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Abstract - This study finds multicollinearity between various economic variables and the gross domestic product (GDP) 

(Exchange Rate, Labour Force, Market Capitalization and All Shared Index). For the actual and logarithm transformation 

data sets, simple and multiple linear regression models are fitted between dependent and independent variables. Then, using 

the correlation matrix, variance inflation factor (VIF), and Eigenvalues, the presence of multicollinearity is evaluated. The 

outcome demonstrates that multicollinearity exists in some of the regression coefficients of the models, making the predicted 

coefficients on GDP irrelevant. A significant multicollinearity is indicated by VIF values greater than 5. Three independent 

variables (Exchange Rate, Market Capitalization, and All Shared Index) are significantly correlated with GDP, but only 

Labour Force is not, according to a comparison of the actual and logarithm models. However, when it came to R-square, 

VIF, and Akaike Information Criteria, the logarithm model outperforms the actual model (AIC). In light of this, this study 

suggests using the logarithm model to estimate GDP using various economic independent variables (Exchange Rate, Market 

Capitalization and All Shared Index). 

Keywords - Exchange Rate, Multicollinearity, Logarithm transformation, Variance Inflation Factor. 

1. Introduction  
The value of the products and services delivered by the national economy less the value of the goods and services used 

up in production is known as the gross domestic product (GDP), according to [1]. It is equivalent to the total of gross domestic 

investment, net exports of goods and services, gross private domestic investment, and personal consumption and expenditure. 

Economic growth, which determines a nation's degree of wealth, comprises the application of successful development tactics. 

It has drawn the attention and concern of economists, academics, and those who design economic policies from all over the 

world to the problem of the existence of multicollinearity as a result of the violation of one of the assumptions of the ordinary 

least square.Market capitalization promotes development regardless of whether a nation is developed, in transition, or 

underdeveloped.[2] 

Multicollinearity is a statistical phenomenon in which there is strong correlation between two or more predictor variables 

in a multiple regression model[3]. In this situation, simple adjustments to the model or data can cause the regression 

coefficient estimates to fluctuate unexpectedly. It only affects calculations relating to dependent and independent variables 

employed, not the model's overall predictive capacity or dependability, at least not within the sample data themselves. In 

essence, multicollinearity may result in significant issues[4] 

Researchers have noted repeatedly that GDP has played a significant effect in the economic development of nations and 

the state of the humanities from recent history to the present. The theory of econometrics may be seriously affected by the 

ongoing issue of the error term's variance fluctuating or by the violation of one of the multicollinearity assumptions. 

There are various methods for calculating GDP [1] 

The most widely used method of measuring GDP is the expenditure approach, which adds together government 

spending, private investment, consumption, and net exports. The income technique, which adds up all of the national accounts 

income that goes into GDP, is another way to measure GDP. 

This study's objective is to model and identify multicollinearity utilizing the variance inflation factor of some economic 

variables on the GDP. The goals of this study are to fit simple and multiple linear regression models of economic variables 

on GDP and obtain estimates of their parameters, identify multicollinearity of economic variables on GDP using variance 

inflation factor (VIF), compare the coefficient of determination (R2), MSE, and AIC of the actual and logarithm 

transformation data model, and finally choose the most appropriate (best) model for GDP forecasting.  

 

 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and Methods 
The data utilized for this study was taken from the Nigerian Central Bank's statistical bulletin and includes information 

on the labor force, the currency rate, market capitalization, and an aggregated measure of GDP from 2000 through 2019. 

The existence of multicollinearity may have an impact on the analysis of ordinary least squares (OLS) estimators from both 

the numerical and statistical points of view. Multicollinearity is significant to many different disciplines where linear 

regression models are utilized. Regression and the variance inflation factor are the methods that this study considers for 

multicollinearity detection (V.I.F). Here, the approach of the multicollinearity test and the standard least-squares analysis of 

the regression models are discussed. 

 

Gross Domestic Product (GDP) model shall be carefully defined as;  

𝐺𝐷𝑃 = 𝑓(𝐿𝐹, 𝐸𝑅, 𝑀𝐶, 𝐴𝑆𝐼) + 휀                 (1)  

 

Such that  

𝐺𝐷𝑃𝑖 = 𝛽𝑜 + 𝛽1𝐿𝐹𝑖 + 𝛽2𝐸𝑅𝑖 + 𝛽3𝑀𝐶𝑖 + 𝛽4𝐴𝑆𝐼𝑖 + 휀𝑖                (2)  

 

where 𝛽𝑜 , 𝛽1, 𝛽2, 𝛽3, 𝑎𝑛𝑑 𝛽4  are estimated parameters.  

 

LF = Labour Force, ER= Exchange Rate, MC= Market Capitalization, ASI= All Shared Index and 휀 = 𝐸𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚.  

The classical linear regression model for the economic variables can be written thus  

 

𝑌𝑖 = 𝛽𝑜 + 𝛽1𝑥1i + 𝛽2𝑥2i + 𝛽3𝑥3i + ⋯ + 𝛽k𝑥ki + 𝜇𝑖                (3)  

 

𝑖 = 1, 2, 3, … , n where 𝛽𝑜 = 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝛽1 𝑡𝑜 𝛽𝑘=regression coefficients, 𝜇= stochastic disturbance term,  𝑖 = 𝑖𝑡ℎ 

observation and 𝑛𝑡ℎ the size of the population. 

 

The assumptions of OLS, which is the most popular technique for fitting or estimating the regression coefficient of a 

multiple linear regression model, are. 

 

Linear in parameters for example 𝑦 = 𝑓(𝑋, 𝜃) + 휀:  

 

 𝑓(𝑋, 𝜃) = 𝑋𝛽       (4) 

 

Random sampling 

Zero conditional mean  

 

E(𝑦/𝑥) =E(𝛽𝑜 + 𝛽1𝑥 + ⋯ 𝜇/𝑥)     (5) 

 

E(𝜇/𝑥) =0, E(𝛽𝑜/𝑥) + E(𝛽1𝑥/𝑥) + E(𝜇/𝑥). 

 

E(𝑦/𝑥) = �̂�𝑜 + �̂�1𝑥 + 0 

 

Sample variance         

The errors are uncorrelated 

Homoscedasticity var(𝜇/𝑥) =  𝛿2 

The errors are normally distributed  

When the residuals' roughly constant variance requirement is broken or not met, multicollinearity is said to be an issue. The 

OLS is therefore no longer the most accurate and unbiased linear estimator of the regression coefficient. 

 
2.1. Variance Inflation Factor (VIF) 

The VIF is employed as a multicollinearity indicator in multiple regressions. Because larger amounts of VIF are known 

to negatively affect the results of multiple regression analyses, researchers prefer lower levels of VIF.The VIF is also defined 

as the ration between the variance of the OLS estimator of the original model and the variance of the model in which the 

variables are orthogonal [6]and [7]. 

In particular, if adding or removing a regressor producing a large changes in the estimates of the regression coefficients, 

mutlicollinearity will be indicated [8] 

Tolerance and Variance Inflation Factor are two metrics that might help a researcher find multicollinearity[11].When 

the climatic variables exhibit mutlicollinearity, estimation of the variables coefficients using OLS may result in regression 

coefficients much larger than the practical situation would deem necessary (or reasonable) [10].  
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It should be mentioned that, according to [11], the variance of the OLS estimator for a typical regression coefficient (let's 

say _j) may be shown as follows; 

Var(�̂�𝑖)= 
𝛿2

𝑆𝑖𝑖(1−ℛ𝑖
2)

        (6) 

 

Assume that 𝑋𝑖 and the other explanatory variables in the model do not have a linear relationship. The variance of �̂�𝑖  will 

then be equal to 
𝛿2

𝑆𝑖𝑖
 . and ℛ𝑖

2 will be zero. By dividing this by the expression for Var(�̂�𝑖), shown before, we arrive at the 

variance inflation factor as 

VIF(�̂�𝑖) = 
1

(1−ℛ𝑖
2)

         (7)  

 

Tolerance (�̂�𝑖) = 
1

𝑉𝐼𝐹
 = 1 − ℛ𝑖

2)       (8) 

 

The jth diagonal element of Column matrix can be written as 

 

𝑉𝐼𝐹𝑖 =
1

1−𝑅𝑖
2       (9) 

 

where 𝑅𝑖
2 is the coefficient of determination obtained, when it is regressed on the remaining 𝑝 − 1 regressors.  

 
2.2. Multicollinearity 

The linear association between two or more explanatory factors through a strong linear relationship in which the effects 

of the dependent variables and the explanatory variables cannot be distinguished is known as multicollinearity. The only 

extant statistical test for the diagnosis of multicolinearity was presented by [12] and has received strong criticism [13], 

[14],[15] and [16]. 

The idea of orthogonality is frequently used to describe the issue of linear multicollinearity. If an eigenvalue is less than 

one, particularly when it is equal to or close to zero, then the explanatory variables are not orthogonal and the eigenvalues 

are equal to one. This causes the issue of linear multicollinearity.  

Several statistical literature offers quantify collinearity with the most common pairwise correlation coefficient (r), [17] 

and [18]. [19] stated that the most useful class of indices depends on the complexity of the data set. Sometimes the per-

variable-indices may indicate collinearity[18],although the variable-set indices miss it [6]and [19].  

Two types of linear multicollinearity are thought to exist [20]; 

 

2.2.1. The Perfect Multicollinearity 

Since it is impossible to discover the inverse of the matrix in this sort of multicollinearity, the specific information matrix 

(𝑋1𝑋) has a determinant equal to zero (|𝑋1𝑋|) = 0  [21], making it impossible to obtain the estimators of the general linear 

regression model.The analysis of the Eigen value can identify the approximate nature of the linear dependency existing 

between the variables [18]. 

 

2.2.2. Semi Multicollinearity 
This is the research topic where the value of a certain determinant of the information matrix (𝑋1𝑋) is extremely small 

and very near to zero, |𝑋𝑋| = 0 [23]. As a result, estimators for the parameters can be found; however, due to this particular 

type of multicollinearity, estimations are erroneous and estimated parameter differences are very significant. 

The VIF calculates the parameter estimates for all the explanatory variables in the model and measures the inflation of those 

estimates. 

 

The VIF with a formula VIF = 
1

1−𝑅𝑗
2,      j= 0,1,2…m    (10) 

 
2.3. Test for Detecting Multicollinearity 

[22] also proposed a procedure for detecting multi collinearity which comprised of three tests (i.e Chi-square test, F-test 

and T-test). [18] measured the severity of multicollinearity by the condition number defined as ‖𝑛‖: ‖𝑚‖, where ‖𝑛‖ and 

‖𝑚‖ are the largest and the smallest eigenvalues (respectively) of ‖𝑋′𝑋‖. However, multicollinearity’ is a fuzzy concept, 

dialectical in nature [9]. 

 

The parameter estimates are unbiased even in the presence of multicollinearity;    𝐸(𝛽1) = 𝛽 𝑓𝑜𝑟 𝑎𝑙𝑙 = 1,2 … 𝐾.  It is 

not always true to say that the presence of multicollinearity in a model causes the variance of parameter estimates to increase, 
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as both the numerator and the denominator of variances are typically affected by terms involving variables, meaning that the 

final size of these variances may not be large. 

To confirm the independence of regression variables, the multicollinearity test is required. The variance inflation factor is 

thus[5]: 

VIF = 
𝐼

𝐼−𝑅𝑖
2      (11) 

 

when R2 is the coefficient of determination 

 

𝑅2 =
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
=

𝑆𝑆𝑅

𝑆𝑆𝑇
    0≤R2≤1     (12)  

and  

𝑆𝑆𝑇 = 𝑛 ∑(𝑦1 − 𝑦)2       (13) 

 
2.3.1. Akaike information Criterions (AIC) 

The model selection criteria considered here is Akaike information Criterions (AIC); 

 

 𝐴𝐼𝐶 = [−2𝐾 𝐼𝑛 𝜋 + 2𝐾𝑝]      (14)  

 

AIC can also be calculated using residual sum of squares from regression 

 

 𝐴𝐼𝐶 = 𝑛 𝐾𝑛 (𝑅𝑆𝑆 𝑛) + 2𝑘⁄       (15)  

 

Large standard errors may make the regression coefficients appear insignificant, which may cause important variables to be 

omitted. 

 

For example to test 

H: β = 0, we use t-ratio as 

t1=
𝑏

√𝑣𝑎𝑟(𝑏)
     (16) 

 

Since 't' is tiny because var (b) is large, it is more frequently accepted. Therefore, detrimental multicollinearity seeks to 

eliminate crucial factors. 

 

2.4. Remedies of Multicollinearity 

Numerous methods have been suggested to address the issues brought on by the presence of multicollinearity in the data. 

If the data is presented as a time series, then longer time series may cause one to disregard information from the past that is 

too recent. Increasing the size won't assist if the multicollinearity is caused by any identity or precise relationship. Drop a 

few collinear variables to comply with the X-full matrix's rank requirement. The variables with low t-ratio values can be 

removed first. 

2.4.1. Use some Relevant Prior Information 

One could conduct a search using some pertinent historical data regarding the regression coefficients. This could result 

in the specification of some coefficient estimations. The specification of some precise linear restrictions and stochastic linear 

restrictions are part of the larger general situation. For this, techniques like mixed regression and restricted regression can be 

applied. This function is served by the information's accuracy and relevancy. Such analyses depend heavily on the accuracy 

and usefulness of the data, but it might be difficult to guarantee this. 

 

2.4.2. Employ Generalized Inverse 

The generalized inverse can be used to get the inverse of 𝑋1𝑋 𝑖𝑓 𝑟𝑎𝑛𝑘(𝑋1𝑋) = 𝐾.  𝐵 = (𝑋1𝑋)−1𝑋1𝑦 can therefore be 

used to estimate B. Except when using inverse 𝑋1𝑋 the estimates won't be unique in this situation. Different approaches to 

determining the generalized inverse may have various outcomes. 

 

2.4.3. Use of Principal Component Regression 

Principal component analysis is the methodology on which principal component regression is based. The K-explanatory 

variables are converted into a new set of orthogonal variables known as principal components. This technique is typically 

used to reduce the dimensionality of data while retaining some levels of explanatory variable variability, which is expressed 

by the variability in the study variable. Then, using the ordinary least square method, study variables are regressed on the set 

of chosen principal components. 

OLS is used without any issues because all principal components are orthogonal and thus mutually independent. Once 

the estimates of regression coefficients for the smaller set of orthogonal variables (principal components) have been obtained, 
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they are mathematically transformed into a new set of estimated regression coefficients that correspond to the original 

correlated set of variables. These updated estimated coefficients are major component estimators for the regression 

coefficient. 
 

2.5. Model Selection Criteria 

The information criteria are used to choose the most appropriate fitted model after the actual and log models were 

estimated using the ordinary least square approach. 

2.5.1. Akaike Information Criteria 

It often describes how bias and variance are exchanged when a model is specified for a collection of data. The AIC value 

of each model could be used to rank them. Thus 

𝐴𝐼𝐶 = −2𝐼𝑛𝐿(𝜃) + 2𝐾       (18) 

In this study, variance inflation factor and correlation are two techniques for multicollinearity detection (VIF). 
 

2.6. Model Specification  

The economic models considered can be written in the following ways 
 

A. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 + 휀𝑖                                                              (20) 

 

B. 𝐼𝑛(𝑌)𝑖 = 𝛽0 + 𝛽1𝐼𝑛(𝑋1) + 𝛽2𝐼𝑛(𝑋2) + ⋯ + 𝛽𝑘𝐼𝑛(𝑋𝑘) + 휀𝑖                                (21) 

where 

𝑌𝑖= is the observation on the response ( ith dependent variable; GDP) 

𝛽0 = Intercept (constant) on Y axis 

𝛽1, 𝛽2, ⋯ , 𝛽𝑘= regression coefficients 

is the controllable variable (or independent variable). 𝑋1𝑖 , 𝑋2𝑖, ⋯ , 𝑋𝑘𝑖 = independent variables (ith predictor 

value) 

휀𝑖=ith random error term, Note: K = 4. 

𝑋1= Exchange Rate 

𝑋2= Labour Force 

𝑋3= Market Capitalization 

𝑋4= All Share Index. 
 

The total model to build is 2𝐾 − 1 = 24 − 1 = 15  models 
 

3. Results 
3.1. Data   

The economic data used were obtained from the CBN Bulletin of the Centre Bank of Nigeria. The information acquired 

consists of monthly economic statistics on the exchange rate, the labor force, market capitalization, all-share index, and 

Nigeria's real GDP. (Shown in Appendix A.) We used the two models to decide which one would work best for VIF without 

multicollinearity. The two models were then put side by side. 

 

3.2. Detecting Multicollearity on the Two Models 

The section detects multicollearity, using Correlation analysis and Variance Inflation factors (VIF).   

 

3.2.1. Model A:  Relationship between the dependent (Y) and independent Variables(X1to X4) (Actual values) Model A 

By calculating the straightforward correlation coefficient between the variables, we first assess how bad the multicollinearity 

is. 
Table 1. Correlation coefficient between dependent (Y) andindependent Variables (X1-X4) 

Correlation Matrix  

Real Gross 

Domestic 

Product.Y 

Monthly 

Exchange 

Rate.X1 

Labour 

Force.X2 

Market 

Capitalization.X

3 

All 

Share 

Index.X

4 

Real Gross Domestic 

Product.Y 1     

Monthly Exchange Rate.X1 0.553 1    

Labour Force.X2 0.676 0.867 1   

Market Capitalization.X3 0.561 0.591 0.849 1  

All Share Index.X4 -0.060 -0.124 -0.020 0.438 1 

i
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Hence, there exist moderate multicollinaerity from the correlation result in Table 4.1 

 

Detecting Multicollinaerity by Variance Inflation Factors (VIF): Model A 

Next, we acquire the elementary regression (or each variable regression) and combine regression, presenting R2, the 

coefficients p-values, and VIF values to analyze the impact of multicollinaerity (using Equation 20). 

 
Table 2. Parameter Estimates of the Regression of GDP on Actual Economic variables 

       Model Parameter Estimates with p-values in parenthesis  R2 

(%) 

𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 

 𝒀𝒊 = 𝒇(𝑿𝟏) 

 

VIF 

7960 

(0.000**) 

26.52 

(0.000**) 

1.00 

   30.56 

𝒀𝒊 = 𝒇(𝑿𝟐) 

 

VIF 

-1107 

(0.000**) 

4.85×10-4 

(0.000**) 

1.00 

   45.66 

  𝒀𝒊 = 𝒇(𝑿𝟑) 

 

VIF 

7771 

(0.000**) 

 

0.6881 

(0.000**) 

1.00 

   31.45 

𝒀𝒊 = 𝒇(𝑿𝟑) 

 

VIF 

14722 

(0.000**) 

-0.0316 

(0.391) 

1.00 

   0.36 

𝒀𝒊 = 𝒇(𝑿𝟏, 𝑿𝟐) 

 

VIF 

-13958 

(0..000**) 

-6.36 

(0.194) 

4.04 

5.69×10-4 

(0.000**) 

4.04 

  46.11 

𝒀𝒊 = 𝒇(𝑿𝟏, 𝑿𝟑) 

 

VIF 

6351 

(0.000**) 

16.32 

(0.000**) 

1.54 

0.4415 

(0.000**) 

1.54 

  38.99 

𝒀𝒊 = 𝒇(𝑿𝟏, 𝑿𝟒) 

 

VIF 

7818 

(0.000**) 

26.56 

(0.000**) 

1.02 

0.00442 

(0.891) 

1.02 

  30.57 

𝒀𝒊 = 𝒇(𝑿𝟐, 𝑿𝟑) 

VIF 

-1204 

(0.000**) 

5.14×10-4 

(0.000**) 

3.59 

-0.058 

(0.634) 

3.59 

  45.72 

𝒀𝒊 = 𝒇(𝑿𝟐, 𝑿𝟒) 

 

VIF 

-10277 

(0.000**) 

4.85×10-4 

(0.000**) 

1.00 

-0.0247 

(0.364) 

1.0 

  45.88 

𝒀𝒊 = 𝒇(𝑿𝟑, 𝑿𝟒) 

 

VIF 

-12135 

(0.000**) 

0.8912 

(0.000**) 

1.24 

-0.1978 

(0.000**) 

1.24 

  43.02 

𝒀𝒊 = 𝒇(𝑿𝟏, 𝑿𝟐, 𝑿𝟑) 

 

VIF 

-19613 

(0.000**) 

-11.29 

(0.061) 

5.85 

7.36×10-4 

(0.000**) 

13.68 

-0.209 

(0.178) 

5.20 

 46.66 

𝒀𝒊 = 𝒇(𝑿𝟏, 𝑿𝟐, 𝑿𝟒) 

 

VIF 

-13462 

(0.000**) 

-7.79 

(0.128) 

4.24 

5.85×10-4 

(0.000**) 

4.17 

-0.0328 

(0.225) 

1.05 

 46.50 

𝒀𝒊 = 𝒇(𝑿𝟏, 𝑿𝟑, 𝑿𝟒) 

 

VIF 

10.559 

(0.000**) 

7.85 

(0.035**) 

2.13 

0.731 

(0.000**) 

2.59 

-0.1594 

(0.000**) 

1.71 

 44.28 

𝒀𝒊 = 𝒇(𝑿𝟐, 𝑿𝟑, 𝑿𝟒) 

 

VIF 

-7016 

(0.232) 

4.13×10-4 

(0.001**) 

11.20 

0.142 

(0.551) 

13.85 

-0.0521 

(0.330) 

3.85 

 45.98 

𝒀𝒊

= 𝒇(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒) 

 

VIF 

-22059 

(0.045**) 

-12.49 

(0.106) 

9.61 

7.92×10-4 

(0.003**) 

50.65 

-0.290 

(0.416) 

31.43 

0.0170 

(0.803) 

6.34 

46.68 
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Here, p-values in parenthesis where **significant at 5%. The bold model has lowest VIF (best model). Note when VIF 

is greater than 5 it implies that multicollinearity is presence. 

Three models in Table 2 have VIF values that are above 5 in one or more independent of the regression variables, which 

is a sign of significant multicollinearity. However, after removing one variable (X2), the bold model (𝑌𝑖 = 𝑓(𝑋1, 𝑋3, 𝑋4)) 

with a moderate R2 of 44.28% is the best fit for the model. Moreover, the significance level for the three variable coefficients 

is 5%. The three variables' respective VIF values are 2.13, 2.59, and 1.71, which are all less than 5. 

 

 

3.2.2. Model B: Relationship between the independent Variables (log-log) Model B 

Similarity, we calculated each step in section 3.2.1 above, and by calculating the simple correlation coefficient between 

the variables, we assess the severity of multicollinearity (using Equation 21). 

 

After using the logarithm to modify the data sets, we set the VIF value to 5. The fact that two models in Table (4) have 

excessive VIF values (>5) for one or more independent regression variables indicates substantial multicollinearity. However, 

after removing one variable (X2), the bold model (𝑌𝑖 = 𝑓(𝑋1, 𝑋3, 𝑋4))  with a moderate R2 of 75.48% is the best match for 

the model. Moreover, the significance level for the three variable coefficients is 5%. The three variables' VIF values, which 

are each less than 5, are 1.90, 2.45, and 1.72 for 𝑌𝑖 = 𝑓(𝑋1, 𝑋3, 𝑋4). 
 

The identical model, which has three variables (Exchange Rate, Market Capitalization, and All Share Index) and four 

parameters, was found in Tables 2 and 4. This finding indicates that, while the labor force has a little impact on the Nigerian 

GDP, the exchange rate, market capitalization, and all-share index do.  

We fit the identified model below with its fitted graphs for both data sets using Gretl statistical software (actual and logarithm 

transformation data sets). 
 

Model A: OLS, using observations 2004:01-2020:12 (T = 204) 
 

Table 3. Dependent variable: REAL_GROSS_DOME 

 Coefficient Std. Error t-ratio p-value  

const 10559 1179.06 8.9554 <0.00001 *** 

MonthlyExchang 7.85317 3.69106 2.1276 0.03459 ** 

Market_Capitali 0.731018 0.10421 7.0149 <0.00001 *** 

All_Share_Index -0.157368 0.0361223 -4.3565 0.00002 *** 

 
Mean dependent var  13743.87  S.D. dependent var  4905.486 

Sum squared resid  2.72e+09  S.E. of regression  3689.152 

R-squared  0.442785  Adjusted R-squared  0.434427 

F(3, 200)  52.97591  P-value(F)  3.03e-25 

Log-likelihood -1962.927  Akaike criterion  3933.853 

Schwarz criterion  3947.126  Hannan-Quinn  3939.222 

Rho  0.215130  Durbin-Watson  1.564966 

 

Model 2: OLS, using observations 2004:01-2020:12 (T = 204) 
Table 4. Dependent variable: l_REAL_GROSS_DO 

 Coefficient Std. Error t-ratio p-value  

const 9.37611 0.500585 18.7303 <0.00001 *** 

l_Monthly_Excha 0.16532 0.0346237 4.7748 <0.00001 *** 

l_Market_Capita 0.382698 0.0264043 14.4938 <0.00001 *** 

l_All_Share_Ind -0.405839 0.0518694 -7.8243 <0.00001 *** 

 
Mean dependent var  9.480143  S.D. dependent var  0.304826 

Sum squared resid  4.625413  S.E. of regression  0.152076 

R-squared  0.754783  Adjusted R-squared  0.751105 

F(3, 200)  205.2018  P-value(F)  8.89e-61 

Log-likelihood  96.76509  Akaike criterion -185.5302 

Schwarz criterion -172.2577  Hannan-Quinn -180.1612 

Rho  0.562689  Durbin-Watson  0.875805 
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Table 5. Summaries of the identified Model A and B 

 Model Parameter Estimates with p-values in 

parenthesis  

 

 

R2 

 

 

AIC 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 

Model A: 

Actual data sets. 

𝒀𝒊 =
𝒇(𝑿𝟏, 𝑿𝟑, 𝑿𝟒)   

 

VIF 

10.559 

(0.000**

) 

7.85 

(0.035**

) 

2.13 

0.731 

(0.000**

) 

2.59 

-0.1594 

(0.000**

) 

1.71 

 44.28 

3933.853 

Model B: 

Logarithm 

Transformation 

data sets. 

𝒀𝒊 =
𝒇(𝑿𝟏, 𝑿𝟑, 𝑿𝟒)  

 

VIF 

9.376 

(0.000**

) 

0.1659 

(0.000**

) 

1.90 

0.3827 

(0.000**

) 

2.45 

-0.4059 

(0.000**

) 

1.72 

 75.48 

-185.5302 

 
As a result, using VIF, Models A and B both identified the same model without multicollinaerity. The best model that 

fit the data set has three variables (Exchange Rate, Market Capitalization, and All Share Index), along with four parameters. 

 

5. Summary Conclusion and Recommendations 
5.1. Summary 

In this study, the presence of multicollinearity and the logarithm-logarithm transformation of the economic variables 

were investigated. The Variance Inflation Factor (VIF) test for multicollinearity and the correlation coefficient matrix are 

the approaches used. The appropriate model without Variance Inflation Factor was determined by computing the two models 

and comparing them. Minitab 20, Gretl 21, and Microsoft Excel are the statistical programs used. 

Finally, the variance inflation factor was used to identify the regression model's parameters, coefficient of determination, 

and multicollinearity (VIF). 

Additionally, we contrast the results of the fitted models and pinpoint the factors that significantly affect GDP. Utilizing 

the model adequacy criterion technique (i.e. AIC) and R-Square, the model with three variables and four parameters was 

determined to be the best model. Consequently, the model that best captures the relationship between the dependent variable 

and the independent variables (Exchange Rate, Market Capitalization, and All Share Index) (Nigeria Real Gross Domestic 

Product). The work's goals, which included fitting a regression model, determining the coefficient of determination, and 

identifying multicollinearity using variance inflation factors, were ultimately confirmed. 

 

6. Conclusion    
The Variance Inflation Factor, a multicollinearity test, has been used to compare theperformance of the various models 

and calculated coefficients. 

The best model for the observation under consideration according to the research was one with three variables and four 

parameters but without the influence of VIF. 
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