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Abstract - In this paper, we consider the following nonlocal model 
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The model is a well-known one to study micro-electromechanical systems (MEMS) devices. We prove the existence of 
touchdown solutions in the genera cases  that   is an arbitrary bounded domain and ,    are positive numbers and f  is not 
constant.

1. Introduction  
In this paper, we are interested in the following nonlocal equation of Dirichlet type 
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where N    is a bounded domain with a smooth boundary, f  is a nonnegative continuous function on   and ,    are 

positive constants, and  : 0, 0,1 .u T      

The model (1.1) is  well-known  for  modelling  the motion of some elastic  menbrannes which is usually found in  Micro-
Electro Mechanical Systems (MEMS) devices included  in a variety of electronic devices such as microphones, transducers, 
sensors, actuators and so on. We kindly refer the readers to [1], [2], [3], [4] and the references therein for more detail. Here, we 
briefly mention that such a MEMS device actually contains an elastic membrane which is hanged above a rigid ground plate 
connected in series with a fixed voltage source and a fixed capacitor. In (1.1),   is the ratio of the reference electrostatic force 
and the reference elastic force, f  is the varying dielectric properties of the divice and   denotes the ratio of the fixed 
capacitance and the reference capacitance of the device. One focus on the distance (deflection) between the elastic membrane 
and the rigid ground which depends on time and its maximum is less than 1 , see in (1.1).  

The Cauchy problem of (1.1) is locally well posed in 2,1( ) ( )T TC Q C Q  where 0, ,TQ T    see in [2]. In addition, the 

authors in [5] also proved that the existence of the solution can be continued as long as u  stricly remains less than 1 . We refer 
to [5] where the authors proved the existence of the global solution to equation (1.1). We observe that the ‘1’ is critical for the 
deflection of the membrane, since the devices will breaks down. The singularity formation actually occurs (; )u t  touches down 

‘1’ at some point in   and in finite time T  i.e. 
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In particular, we call the phenomenon by touchdown in finite time. The phenomenon has gotten a lot of attention in recent 
decades from mathematicians and engineering. We firstly mention to [6] where the authors gave a lower bound to the 
touchdown behavior asymptotic. In addition, the studies [1] showed the touchdown rate when the touchdown phenomenon 
occurs. In particular in [5], the authors showed the existence of touchdown solutions to (1.1) provided that   is a bounded 

domain with a smooth boundary satisfying 
1 ,
2

   (.) 1,f   and 0,   1.   Motivated in this result, we aim to show in 

this paper the extension to the cases where   is a bounded domain with a smooth boundary arbitrarily given, ,  0.   
Besides that, we also handle to the case where f  is not constant. 

2. Main results  
Lemma 2.1. Let u  be a classical solution to (1.1) on 0,T     for some 0T   with (.) 1f   and ,  0.   Then, the energy 

functional  
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Proof. Let us consider u  be a classical solution to (1.1) that belongs to 2,1( ) ( ).T TC Q C Q  By using (1.1) and (2.1), we arrive 

at 
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which concludes (2.2) and the lemma follows. 
Remark 2.2. From (2.2), it is easy to check that: 
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          (2.3) 

Theorem 2.3. Let   be a bounded domain with smooth boundary arbitrarily given, 1f   and , 0.   Then, there exist 

initial data 0u  such that the solution u  to (1.1) touches down in finite time provided the corresponding initial energy is chosen 

sufficiently small.  

Proof. Since the problem (1.1) is locally well-posed in 2,1( ) ( )T TC Q C Q  (classical solution), we argue by contradiction that 

for all 2
0 ( ) ( ),u C C     it has a global solution u  on (0, ).  Let us define  
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2( ) ( , ) .A t u x t dx
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Note that ( , ) 0,1u x t    for all ( , )x t  in 0, ,   we have then 

2( ) ( , )A t u x t dx dx
 

      for all 0.t     (2.5) 

Multiplying equation (1.1) by u  and integrating over ,  we obtain 
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Using integration by parts in combining the condition 0| ,u   we have  
2

.u udx u dx
 

     

Consequently, 
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From (2.1), the energy dissipation formula (2.2) and relation (2.6), we express as follows  
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On the one hand, using Holder and Young inequalities, we arrive at 
2 2 2 2

21 1 2 1 ( ) .
1 1 1 1
dx dx dx dxdx
u u u u
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On the other hand, we use Jensen inequality to obtain  
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We note that 0,1 ,u    we have 
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From (2.10) and (2.11), we arrive at 
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Hence, we derive from (2.9) that 
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provided that t  is a existence time of the solution. In other words, we have  

0

.t
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This fact is contradict to our assumption that the solution is global. Thus, the solution must to touche down in finite time. 
Finally, we get the conclusion of the theorem.           
 
Next, we consider the problem (1.1) with 0,   1   and f  be a continuous function that  
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We aim at proving the existence of touchdown solutions for the problem (2.15). 

Lemma 2.4. Let u  be a classical solution to (2.15) on 0,T     for some 0T   Then, the energy functional 
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Proof. It is quite the same as proof of Lemma 2.1 that we have 
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Thus, the conclusion of the lemma follows. 

Now, we have the following result. 

Theorem 2.5. Let   be a bounded domain with smooth boundary, arbitrarily given, and f  be a continuous function on   
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Proof. As a matter of fact, the argument is similar to Theorem 2.3. By contradiction, we asume that for all initial data 
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This fact is contradict to our assumption that the solution is global. Thus, the solution must to touche down in finite time. 
Finally, we get the conclusion of the theorem.           

3. Discussion 

In this paper, we obtained two main results that Theorems 2.3 and 2.5. With Theorem 2.3, we generated the result in [6, 
Theorem 4.2] that  we showed the existence of a touchdown solution when   is an arbitrary bounded domain with smooth 
boundary. In Theorem 2.5, we  handled the nontrivial case where f  is not constant. Up to our knowledge, there is no result of 
touchdown existence for the non-constant one before.  
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