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Abstract - In this paper we initiated the study of generalized derivations on Mn×n(C). We characterize all the generalized 

derivations on Mn×n(C) and proved the sufficient conditions when the product of two generalized derivations is again a 

derivation.  
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1. Introduction  
Derivation on different algebras and Banach algebras are studied widely across the world from the 20th century. It 

generalizes the features and properties of the differentiation operator. The study of derivation on algebras are started back from 

the 1940s. In 1960 Shoichiro Sakai [6] proved that any derivation on Mn×n(C) is a bounded linear operator on Mn×n(C) i.e. 

continuous. Also in 1966 [7] he proved that all the derivations on Mn×n(C) must be inner i.e. there is no outer derivation 

possible on Mn×n(C). We generalize the definition of derivation and inner derivation on Mn×n(C) by getting the motivation from 

the definition of generalized derivation given by Havala [2], Aydin[3] who defines a generalized derivation on a ring R is an 

additive map f : R → R such that there exists a ring derivation δ : R→R and satisfies 

 

f(xy) = f(x)y + xδ(y) ∀ x,y ∈R. 

 

Then after that in the work [8,9]. We characterize the generalized derivations on Mn×n(C). In [4] Bresner find few 

conditions in which the product of two generalized derivation on a ring R will again be a generalized derivation on R. We also 

find the condition on any two generalized derivations such that their product is again a generalized derivation. We also proved 

Let A be any commutative sub-algebra of Mn×n(C). Then GD(A) is an algebra. 

 

2. Overview 
Let Mn×n(C) be the set of all n × n matrices over C with an identity I. Let δ denotes any derivation on Mn×n(C) i.e. δ : Mn×n(C) 

→ Mn×n(C) is a linear map which satisfies δ(XY ) = δ(X)Y +Xδ(Y ). A derivation δ is said to be inner if there exists an element 

A in Mn×n(C) such that δ(X) = [A,X] = AX −XA ∀ X ∈ Mn×n(C) where [.,.] is the Lie product. 

After giving the definition of generalized derivations and generalized inner derivations. In Theorem 3.4 we first proved 

that all the generalized derivation f on Mn×n(C) is of the form f = MP + [A,.]. 

 

where P,A ∈ Mn×n
(C) and MP is the multiplication operator on Mn×n

(C) i.e. all the generalized derivations on Mn×n(C) are 

generalized inner derivations on Mn×n(C). Let GD(Mn×n(C)) be the set of all the generalized derivations on Mn×n(C). Theorem 

3.8 we proved the product of two generalized derivations f1 = MP + [A,.] and f2 = ML + [B,.] on Mn×n
(C) can again be a 

generalized derivation iff the following two conditions holds 

• f1(X)[B,Y ] + f2(X)[A,Y ] = 0. 

• [P,X][B,Y ] + [A,X][B,Y ] + [B,X][A,Y ] + [A,[B,X]]([A,Y ] − Y ) = 0 ∀ X,Y ∈ Mn×n(C). 

Then in Theorem 3.4 we proved Let A be any commutative sub-algebra of Mn×n(C). 

 

Then GD(A) is an algebra. 
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3. Generalized Derivations 
3.1. Definition(Generalized Derivations) 

A linear map f : Mn×n(C) → Mn×n(C) is said to be a generalized derivation on a Mn×n(C) if there exists a derivation δ on 

Mn×n(C) such that 

f(AB) = f(A)B + Bδ(A) ∀ A,B ∈ Mn×n(C). 

Remark 3.2. if f = δ then clearly it is the definition of a derivation on Mn×n(C). i.e. all the derivations on Mn×n(C) are 

generalized derivations. 

 

3.3. Definition(Generalized Inner Derivations) 

A linear map f : Mn×n(C) → Mn×n(C) is said to be a generalized inner derivation on a Mn×n(C) if there exists an inner derivation 

δA on Mn×n
(C) such that f(XY ) = f(X)Y + Y δA(X) ∀ X,Y ∈ Mn×n(C). 

where δA(X) = [A,X] = AX – XA 

Theorem 3.4. Let f be a generalized derivation on Mn×n(C) then it is of the form 

f = MP + [A,.] 

where P,A ∈ Mn×n
 (C) and MP is the multiplication operator on Mn×n

(C). 

i.e. all generalized derivations on Mn×n(C) are generalized inner derivations. 

Proof. For any A ∈ Mn×n(C) we have, 

 f(A) = f(I.A) 

 = f(I).A + I.δ(A) (1) 

As δ is a derivation on Mn×n(C), then it must be inner, so there exists A ∈ Mn×n(C) such that 

δ(X) = [A,X] = AX − XA ∀ X ∈ Mn×n(C) (2) 

From (1) and (2) 

 f(X) = f(I).x + [A,X] 

 = Mf(I)(X) + [A,X] ∀ X ∈ Mn×n(C) 

Put α = f(I) and hence the result. 

Remark 3.5. If A is a commutative sub-algebra of Mn×n(C) then all the derivations on A must be 0. But this need not true for 

the generalized derivations i.e. some non zero generalized derivations are possible on A. Here we will discuss an example. Let 

A be the set of all the commutative n × n matrices over C then A is a commutative sub-algebra of Mn×n(C) with identity. Let 

0 ̸= B ∈A be any non zero matrix then we define f : A→A by 

f(X) = BX 

then f is a non zero generalized derivation on A 

Remark 3.6. The set of all the generalized derivations on Mn×n(C) need not to be closed under multiplication. 

let f1 = MP + [A,.] and f2 = ML + [B,.] be any two generalized derivations on Mn×n
(C) where A ̸= 0 and B is not in the centralizer of 

Mn×n
(C) then 

(f1f2)(XY ) = f1(f2(XY )) 

 = f1(f2(X).Y + X.[L,Y ]) 

 = f1(f2(X).Y ) + f1(X.[L,Y ]) 
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 = (f1f2)(X).Y + f2(X).[A,Y ] + f1(X).[L,Y ] + X.f1([L,Y ]) 

which is not a generalized derivation as 

f2(I).[A,Y ] + f1(I).[B,Y ] = L.[A,Y ] + P.[B,Y ] ̸= 0 

for some Y in Mn×n(C). 

Now we will discuss under what conditions the product of two generalized derivation is again a derivation. 

Theorem 3.7. Let f1 = MP + [A,.] and f2 = ML + [B,.] be any two generalized derivations on Mn×n(C and α ∈C. 

Then αf1+f2 is again a generalized derivation on Mn×n(C) of the form MαP+L + [αA + B,.]  

Proof. Let X,Y ∈ Mn×n
(C), Then 

(αf1 + f2)(XY ) = αf1(XY ) + f2(XY ) 

= αMP(XY ) + α[A.XY ] + ML(XY ) + [B,XY ] 

= αP(XY ) + αA(XY ) − α(XY )A + L(XY ) + B(XY ) − (XY )B 

= (αP + L)(XY ) + (αA + B)(XY ) − (XY )(αA + B) = MαP+L(XY ) + [αA + 

B,XY]. 

Hence αf1 +f2 is again a generalized derivation on Mn×n(C) of the form MαP+L+ [αA + B,.]. 
  

Theorem 3.8. Let f1 = MP + [A,.] and f2 = ML + [B,.] be any two generalized derivations on Mn×n(C). Then 

following are equivalent 

(a) f1f2 ∈GD(Mn×n(C)) 

(b) f1(X)[B,Y ]+f2(X)[A,Y ] = 0 and [P,X][B,Y ]+[A,X][B,Y ]+[B,X][A,Y ]+ 

[A,[B,X]]([A,Y ] − Y ) = 0 ∀ X,Y ∈ Mn×n(C) 

Proof. 

(f1f2)(XY ) = f1(f2(XY )) 

 = f1(f2(X).Y + X.[B,Y ]) 

 = f1(f2(X).Y ) + f1(X.[B,Y ]) 

 = (f1f2)(X).Y + f2(X).[A,Y ] + f1(X).[B,Y ] + X.f1([B,Y ]) 

Now let δ(Y ) = f1([B,Y ]) 

δ(XY ) = f1([B,XY ]) 

 = P[B,XY ] + [A,[B,XY ]] 

 = P[B,X]Y + PX[B,Y ] + [A,[B,X]Y + X[B,Y ]] 

 = P[A,X]Y + PX[B,Y ] + [A,[B,X]Y ] + [A,X[B,Y ]] 

Also 

= P[B,X]Y + PX[B,Y ] + [A,[B,X]][A,Y ] + [B,X][A,Y ] + [A,X][B,Y ] + X[A,[B,Y ]] 

 δ(X)Y + Xδ(Y ) = f1([B,X])Y + Xf1([B,Y ]) 

 = P[B,X]Y + [A,[B,X]]Y + XP[B,Y ] + X[A,[B,Y ]] 

Then for all X,Y ∈ Mn×n
(C) 

δ(XY ) = Xδ(Y )+δ(X)Y ⇐⇒ [P,X][B,Y ]+[A,X][B,Y ]+[B,X][A,Y ]+[A,[B,X]]([A,Y ]−Y ) = 0 

Hence the result.  

Theorem 3.9. Let A be any commutative sub-algebra of Mn×n(C). Then GD(A) is an algebra. 

Proof. Using Theorem 3. 7 we have GD(A) is a subspace of GD(Mn×n(C)). As A is a commutative sub-algebra 

of Mn×n(C). Then using Theorem 3.8 we have the result.  
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4. Conclusion 
We characterize all the generalized derivations on Mn×n(C) and proved conditions in which the product of two generalized 

derivation on a ring R will again be a generalized derivation on R. We also find the condition on any two generalized 

derivations such that their product is again a generalized derivation. We also proved Let A be any commutative sub-algebra of 

Mn×n(C). Then GD(A) is an algebra. 
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