• r1 and r2 specifies the inter-competition coefficient of groundnut and cowpea respectively in which r1 is the 

contribution of the groundnut legume to inhibit the growth of the cowpea legume wheat as r2 is the contribution of 

the cowpea legume to inhibit the growth of the groundnut legume 

• k1 and k2 species the plant disease factors that inhibit the growth of the two competing legumes within an agricultural 

setting 

• with the following precise model parameters ∝1= 0.0226, ∝2 = 0.0445,  β1 = 0.006902,  β2 = 0.133, r1 =
0.0012,  r2 = 0.0012, k1 = 0.01, k2 = 0.01, npv = random perturbation value.  

 

3. Method of Analysis 
We have fully employ the ordinary differential equation of order 45 as a numerical approach to model and predict the 

effect random perturbation value on the proposed dynamical system. 

4. Results 
On the implementation of the above mention numerical approach the following results are obtained which are presented 

and displayed as shown in table 1 – 22. 

Table 1. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 19 days on the type of stability using ODE 45 numerical method, scenario one. 

 

Table 2. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 24 days on the type of stability using ODE 45 numerical method, scenario two. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.64 21.199 34.7141 0.0242 -0.0343 Unstable 

2 0.64 22.0938 34.6399 0.0241 -0.0343 Unstable 

3 0.64 20.5000 33.4257 0.0245 -0.0313 Unstable 

4 0.64 22.4135 33.5909 0.0237 -0.0301 Unstable 

5 0.64 21.1366 34.3638 0.0242 -0.0305 Unstable 

6 0.64 21.457 33.9385 0.0233 -0.0327 Unstable 

7 0.64 21.6989 33.7489 0.024 -0.035 Unstable 

8 0.64 21.5426 33.0531 0.0231 -0.034 Unstable 

9 0.64 22.1791 34.6319 0.0236 -0.0317 Unstable 

10 0.64 21.2753 34.4251 0.0229 -0.0325 Unstable 

11 0.64 21.9367 33.7636 0.0234 -0.0313 Unstable 

12 0.64 21.2063 33.2744 0.023 -0.0321 Unstable 

13 0.64 21.9615 33.9799 0.0242 -0.0343 Unstable 

14 0.64 21.7756 32.9885 0.0235 -0.0315 Unstable 

15 0.64 21.6100 34.1642 0.0231 -0.0319 Unstable 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.64 21.9055 34.1084 0.0240 -0.0335 Unstable 

2 0.64 21.6679 33.7221 0.0253 -0.0324 Unstable 

3 0.64 21.6522 33.9229 0.0234 -0.0341 Unstable 

4 0.64 21.3556 33.8603 0.0234 -0.0319 Unstable 

5 0.64 23.2684 33.5351 0.0237 -0.0335 Unstable 

6 0.64 21.8287 33.6365 0.0243 -0.0312 Unstable 

7 0.64 21.7572 33.0479 0.0243 -0.0312 Unstable 

8 0.64 21.0204 34.1534 0.0241 -0.0314 Unstable 

9 0.64 22.1307 34.0080 0.0250 -0.0329 Unstable 

10 0.64 22.0269 33.7175 0.0239 -0.0332 Unstable 

11 0.64 21.3426 33.3448 0.0234 -0.0337 Unstable 

12 0.64 22.0970 33.8953 0.0242 -0.0325 Unstable 

13 0.64 22.4135 33.9045 0.0236 -0.0325 Unstable 

14 0.64 22.6357 33.7554 0.0224 -0.0350 Unstable 

15 0.64 20.8894 34.3290 0.0250 -0.0318 Unstable 
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Table 3. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 29 days on the type of stability using ODE 45 numerical method, scenario three. 

 
Table 4: Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 34 days on the type of stability using ODE 45 numerical method, scenario four. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 22.4197 34.4920 0.0234 -0.0307 Unstable 

2 0.64 21.7984 34.0143 0.0236 -0.0341 Unstable 

3 0.64 22.4459 33.4174 0.0240 -0.0316 Unstable 

4 0.64 22.1795 33.6141 0.0242 -0.0305 Unstable 

5 0.64 22.5924 34.2370 0.0243 -0.0356 Unstable 

6 0.64 21.1237 34.0796 0.0243 -0.0316 Unstable 

7 0.64 22.1410 33.5590 0.0243 -0.0359 Unstable 

8 0.64 22.0202 33.6090 0.0231 -0.0338 Unstable 

9 0.64 22.1978 34.0535 0.0235 -0.0337 Unstable 

10 0.64 21.8211 34.2838 0.0253 -0.0345 Unstable 

11 0.64 21.4470 33.5558 0.0244 -0.0319 Unstable 

12 0.64 20.7081 34.1251 0.0229 -0.0332 Unstable 

13 0.64 21.5746 33.9748 0.0244 -0.0313 Unstable 

14 0.64 22.4798 34.6869 0.0235 -0.0334 Unstable 

15 0.64 22.0976 34.0169 0.0234 -0.0357 Unstable 
 

Table 5. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 39 days on the type of stability using ODE 45 numerical method, scenario five. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 22.2108 34.2426 0.0237 -0.0336 Unstable 

2 0.64 21.5518 33.5707 0.0240 -0.0349 Unstable 

3 0.64 23.0092 33.9204 0.0257 -0.0341 Unstable 

4 0.64 21.6037 33.3791 0.0231 -0.0341 Unstable 

5 0.64 22.0925 33.8916 0.0234 -0.0345 Unstable 

6 0.64 21.1610 33.9996 0.0255 -0.0353 Unstable 

7 0.64 21.2779 34.5960 0.0225 -0.0350 Unstable 

8 0.64 21.7355 33.7345 0.0250 -0.0324 Unstable 

9 0.64 21.3215 34.8609 0.0242 -0.0314 Unstable 

10 0.64 21.6739 33.5955 0.0237 -0.0331 Unstable 

11 0.64 22.5316 33.9135 0.0241 -0.0301 Unstable 

12 0.64 21.4931 33.6102 0.0256 -0.0320 Unstable 

13 0.64 21.0718 34.2723 0.0227 -0.0317 Unstable 

14 0.64 21.8067 34.1752 0.0238 -0.0319 Unstable 

15 0.64 21.9873 33.3749 0.0231 -0.0330 Unstable 

 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.64 21.7709 34.0961 0.0244 -0.0340 Unstable 

2 0.64 21.5092 34.3157 0.0244 -0.0318 Unstable 

3 0.64 21.9254 33.9681 0.0238 -0.0325 Unstable 

4 0.64 21.8298 33.9584 0.0242 -0.0353 Unstable 

5 0.64 22.1829 34.1293 0.0242 -0.0329 Unstable 

6 0.64 21.6942 33.5007 0.0238 -0.0330 Unstable 

7 0.64 22.1862 34.1924 0.0228 -0.0315 Unstable 

8 0.64 22.2668 34.0296 0.0237 -0.0306 Unstable 

9 0.64 20.5667 33.1476 0.0237 -0.0311 Unstable 

10 0.64 21.6840 33.3240 0.0239 -0.0315 Unstable 

11 0.64 22.5271 33.8093 0.0228 -0.0339 Unstable 

12 0.64 21.8027 33.6558 0.0247 -0.0339 Unstable 

13 0.64 22.1287 34.0623 0.0238 -0.0327 Unstable 

14 0.64 22.0737 33.9411 0.0224 -0.0347 Unstable 

15 0.64 20.9474 33.6556 0.0227 -0.0336 Unstable 
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Table 6. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 44 days on the type of stability using ODE 45 numerical method, scenario six. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 21.8634 33.4195 0.0242 -0.033 Unstable 

2 0.64 22.0711 33.4297 0.0245 -0.0328 Unstable 

3 0.64 22.2466 34.5512 0.0244 -0.0310 Unstable 

4 0.64 21.5972 33.4765 0.0236 -0.0345 Unstable 

5 0.64 22.1346 33.3137 0.0232 -0.0344 Unstable 

6 0.64 22.0864 34.7379 0.0235 -0.0318 Unstable 

7 0.64 22.2232 33.5441 0.0230 -0.0341 Unstable 

8 0.64 22.4999 34.3656 0.0231 -0.0325 Unstable 

9 0.64 21.1818 34.0618 0.0249 -0.0306 Unstable 

10 0.64 22.4039 32.5635 0.0241 -0.0364 Unstable 

11 0.64 22.2463 34.3141 0.0258 -0.0306 Unstable 

12 0.64 21.6138 34.4817 0.0240 -0.0343 Unstable 

13 0.64 22.2403 33.7953 0.0243 -0.0355 Unstable 

14 0.64 21.0279 33.4235 0.0238 -0.0341 Unstable 

15 0.64 22.1971 34.0292 0.0244 -0.0310 Unstable 

 
Table 7. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 49 days on the type of stability using ODE 45 numerical method, scenario seven. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐     TOS 

1 0.64 21.7991 33.1979 0.0246 -0.0323 Unstable 

2 0.64 22.0988 33.5270 0.0244 -0.034 Unstable 

3 0.64 22.3404 33.5561 0.0227 -0.0335 Unstable 

4 0.64 21.4463 33.7906 0.0242 -0.0325 Unstable 

5 0.64 21.5918 34.7066 0.0235 -0.0330 Unstable 

6 0.64 22.0242 34.8582 0.0245 -0.0334 Unstable 

7 0.64 22.5062 33.4026 0.0235 -0.0332 Unstable 

8 0.64 21.7605 34.2611 0.0234 -0.0358 Unstable 

9 0.64 20.8266 34.7454 0.0233 -0.0307 Unstable 

10 0.64 22.1278 34.1332 0.0247 -0.0319 Unstable 

11 0.64 21.4558 33.1893 0.0243 -0.0357 Unstable 

12 0.64 21.5178 33.6680 0.0247 -0.0342 Unstable 

13 0.64 21.5388 33.6506 0.0234 -0.0321 Unstable 

14 0.64 21.5408 33.6255 0.0231 -0.0326 Unstable 

15 0.64 21.7426 33.8735 0.0233 -0.0333 Unstable 
 

Table 8. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 54 days on the type of stability using ODE 45 numerical method, scenario eight. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 21.8770 33.8163 0.0237 -0.0347 Unstable 

2 0.64 20.6380 34.2772 0.0239 -0.0331 Unstable 

3 0.64 22.1197 33.2685 0.0232 -0.0335 Unstable 

4 0.64 22.2900 34.1257 0.0244 -0.0322 Unstable 

5 0.64 22.6672 33.6703 0.0233 -0.0332 Unstable 

6 0.64 21.3602 34.6379 0.0240 -0.0332 Unstable 

7 0.64 22.6407 33.5346 0.0226 -0.0325 Unstable 

8 0.64 21.5564 33.7559 0.0235 -0.0326 Unstable 

9 0.64 21.7783 33.0913 0.0226 -0.0324 Unstable 

10 0.64 21.3185 33.5544 0.0242 -0.0319 Unstable 

11 0.64 22.2353 34.4778 0.0235 -0.0348 Unstable 

12 0.64 22.0706 34.5156 0.0245 -0.0329 Unstable 

13 0.64 21.9258 33.4531 0.0250 -0.0307 Unstable 

14 0.64 21.8133 35.1858 0.0258 -0.0337 Unstable 

15 0.64 21.3887 34.0930 0.0239 -0.0324 Unstable 
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Table 9. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 59 days on the type of stability using ODE 45 numerical method, scenario nine. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 20.9619 33.9871 0.0249 -0.0331 Unstable 

2 0.64 22.2897 34.7967 0.0241 -0.0328 Unstable 

3 0.64 23.1263 34.549 0.0243 -0.0328 Unstable 

4 0.64 21.0556 32.8725 0.0244 -0.0317 Unstable 

5 0.64 22.7557 33.9325 0.0245 -0.0332 Unstable 

6 0.64 21.7114 33.9938 0.0247 -0.0322 Unstable 

7 0.64 21.0055 34.3967 0.0246 -0.0342 Unstable 

8 0.64 21.7755 33.6726 0.0234 -0.0321 Unstable 

9 0.64 21.7210 34.5135 0.0229 -0.0327 Unstable 

10 0.64 21.8297 32.8254 0.0246 -0.0348 Unstable 

11 0.64 22.2850 34.4613 0.0230 -0.0315 Unstable 

12 0.64 23.2305 34.3503 0.0240 -0.0330 Unstable 

13 0.64 21.4010 33.7143 0.0229 -0.0345 Unstable 

14 0.64 23.0219 34.5646 0.0241 -0.0330 Unstable 

15 0.64 21.3820 33.5558 0.0236 -0.0343 Unstable 

 

 
Table 10. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 64 days on the type of stability using ODE 45 numerical method, scenario ten. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 22.1727 34.5807 0.0244 -0.0324 Unstable 

2 0.64 22.2161 33.8175 0.0241 -0.0332 Unstable 

3 0.64 22.1758 33.5896 0.0238 -0.0329 Unstable 

4 0.64 21.1307 33.0217 0.0237 -0.0347 Unstable 

5 0.64 22.4067 33.6805 0.0251 -0.0330 Unstable 

6 0.64 22.0163 34.0284 0.0231 -0.0329 Unstable 

7 0.64 21.8553 33.9637 0.0221 -0.0343 Unstable 

8 0.64 21.0508 33.8832 0.0228 -0.0332 Unstable 

9 0.64 21.4986 33.1144 0.0253 -0.0350 Unstable 

10 0.64 22.1015 32.6797 0.0241 -0.0330 Unstable 

11 0.64 22.1573 34.1582 0.0238 -0.0336 Unstable 

12 0.64 22.0915 33.6804 0.0239 -0.0343 Unstable 

13 0.64 21.2484 34.3836 0.0241 -0.0311 Unstable 

14 0.64 22.3305 33.0055 0.0232 -0.0328 Unstable 

15 0.64 21.0162 34.0765 0.0241 -0.0326 Unstable 
 

 

Table 11. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 69 days on the type of stability using ODE 45 numerical method, scenario eleven. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 21.7323 33.8864 0.0239 -0.0343 Unstable 

2 0.64 22.2426 33.8402 0.0239 -0.0344 Unstable 

3 0.64 22.5207 34.5757 0.0238 -0.0311 Unstable 

4 0.64 21.9955 34.1013 0.0247 -0.0338 Unstable 

5 0.64 22.0539 33.7356 0.0240 -0.0333 Unstable 

6 0.64 21.9436 33.7401 0.0215 -0.0329 Unstable 

7 0.64 22.1574 33.9910 0.0233 -0.0360 Unstable 

8 0.64 22.4879 34.3069 0.0252 -0.0322 Unstable 

9 0.64 21.1493 33.9290 0.0241 -0.0327 Unstable 

10 0.64 21.6052 33.9187 0.0234 -0.0316 Unstable 

11 0.64 22.5371 34.4136 0.0224 -0.0322 Unstable 

12 0.64 21.8460 33.3638 0.0234 -0.0329 Unstable 

13 0.64 20.7091 34.4962 0.0233 -0.0337 Unstable 

14 0.64 21.6285 34.7501 0.0238 -0.0311 Unstable 

15 0.64 22.2955 35.2605 0.0233 -0.0319 Unstable 
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Table 12. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 74 days on the type of stability using ODE 45 numerical method, scenario twelve. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 21.7036 33.4170 0.0249 -0.0327 Unstable 

2 0.64 21.3531 33.3064 0.0235 -0.0322 Unstable 

3 0.64 21.8726 33.9705 0.0256 -0.0355 Unstable 

4 0.64 21.4514 33.9846 0.0237 -0.0319 Unstable 

5 0.64 21.9712 33.8079 0.0244 -0.0324 Unstable 

6 0.64 21.6672 33.9361 0.0246 -0.0314 Unstable 

7 0.64 21.5066 33.7101 0.0239 -0.0335 Unstable 

8 0.64 22.2427 32.7241 0.0246 -0.0326 Unstable 

9 0.64 23.5331 34.1584 0.0243 -0.0316 Unstable 

10 0.64 22.227 33.8635 0.0250 -0.0324 Unstable 

11 0.64 22.0698 33.4508 0.0239 -0.0332 Unstable 

12 0.64 21.987 33.5736 0.0240 -0.0331 Unstable 

13 0.64 22.418 34.1339 0.0229 -0.0340 Unstable 

14 0.64 21.6586 34.2211 0.0237 -0.0327 Unstable 

15 0.64 22.4715 34.2047 0.0238 -0.0326 Unstable 
 

Table 13. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 79 days on the type of stability using ODE 45 numerical method, scenario thirteen. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 21.1990 34.7141 0.0242 -0.0343 Unstable 

2 0.64 22.0938 34.6399 0.0241 -0.0343 Unstable 

3 0.64 20.5000 33.4257 0.0245 -0.0313 Unstable 

4 0.64 22.4135 33.5909 0.0237 -0.0301 Unstable 

5 0.64 21.1366 34.3638 0.0242 -0.0305 Unstable 

6 0.64 21.4570 33.9385 0.0233 -0.0327 Unstable 

7 0.64 21.6989 33.7489 0.0240 -0.0350 Unstable 

8 0.64 21.5426 33.0531 0.0231 -0.0340 Unstable 

9 0.64 22.1791 34.6319 0.0236 -0.0317 Unstable 

10 0.64 21.2753 34.4251 0.0229 -0.0325 Unstable 

11 0.64 21.9367 33.7636 0.0234 -0.0313 Unstable 

12 0.64 21.2063 33.2744 0.0230 -0.0321 Unstable 

13 0.64 21.9615 33.9799 0.0242 -0.0343 Unstable 

14 0.64 21.7756 32.9885 0.0235 -0.0315 Unstable 

15 0.64 21.6100 34.1642 0.0231 -0.0319 Unstable 

 
Table 14. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 84 days on the type of stability using ODE 45 numerical method, scenario fourteen. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 21.1764 32.9229 0.0234 -0.0347 Unstable 

2 0.64 22.3321 33.2965 0.0229 -0.0326 Unstable 

3 0.64 21.8937 33.0059 0.0221 -0.0334 Unstable 

4 0.64 21.5086 33.5768 0.0237 -0.0319 Unstable 

5 0.64 21.9337 33.3827 0.0229 -0.0324 Unstable 

6 0.64 22.0062 34.0630 0.0221 -0.0327 Unstable 

7 0.64 22.7819 33.4283 0.0252 -0.0334 Unstable 

8 0.64 21.9988 33.9698 0.0238 -0.0335 Unstable 

9 0.64 21.0893 33.4712 0.0238 -0.0337 Unstable 

10 0.64 21.8265 33.9385 0.0230 -0.0345 Unstable 

11 0.64 22.4622 33.8052 0.0245 -0.0336 Unstable 

12 0.64 22.1655 32.8609 0.0252 -0.0353 Unstable 

13 0.64 21.8347 33.6289 0.0230 -0.0296 Unstable 

14 0.64 22.2558 33.1016 0.0230 -0.0309 Unstable 

15 0.64 21.4766 34.2560 0.0236 -0.0325 Unstable 
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Table 15. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 89 days on the type of stability using ODE 45 numerical method, scenario fifteen. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 21.9780 33.0476 0.0241 -0.0346 Unstable 

2 0.64 21.8383 33.7319 0.0231 -0.0337 Unstable 

3 0.64 21.2527 34.0206 0.0241 -0.0311 Unstable 

4 0.64 22.1053 33.9157 0.0236 -0.0365 Unstable 

5 0.64 21.8723 33.5910 0.0236 -0.0338 Unstable 

6 0.64 21.8846 32.6106 0.0236 -0.0360 Unstable 

7 0.64 22.3998 33.9713 0.0236 -0.0323 Unstable 

8 0.64 21.3133 33.7276 0.0240 -0.0324 Unstable 

9 0.64 22.9111 33.9446 0.0247 -0.0349 Unstable 

10 0.64 21.8054 33.9813 0.0239 -0.0324 Unstable 

11 0.64 22.2509 34.2613 0.0254 -0.0337 Unstable 

12 0.64 22.0025 33.3419 0.0236 -0.0317 Unstable 

13 0.64 22.0736 34.1884 0.0240 -0.0302 Unstable 

14 0.64 21.5947 34.5104 0.0234 -0.0317 Unstable 

15 0.64 22.6182 33.9385 0.0241 -0.0331 Unstable 
 

Table 16. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 94 days on the type of stability using ODE 45 numerical method, scenario sixteen. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 27.4612 38.5443 -0.0563 0.0113 Unstable 

2 0.64 29.7143 43.6802 -0.0723 0.0026 Unstable 

3 0.64 33.0440 45.8607 -0.0851 -0.0039 Stable 

4 0.64 32.9833 48.6676 -0.0906 -0.0072 Stable 

5 0.64 33.2363 51.2287 -0.0963 -0.0106 Stable 

6 0.64 33.6516 51.2753 -0.0975 -0.0111 Stable 

7 0.64 33.3450 53.0248 -0.1002 -0.0128 Stable 

8 0.64 31.7192 55.0555 -0.0133 -0.1002 Stable 

9 0.64 32.5843 54.4793 -0.0137 -0.1012 Stable 

10 0.64 32.0283 55.9658 -0.0148 -0.1028 Stable 

11 0.64 32.3428 55.1698 -0.0142 -0.102 Stable 

12 0.64 32.3329 54.9597 -0.0139 -0.1016 Stable 

13 0.64 31.2674 55.2756 -0.013 -0.0996 Stable 

14 0.64 30.9642 56.2788 -0.0138 -0.1008 Stable 

15 0.64 31.7937 55.4369 -0.0138 -0.1012 Stable 

16 0.64 30.8299 56.0713 -0.0134 -0.1001 Stable 

17 0.64 30.8641 56.7544 -0.0143 -0.1015 Stable 

18 0.64 30.8667 57.0429 -0.0146 -0.1021 Stable 

19 0.64 31.4529 56.6603 -0.0149 -0.1028 Stable 
 

Table 17. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 99 days on the type of stability using ODE 45 numerical method, scenario seventeen. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 30.0962 56.711 -0.0145 -0.1031 Stable 

2 0.64 33.1582 57.1768 -0.0145 -0.1038 Stable 

3 0.64 31.0555 57.7692 -0.0154 -0.102 Stable 

4 0.64 31.1032 56.5793 -0.0148 -0.1029 Stable 

5 0.64 30.9607 57.2308 -0.0152 -0.1016 Stable 

6 0.64 31.0999 56.8068 -0.0156 -0.1011 Stable 

7 0.64 31.5843 57.5226 -0.0140 -0.1018 Stable 

8 0.64 30.0304 57.0894 -0.0153 -0.101 Stable 

9 0.64 30.5044 56.5610 -0.0145 -0.1023 Stable 

10 0.64 30.3894 56.2522 -0.0135 -0.1033 Stable 

11 0.64 30.0992 55.5901 -0.0155 -0.1031 Stable 

12 0.64 31.1321 56.7314 -0.0151 -0.1023 Stable 

13 0.64 32.4102 57.6212 -0.0149 -0.1025 Stable 

14 0.64 30.7683 56.1719 -0.0148 -0.1041 Stable 

15 0.64 31.8479 58.0608 -0.0138 -0.1006 Stable 
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Table 18. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 104 days on the type of stability using ODE 45 numerical method, scenario eighteen. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 29.9465 57.9745 -0.0146 -0.1017 Stable 

2 0.64 30.5322 58.2218 -0.0156 -0.1037 Stable 

3 0.64 32.1170 55.1486 -0.0139 -0.1014 Stable 

4 0.64 31.8178 56.0858 -0.0146 -0.1026 Stable 

5 0.64 29.7171 58.1147 -0.0145 -0.1014 Stable 

6 0.64 30.8098 57.3047 -0.0149 -0.1025 Stable 

7 0.64 30.9348 56.2613 -0.0138 -0.1007 Stable 

8 0.64 31.1641 56.8174 -0.0147 -0.1024 Stable 

9 0.64 30.3934 56.7280 -0.0137 -0.1003 Stable 

10 0.64 30.8942 57.0150 -0.0146 -0.1021 Stable 

11 0.64 30.9440 56.7569 -0.0144 -0.1017 Stable 

12 0.64 29.9880 58.4663 -0.0152 -0.1028 Stable 

13 0.64 30.5920 57.4632 -0.0148 -0.1023 Stable 

14 0.64 31.6116 56.7114 -0.0151 -0.1033 Stable 

15 0.64 30.6316 56.8458 -0.0141 -0.1011 Stable 

 
Table 19. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 109 days on the type of stability using ODE 45 numerical method, scenario nineteen. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 30.2864 57.6517 -0.0146 -0.1019 Stable 

2 0.64 30.4020 57.6520 -0.0148 -0.1022 Stable 

3 0.64 31.0986 57.1642 -0.0151 -0.1029 Stable 

4 0.64 30.6135 57.3930 -0.0147 -0.1022 Stable 

5 0.64 29.7683 57.9892 -0.0144 -0.1013 Stable 

6 0.64 30.8916 57.1240 -0.0148 -0.1023 Stable 

7 0.64 31.2030 56.9067 -0.0149 -0.1027 Stable 

8 0.64 30.3465 57.5139 -0.0145 -0.1018 Stable 

9 0.64 31.6161 56.1080 -0.0144 -0.1021 Stable 

10 0.64 31.7441 56.2184 -0.0147 -0.1026 Stable 

11 0.64 31.7153 57.2855 -0.0159 -0.1047 Stable 

12 0.64 31.1826 57.1360 -0.0151 -0.1031 Stable 

13 0.64 31.5492 55.9999 -0.0142 -0.1017 Stable 

14 0.64 31.7071 57.0868 -0.0157 -0.1043 Stable 

15 0.64 30.0436 57.5006 -0.0142 -0.1010 Stable 

 
Table 20. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 114 days on the type of stability using ODE 45 numerical method, scenario twenty. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 31.0307 57.4088 -0.0153 -0.1033 Stable 

2 0.64 31.5143 56.2193 -0.0144 -0.1021 Stable 

3 0.64 29.6281 58.4973 -0.0148 -0.1020 Stable 

4 0.64 30.4756 56.8279 -0.0139 -0.1007 Stable 

5 0.64 30.6180 56.7915 -0.0140 -0.1010 Stable 

6 0.64 31.4111 55.7937 -0.0138 -0.1010 Stable 

7 0.64 32.0663 56.1391 -0.0150 -0.1033 Stable 

8 0.64 30.2367 58.0529 -0.0151 -0.1026 Stable 

9 0.64 31.0358 57.0192 -0.0148 -0.1025 Stable 

10 0.64 30.6820 57.0553 -0.0144 -0.1017 Stable 

11 0.64 30.9066 57.0734 -0.0147 -0.1023 Stable 

12 0.64 31.6173 57.4091 -0.0160 -0.1047 Stable 

13 0.64 31.3465 56.0379 -0.0140 -0.1013 Stable 

14 0.64 31.8649 56.3491 -0.0150 -0.1032 Stable 

15 0.64 31.9755 56.3076 -0.0151 -0.1034 Stable 
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Table 21. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 119 days on the type of stability using ODE 45 numerical method, scenario twenty-one. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 31.6215 56.2199 -0.0146 -0.1023 Stable 

2 0.64 31.1256 56.9456 -0.0148 -0.1026 Stable 

3 0.64 30.2660 56.6093 -0.0134 -0.0998 Stable 

4 0.64 31.7125 55.4453 -0.0138 -0.1010 Stable 

5 0.64 31.6894 56.1662 -0.0146 -0.1024 Stable 

6 0.64 30.6495 56.9953 -0.0143 -0.1015 Stable 

7 0.64 31.2750 55.8598 -0.0137 -0.1008 Stable 

8 0.64 32.2730 55.5906 -0.0146 -0.1027 Stable 

9 0.64 30.6385 56.0587 -0.0132 -0.0996 Stable 

10 0.64 31.2170 56.6684 -0.0146 -0.1022 Stable 

11 0.64 30.1600 57.6052 -0.0144 -0.1015 Stable 

12 0.64 31.5667 56.6811 -0.0150 -0.1031 Stable 

13 0.64 29.8946 57.9990 -0.0146 -0.1016 Stable 

14 0.64 31.3782 56.0747 -0.0141 -0.1014 Stable 

15 0.64 32.1588 56.3642 -0.0154 -0.1040 Stable 

 
Table 22. Quantifying the effect of a random perturbation value (rpv) of 0.64 when the length of the growing season that define the growth of the 

two legumes cowpea and groundnut is specified by 124 days on the type of stability using ODE 45 numerical method, scenario twenty-two. 

Example rpv 𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 TOS 

1 0.64 29.8017 57.9240 -0.0144 -0.1013 Stable 

2 0.64 30.2982 57.1140 -0.0140 -0.1009 Stable 

3 0.64 30.2001 57.6619 -0.0145 -0.1017 Stable 

4 0.64 30.7218 57.2232 -0.0147 -0.1021 Stable 

5 0.64 32.2285 55.9920 -0.0150 -0.1034 Stable 

6 0.64 30.0517 57.7898 -0.0145 -0.1016 Stable 

7 0.64 30.3567 57.4346 -0.0145 -0.1016 Stable 

8 0.64 30.9446 56.2413 -0.0138 -0.1007 Stable 

9 0.64 32.0553 55.9221 -0.0147 -0.1028 Stable 

10 0.64 30.9809 56.8996 -0.0146 -0.1021 Stable 

11 0.64 30.6913 58.3850 -0.0160 -0.1044 Stable 

12 0.64 31.4309 56.7358 -0.0149 -0.1029 Stable 

13 0.64 31.6377 56.5126 -0.0149 -0.1030 Stable 

14 0.64 30.9655 57.2211 -0.0150 -0.1027 Stable 

15 0.64 31.0164 56.1545 -0.0138 -0.1007 Stable 

 

5. Discussion of Results 
The results show that on the implementation of the random perturbation value of (0.64) the proposed dynamical system 

was purely unstable when the length of the growing season ranges from 19 days to 44 days but when the length of the growing 

season increases to 49 days, we noticed a bifurcation (changing from instability to stability) and the system maintain stability 

from when the length of the growing season is 54 days up to the harvesting season (99 days) and beyond. The result also 

shows that the randomization affected the proposed dynamical system greatly as each time we run the analysis, a new result 

turns out whether the length of growing season is the same or not. It was equally found that the co-existence the steady-states 

fluctuate.    

6. Conclusion 
We have applied numerical approach of order 45 to ascertain the effect of randomization on the dynamical system and 

observed that when the length of growing season increases up to 49 days that there is bifurcation and the system maintain 

stability up to the harvesting time and beyond.  
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