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Abstract - In this paper, we will study the rotation number on the sphere, and we will show that under certain conditions 
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1. Introduction 
When we study dynamic systems, the evolution law is generally given by a function 𝑓 and the space of times can be 

discrete (𝑇 = ℤ) or continuous(𝑇 = ℝ). We are interested in knowing the future behavior of this system ([1], [4]), but we 

also want information about the existence of periodic orbits of the system and about the behavior in terms of its stability of 

it. Even though it is known that for a dynamical system with a law of evolution given by a diffeomorphism 𝑓 on ℝ there is 

no nontrivial recurrence and, there can only be periodic points of period one or two, the same in the case of the circle 𝕊1 

where there is non-trivial recurrence and we can find periodic points of any period. Thus, it is interesting to study the 

dynamics of diffeomorphisms on 𝕊1 and other spaces such as the sphere, the ring, the torus, etc. 

Currently, arduous research is being done on a part of dynamical systems that has to do with the existence of generic 

properties. A property 𝑃 is said to be generic in 𝐹 if there exists a residual set 𝐴 ⊂ 𝐹, such that every element of 𝐴 satisfies 

the property 𝑃. We know that one of the most well-known and important generic properties is given by the Kupka-Smale 

theorem, and other properties were given by Robinson, Pixton, and Franks, among others. 

One of the tools used in dynamical systems to study the existence of periodic orbits is the rotation number. In this work, 

we will revise some important results about rotation number in the circle, annulus, and sphere. Furthermore, we are going to 

relate these concepts with generic properties in diffeomorphisms defined on the sphere and the ring, and then we will prove 

a result about the existence of essential hyperbolic periodic points in Moser generic diffeomorphisms defined on the annulus. 

2. Preliminaries 
Next, we define the stable and unstable sets for a closed orbit of a vector field 𝑓 defined on a manifold 𝑀, (see [1] and 

[2]). 

Definition 1. Let 𝑓: 𝑀 → 𝑀 a vector field, and 𝛾 be a closed orbit of 𝑓.The stable and unstable sets of 𝛾 are given by  

𝑊𝑠(𝛾) = {𝑦 ∈ 𝑀 ∣ 𝜔(𝑦) = 𝛾} and 𝑊𝑢(𝛾) = {𝑦 ∈ 𝑀 ∣ 𝛼(𝑦) = 𝛾}, 

where, 𝜔 and 𝛼 are the omega and alpha limits. 

Definition 2. The tangent space to a manifold 𝑀 at the point 𝑝, is given by 

𝑇𝑀𝑝 = {v𝑝 ∣ v𝑝 is a vector of a differential curve in 𝑀 that passes through p} 

The tangent bundle of 𝑀 is noted by 𝑇𝑀 and defined as 

𝑇𝑀 = {(𝑝, 𝐯) ∣ 𝑝 ∈ 𝑀 𝑦 v is a tangent vector in p} = ∪
𝑝∈𝑀

𝑇𝑀𝑝 

Definition 3. Let 𝑆 be a submanifold of 𝑁 and 𝑓: 𝑀 → 𝑁 be a mapping of class 𝐶𝑟 with 𝑟 ≥ 1. We say that 𝑓 is transversal 

to 𝑆 at a point 𝑝 ∈ 𝑀 if: 𝑓(𝑝) ∉ 𝑆 or 𝑇𝑁𝑓(𝑝) = 𝐷𝑓𝑝(𝑇𝑀𝑝) ⊕ 𝑇𝑆𝑓(𝑝). 

http://www.internationaljournalssrg.org/
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We say that 𝑓 is transverse to 𝑆, denoted by 𝑓 ⋔ 𝑆, if 𝑓 is transverse to 𝑆 at every point in 𝑀. When 𝑀 is also a submanifold 

of 𝑁, 𝑓 = 𝑖 is the inclusion, and 𝑖 is transverse to 𝑆 , we say that the manifolds 𝑀, 𝑆 are manifolds that intersect transversely 

in 𝑁. (See [3]) 

We state two key results of transversality. The proof of these results can be review in [4] 

Theorem 1. Let 𝛾 be a closed hyperbolic orbit of a field 𝑓 of class 𝐶𝑟 on 𝑀. Let 𝑉 be a small open neighborhood of 𝛾. The 

𝑊𝑠(𝛾) and 𝑊𝑢(𝛾) are submanifolds of class 𝐶𝑟 de 𝑀, futhermore 𝑊𝑠(𝛾) is transverse to 𝑊𝑢(𝛾) and 𝑊𝑠(𝛾) ∩ 𝑊𝑢(𝛾) = 𝛾. 

Theorem 2. Let 𝑓 be a field whose singularities and close orbits are hyperbolic. Give 𝑇 > 0, there exist a finite number of 

closed orbits of 𝑓 with period less than or equal to 𝑇. In particular, 𝑓 has a maximum number of enumerable closed orbits. 

Definition 4. A field of vector 𝑓 of class 𝐶𝑟 on 𝑀 is said  if the critical elements of 𝑓 (singularities and closed orbits) are 

hiperbolic and if 𝑝1 and 𝑝2 are critical elements of 𝑓, then 𝑊𝑠(𝑝1) and 𝑊𝑢(𝑝2) are transverse. 

Definition 5. A set 𝐴 is residual in a space 𝑋 if there a countable number of open and dense sets {𝑈𝑗}𝑗=1
∞  in 𝑋 such that 𝐴 ⊆

∩𝑗=1
∞ 𝑈𝑗. 

Theorem 3. [Kupka-Smale] The set Kupka-Smale fields is a residual subset of the set of all fields of class 𝐶𝑟.  

Proof. See [4]. 

2.1. Ergodic Theory 

Ergodic theory is a mathematical discipline that studies dynamical systems together with invariant measures. We will 

give some basic definitions and some important results that we will use throughout the work. (See [5]) 

Definition 5. A measure 𝜇 is said to be invariant by the transformation 𝑓: 𝑀 → 𝑀 if 

𝜇(𝐸) = 𝜇(𝑓−1(𝐸)) for every measurable set 𝐸 ⊂ 𝑀. 

The proof of the following theorems can be seen in [1] y [4]. 

Theorem 4. [Poincaré recurrence] Let 𝑓: 𝑀 → 𝑀 be a measurable transformation and 𝜇 a finite invariant. Let 𝐸 ⊂ 𝑀 be 

any measurable set with 𝜇(𝐸) > 0. Then, 𝜇-almost every point 𝑥 ∈ 𝐸 has some iterate 𝑓𝑛(𝑥), 𝑛 ≥ 1 which is also in 𝐸. 

Theorem 5. [Existence of invariant measures] Let 𝑓: 𝑀 → 𝑀 be a continuous transformation on a compact metric space. 

Then there exists at least one invariant probability measure for 𝑓. 

Given a compact metric space 𝑀, we can define 𝑚1(𝑀) as the set of Berelian probability measures on 𝑀 ans we can endow 

this space with a topology whose neighborhoods are given as follow 

We take a measure 𝜇 ∈ 𝑚1(𝑀), a finite set 𝐹 = {𝜙1, 𝜙2. . . , 𝜙𝑁} of continuous functions  𝜙𝑗 ∶ 𝑀 → ℝ, and a number 𝜖 > 0, 

we define 

𝑉(𝜇, 𝐹, 𝜖) = {𝜈 ∈ 𝑚1(𝑀) ∣ |∫ 𝜙𝑗𝑑𝜈 − ∫ 𝜙𝑗𝑑𝜇| < 𝜖 for every  𝜙𝑗 ∈ 𝐹, } 

The topology generated by these sets is called weak topology. One of the most important theorems of ergodic theory is 

Birkhoff’s ergodic theorem which states the following. 

Theorem 6 [Birkhoff’s Ergodic] Let 𝑓: 𝑀 → 𝑀 be a measurable transformation and 𝜇 a probability measure invariant by 𝑓. 

For all integrable function  𝜑: M → ℝ, the limit 

�̃�(𝑥) = lim
𝑛→∞

1

𝑛
∑ 𝜑

𝑛−1

𝑗=0

(𝑓𝑗(𝑥)) 

there exist for 𝜇-almost every point 𝑥 ∈ 𝑀. Furthermore, 

∫ �̃�(𝑥)𝑑𝜇(𝑥) = ∫ 𝜑(𝑥)𝑑𝜇(𝑥). 

Proof. See [5]. 
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3. The Rotation Number 
The rotation number has been a concept widely studied by multiple authors, among these we can mention John Franks. 

He studied about the rotation number in one and two dimensions, in the study of geodesics, of circle and ring 

homeomorphisms and Moser diffeomorphisms. (See [6] to [11]). Handel studied properties of the rotation number in ring 

homeomorphisms ([13]), Herman obtained properties of the diffeomorphisms defined on the circle using rotation number 

([14]), Novo and Núñez studied the rotation number in Hamiltonian ([15]), Zhang and Obaya got important results about the 

existence of periodic orbits using the rotation number ([16]) Pavani and Veldhuizen made numerical approximations of the 

rotation number ([17], [18] and [19]), Lamberd studied the rotation number and Lyapunov exponents for two-dimensional 

maps ([20], [21]). Other authors who obtained results about the existence of periodic orbits of different types of mappings; 

Johnson, Puel, Bates, Feng, Jaroslaw and Navas (See [20] to [26]) 

The rotation number can also be defined on the ring and on the sphere. In the next section, we will work on some 

important properties and results of the rotation number in the ring. The rotation number on the sphere has also been studied 

and requires elements of algebraic topology, Caratheodory theory and prime ends, Letschetz index, etc. For further 

information, see [27] to [31] 

Let 𝕊1 = {𝑧 ∈ ℂ ∣ |𝑧| = 1}. the unit circle. There exists a natural projection  𝜋: ℝ → 𝕊1, given by 𝜋(𝑡) =
𝑡 mod 1  or  𝜋(𝑡) = 𝑒2𝜋𝑖𝑡 .  We are going to assume that 𝑓 is an orientation-preserving homeomorphism, that is, 

𝑥 ≤ 𝑦 mod 1 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≤ 𝑓(𝑦) mod 1. 

To  𝐹:  ℝ → ℝ that satisfies: 𝜋 ∘ 𝐹 = 𝑓 ∘ 𝜋, we will call it a lifting of  𝑓. This function is monotone increasing and 𝐹(𝑥 + 1) =
𝐹(𝑥) + 1. 

Definition 7. Let 𝑓: 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism in 𝕊1 and F:  𝐴 → 𝐴  a lifting of 𝑓. We define 

the translation number as 

𝜌0(𝐹, 𝑥) = lim
𝑛→∞

𝐹𝑛(𝑥) − 𝑥

𝑛
. 

Definition 8. Let 𝑓: 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism and 𝐹:  ℝ → ℝ a lifting of 𝑓, we define the 

rotation number of 𝑓 as 𝜌(𝑓) = 𝜌0(𝐹) mod 1. 

We have the following result about the period orbit and rotational number ([1], [32], [33]) 

Theorem 7. The rotation number is rational if and only if 𝑓 in 𝕊1 has a periodic point. 

Of the set of all orientation-preserving diffeomorphisms, we are interested in an important class called Morse-Smale 

diffeomorphisms. 

Definition 9. An orientation-preserving diffeomorphism 𝑓 in 𝕊1 is Morse-Smale if it has a rational rotation number, and all 

its periodic points are hyperbolic. 

This class of diffeomorphisms satisfies two very important properties: They are structurally stable and any diffeomorphisms 

in 𝕊1 can be approximated by Morse-Smale diffeomorphisms. 

Now, we define the rotation number in the annulus. Many results obtained about the dynamics of homeomorphisms 

defined in the annulus are motivated historically by mechanical systems and geometric problems. One of the famous 

problems in physics is the three bodies problem ([34] to [39]). This problem consists of determining at any instant the 

velocities and the positions of three bodies of any mass, subjected to each other to an attraction mutual and starting from 

given speeds and positions. Although it is known that it is possible to give a formula for a similar system with two masses, 

Poincaré showed that there is no formula for the problem posed with three masses. Euler posed a weaker problem called the 

restricted three body problem, which consists in assuming that the mass of one of the three bodies is negligible with respect 

to the other two, which can be applied, for example, to the earth moon-sun system. ([40] and [41]) 

Poincaré studied this problem arduously and found many results. One of them is the following 

Theorem 8. [Poincaré] Given the annulus 0 < 𝑎 ≤ 𝑟 ≤ 𝑏 in the plane, 𝜃 in polar coordinates, and 𝑇 an injective 

transformation, continuous and area-preserving of the annulus itself, which takes points from 𝑟 = 𝑎 and sends them into 

points at 𝑟 = 𝑏. Then there exist at least two points on the ring invariant by the map 𝑇.  

Proof. See [40] 
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We denote the annulus as 𝔸 = 𝕊1 × 𝐼 𝑤ℎ𝑒𝑟𝑒 𝐼 = [0,1]. 

Definition 10. Let  �̃� = ℝ × 𝐼 . A homeomorphism 𝐹: �̃� → �̃� is called a lifting of 𝑓 if it satisfies the following relation. 

𝑓(�̃�(𝑥, 𝑦)) = �̃�(𝐹(𝑥, 𝑦)) 

where, 𝜋: �̃� → �̃� is given by �̃�(𝑥, 𝑦) = (𝜋(𝑥), 𝑦). 

 

Definition 11. Let be 𝑓: 𝔸 → 𝔸 be an orientation-preserving and boundary-preserving homeomorphism and let 𝐹: �̃� → �̃� be 

a lifting of 𝑓. The translation number in the annulus of a point 𝜔 = (𝑥, 𝑦) ∈ �̃� under 𝐹, is 

𝜌0(𝐹, 𝜔) = lim
𝑛→∞

𝑝1(𝐹𝑛(𝜔) − 𝜔)

𝑛
 

where, 𝑝1: �̃� → ℝ is the projection to the first coordinate, that is, 𝑝1(𝑥, 𝑦) = 𝑥. 

We might think that a homeomorphism in the ring satisfies similar properties to the homeomorphisms in the circle, this is 

partly true, many of these properties are conserved but others are not, for example, for a homeomorphism in the ring it does 

not always exist 𝜌0(𝜔, 𝐹) and when it exists it is rarely independent of the point 𝜔.  

We have the following proposition. We can see the proof in [1]. 

Proposition 1. Let 𝑓: 𝔸 → 𝔸 be a orientation-preserving homeomorphism and boundary components and let 𝐹: �̃� → �̃� be a 

lifting of 𝑓. 

• If 𝜌0(𝐹, 𝜔) exists, then 𝜌0(𝐹𝑚 , 𝜔) = 𝑚𝜌0(𝐹, 𝜔) for all 𝑚 ∈ ℕ. 

• If 𝜌0(𝐹, 𝜔, ) exists, them 𝜌0(𝐹 + (𝑚, 0), 𝜔) = 𝜌0(𝐹, 𝜔) + 𝑚 for all 𝑚 ∈ ℕ 

Definition 12. Let 𝑓: 𝔸 → 𝔸 be a orientation-preserving homeomorphism and boundary components and let 𝐹: �̃� → �̃� be a 

lifting of 𝑓. The rotation number of 𝑓 in the annulus is defined by 𝜌(𝑓) = 𝜋(𝜌0(𝐹, 𝜔)), where 𝜋: ℝ → 𝕊1 is the natural 

projection to the first coordinate component. 

Theorem 9. [Franks] Let 𝑓: 𝔸 → 𝔸 be a boundary components-orientation-area-preserving diffeomorphism. If 𝑓 has at least 

one periodic point, then it has infinitely many such points. 

Proof. See [10], [33]. 

2.2. Rotation Number in the Sphere 

To define the rotation number in the sphere, we need to give some previous result 

Definition 13. Si 𝛺 is a open set of ℝ2 and 𝑝 ∈ 𝛺 es an isolated fixed point of a continuous function ℎ: 𝛺 → 𝛺, the Lefschetz 

index of ℎ at 𝑝, denoted by 𝐼𝑛𝑑(ℎ, 𝑝), is the number of turns in the vector vector field ℎ(𝑧) − 𝑧 of any simple closed curve 

that is around and fairly close to 𝑝. 

Theorem 10. [Lefschetz- Hopf] Let 𝑓: 𝑀 → 𝑀 be a continuous function, then 

∑ 𝐼

𝑥∈𝐹𝑖𝑥(𝑓)

(𝑥, 𝑓) = 𝐿(𝑓), 

Where,  𝐹𝑖𝑥(𝑓) is a fixed-point set of 𝑓, and 𝐿(𝑓) is the Lefschetz index. 

 Proof. See [42]. 

There are several ways to describe the Lefschetz number. (See [42], [27]) 

Definition 14. Let 𝑀 be a compact manifold, 𝑓: 𝑀 → 𝑀 a continuous mapping and 𝑓∗ the morphism induced by the 

homology group (rational coefficients). The Lefschetz number of 𝑓 is defined as 

𝛬𝑓 = ∑ (−1)𝑖

𝑖≥0

𝑇𝑟(𝑓𝑖
∗) 
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Now, we have the following theorem (See proof in [42])  

Theorem 11. Let 𝑀 be a compact manifold and 𝑓: 𝑀 → 𝑀 a continuous mapping. If 𝛬𝑓 ≠ 0 then 𝑓 has a fixed point. 

Theorem 12. Let 𝑉, 𝑊 be two open and connected sets of ℝ2 that with has the origin 0 and let ℎ: 𝑉 → 𝑊 = ℎ(𝑉) be an 

orientation-preserving homeomorphism which has the origin as an isolated fixed point. Then  

𝐼𝑛𝑑(ℎ, 0) ∈ {−1,0,1}. 

Proof. See [27]. 

Now, we can see some previous definition to define the rotation number in the sphere. 

Definition 15. A set 𝐾 ⊂ 𝔸 is called an essential continuum if it is compact, connected and its complement has two 

components that we denote as 

𝛺𝑘
+; 𝑈𝑝𝑝𝑒𝑟  𝛺𝑘

−: 𝐿𝑜𝑤𝑒𝑟 

Let 𝑓: 𝕊2 → 𝕊2 a homeomorphism and 𝛺 ⊂ 𝕊2 a simply connected non-trivial invariant domain by 𝑓, that is, 𝑓(𝛺) = 𝛺. We 

can extend 𝑓 a homeomorphism in the compactification of prime ends ([43], [44]) �̂� ≅ 𝛺 ∪ 𝕊1 de 𝛺. If 𝑓|𝛺 preserves 

orientation, then its restriction to 𝕊1 preserves orientation and we can define the rotation number as element of 𝕊1. We can 

denote the rotation number as 𝜌𝛺. 

Theorem 13. Let 𝑓 be an orientation-preserving homeomorphism of 𝕊2 and 𝛺 a non-trivial simply connected invariant 

domain. Let’s suppose.  

• The rotation number is rational 𝜌𝛺 =
𝑝

𝑞
∈ ℤ. 

• There is a neighborhood of ∂𝛺 in 𝛺 that does not contain the positive orbit and negative of any non-errant open set. 

Then ∂𝛺 contains a fixed point of 𝑓𝑞. 

Proof. Taking 𝑓𝑞 is the time of 𝑓, we can assume that the rotation number 𝜌𝛺 is equal to zeroes. It follows that thre is a fixed 

point 𝑧 ∈ 𝕊1 of the extended homeomorphism in the compactification of prime ends of 𝛺. From the theory of prime ends we 

can find a sequence of open arcs (𝛾𝑛)𝑛=1
∞  in 𝛺 whose diameters tend to zero and they can be extended to closed arcs in the 

compactification of prime ends with point in 𝕊1. Furthermore, they are next to 𝑧.  

These arcs have the property that their closure 𝛾𝑛 converges to 𝑧 in the compactification of prime ends when 𝑛 → ∞ and 

each of then divide 𝛺 in two simply connected domains. We denote 𝛺𝑛 as the smaller neighborhood (𝑧 is in the 𝛺𝑛 in the 

compactification of prime ends). We want to show that 𝑓(𝛾𝑛) ∪ 𝛾𝑛 ≠ 0. If the arc 𝛾𝑛 does not find its image under 𝐹, the 

fact that 𝑧 is a fixed point implies that one of the two inclusions 𝑓(𝛺𝑛) ⊂ 𝛺𝑛 or 𝑓−1(𝛺𝑛) ⊂ 𝛺𝑛 In the first case, we can find 

an open set 𝑉 contained in 𝛺𝑛 − 𝑓(𝛺𝑛) which is not errant anh it has a positive orbit contained in 𝛺𝑛. In the second case we 

can build a non-errant domain whose negative orbit is contained in 𝛺𝑛. Then those conditions contradict the hypothesis, 

therefore we conclude that  𝑓(𝛾𝑛) ∪ 𝛾𝑛 ≠ ∅. 

Since the diameters of the arcs 𝛾𝑛 tend to zero, then any point in ∂𝛺 is a fixed point of 𝑓. 

From the previous theorem the following corollary 

Corollary. Let 𝑓: 𝔸 → 𝔸 be a area-preserving homeomorphism homotopic to the identity and 𝐾 an essential continuum 

invariant. Suppose that 𝜌𝐾
+ =

𝑝

𝑞
. Then 𝐾 contains a fixed point of 𝑓𝑞 and this fixed point is in ∂𝛺𝐾

+. The same for 𝜌𝐾
−. 

3. Generic Properties 
In this section we will discuss some generic properties of the set of diffeomorphisms on 𝕊2 that preserve an element of 

area 𝜔. We will state the main generic properties, we will use them to define a Moser generic diffeomorphism, and we will 

list some of its characteristics. For the study of these diffeomorphisms, we will base ourselves on the results already obtained 

and the properties of the Lefschetz index. 

We denote by 𝐷𝑖𝑓𝑓(𝑟, 𝜔, 𝑀) the set of all 𝐶𝑟-diffeomorphisms on 𝑀 that preserve an area element 𝜔. This set is a Baire, 

that is, if 𝐴 ⊂ 𝐷𝑖𝑓𝑓(𝑟, 𝜔, 𝑀) is a set (𝐴 contains the enumerable intersection of a family of dense and open subsets) the 𝐴 is 

dense in 𝐷𝑖𝑓𝑓(𝑟, 𝜔, 𝑀) 

Now, we will define a generic property. 
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Definition 16. We will say that 𝑃 is a generic property for the diffeomorphisms 𝐷𝑖𝑓𝑓𝜔
𝑟(𝑀) if there exist a residual set 𝐴 ⊂

𝐷𝑖𝑓𝑓(𝑟, 𝜔, 𝑀)such that every function 𝑓 ∈ 𝐴 satisfies the property 𝑃. 

We list the most important generic properties. 

• P1: All periodic points are elliptical or hyperbolic ([1] and [3]) 

• P2: All elliptic points are Moser Stable ([45]) 

• P3: For two periodic and hyperbolic points 𝑥 , 𝑦 the intersection of the stable manifold of 𝑥, 𝑊𝑠(𝑥), and the unstable 

manifold of 𝑦, 𝑊𝑢(𝑦) is transversal ([46])  

• P4: For any hyperbolic periodic point 𝑥, if 𝛤1 and 𝛤2 are two branches of the stable and unstable manifolds of 𝑥 

respectively, then 𝛤1 = 𝛤2 ([1] and [3]). 

• P5: In the sphere 𝕊2, if 𝛤1 is a branch of the stable manifold of a periodic hyperbolic point 𝑥 y 𝛤2 is a branch of the 

unstable manifold then 𝛤1 ∩ 𝛤2 ≠ ∅ ([1]) 

The following results show important properties of an area-preserving diffeomorphism and satisfy some of the generic 

properties stated above. 

Proposition 2. Suppose that 𝑓 is an area-preserving diffeomorphism of an open and connected subset 𝛺 ⊂ 𝕊2 and let 𝐾 ⊂ 𝛺 

be an invariant, compact and connected set. If 𝛤 is a branch of a hyperbolic periodic point, then 𝛤 ⊂ 𝐾 ó 𝛤 is completely 

contained in a single component of 𝛺 − 𝐾. 

Proof. The proof is by contradiction. Suppose that 𝛤 has a non-empty intersection with 𝐾 and with 𝛺 − 𝐾. Let 𝛺0 be a 

component of 𝛺 − 𝐾 containing a point in 𝛤. Since every component of 𝛺 − 𝐾 is a periodic domain then, 𝛺0 must be. We 

can guarantee the existence of an open arc 𝛼 ⊂ 𝛤 ∪ 𝛺0 such that the end points of the curve are in 𝐾. 

If 𝑖 > 0, then 𝑓𝑖(𝛼) and 𝛼 must be disjoint, since 𝛼 is a branch (stable or unstable), also 𝑓𝑖(𝛼) cannot contain the endpoints 

of 𝛼. 

Let 𝑉 be the component of 𝕊2 − 𝐾 that contains 𝛺0. As 𝑉 is simply connected 𝛼 separates it into two simply connected 

nonempty domains, 𝑉1 y 𝑉2, each of which has a non-empty intersection with 𝛺0. Therefore, 𝛼 separates 𝛺0 into two 

connected components 

𝛺1 = 𝛺0 ∪ 𝑉1  𝛺2 = 𝛺0 ∪ 𝑉2, 

since 𝛺0 is periodic, there exists 𝑘 > 0 such that 𝑓𝑘(𝛺0) = 𝛺0, as 𝑓 is area-preserving, then 𝛺1 × 𝛺2 is a non-errant set for 

𝑓𝑘 × 𝑓𝑘. 

That is, there exists an integer 𝑛 ≥ 1, such that. 

𝑓𝑛𝑘(𝛺1) ∩ 𝛺1 ≠ ∅  𝑓𝑛𝑘(𝛺2) ∩ 𝛺2 ≠ ∅, 

Furthermore, the closure in 𝛺0 de 𝑓𝑛𝑘(𝛺1) is not contained in 𝛺1and intersects 𝛼. Similarly, 𝛼 intersects 𝑓𝑛𝑘(𝛺2) in 𝛺0. 

From where it can be concluded that 𝛼 intersects its image through 𝑓𝑛𝑘 which is impossible, that is, 𝛤 cannot have empty 

intersection with 𝐾 and with 𝛺 − 𝐾. In conclusion, if 𝛤 belongs to 𝛺 − 𝐾 this must be in a single component. 

Definition 17. A set 𝑆 is a minimal set for 𝑓 if it is closed, non-empty and invariant by 𝑓 and if furthermore 𝐵 is a subset of 

𝑆 closed, non-empty and invariant, then 𝑆 = 𝐵. 

A trivial example of a minimal set is the periodic orbits. 

Definition 18. A periodic point 𝑧 is Moser stable if it admits a fundamental system of neighborhoods that are closed disks 

𝐷 such that 𝑓|∂𝐷 is a minimal set. 

Theorem 14. Let 𝑓 ∈ 𝐷𝑖𝑓𝑓(𝑟, 𝜔, 𝑀) be a function that satisfies 𝑃1, 𝑃2 properties and it does not have connections between 

sinks. Then 

• The rotation number of any periodic domain simply with non-trivial connection is irrational, 

• The branches of a hyperbolic point have the same closure. 

Proof. See [1] 

The following result was proved in [3] and gives us important properties of the stable and unstable varieties of a hyperbolic 

periodic point in 𝕊2. 
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Theorem 15. For all 𝑟 ≥ 1, there exists a generic set 𝐺𝑟  in 𝐷𝑖𝑓𝑓(𝑟, 𝜔, 𝑀) such that for all 𝑓 in 𝐺𝑟  the following properties 

are satisfied. 

• If 𝑧 is a periodic point, any stable branch 𝛤 of 𝑧 has a non-empty cross-section with any unstable branch 𝛤′ of 𝑧. 

Furthermore 𝛤 = 𝛤′. 
• If 𝑧 and 𝑧′ are two distinct hyperbolic periodic points such that 𝑧′ belongs to the closure of a branch of 𝑧, then any 

stable branch 𝛤 de 𝑧 finds traversally any unstable branch 𝛤′ de 𝑧′. Also, 𝛤 = 𝛤′. 

Any hyperbolic periodic point has a fundamental system of neighborhoods that are closed disks whose boundary is contained 

in 𝑊𝑠(𝑧) ∪ 𝑊𝑢(𝑧). This property and the 𝜆-lemma are fundamental in the proof of the previous theorem. 

Now, we are going to consider a diffeomorphism 𝑓 of class 𝐶𝑟 area-preserving defined in 𝕊2 that satisfies 𝑃1, 𝑃2 y 𝑃3, that 

is 

• There are no degenerate periodic points. 

• Every elliptic point is Moser stable. 

• If 𝑥 and 𝑦are hyperbolic periodic points, then 𝑊𝑠(𝑥) and 𝑊𝑢(𝑦) are transversal, and 𝛤𝑠(𝑥) ∩ 𝛤𝑢(𝑥) ≠ ∅. 

Definition 19. A subset 𝔸0 ⊂ 𝕊2 is said to be a ring domain, if it is an open, connected set and its complement has exactly 

two components.  

In other words, a ring domain is a set homeomorphic to an open ring. If 𝔸0 is a ring domain 𝑓-invariant, a essential continuum 

𝐾 ⊂ 𝔸0 is a set that separates the two components of the complement of 𝔸0. 

Theorem 16. Suppose 𝑧 ∈ 𝔸0 is a hyperbolic fixed point of 𝑓. Let 𝑈(𝑧) be the union of all closed topological disks in 𝔸0 

hose boundary consists of a finite number of branches of 𝑧, then. 

• 𝑈(𝑧) is open, connected, and invariant by 𝑓 containing to 𝑧 and its branches. 

• If 𝑧 is nonessential, then 𝑈(𝑧) is simply connected. 

• If 𝑧 is nonessential, then 𝑈(𝑧) is an essential annulus domain in 𝔸0. 

• If 𝑉 ⊂ 𝔸0 is any other open connected invariant set that is simply connected or an essential annulus domain, then 

𝑈(𝑧) ⊂ 𝑉, or 𝑉 ⊂ 𝑈(𝑧), or 𝑈(𝑧) ∪ 𝑉 ≠ ∅. 

Let 𝑓: 𝔸0 → 𝔸0 be an area-preserving diffeomorphism of an annular domain, which extends continuously to the closure of 

𝔸0 ⊂ 𝕊2. We consider a hyperbolic periodic point 𝑧 of 𝑓. We assume for 𝑓 the property 𝑃3. 

Definition 20. If there is an essential closed curve in 𝔸0 consisting of a finite number of branch segments of 𝑧 we say that 𝑧 

is essential, otherwise we say that 𝑧 is non-essential. 

It follows immediately that a hyperbolic periodic orbit 𝛩 consists of points that are all essential or all nonessential. 

Proposition 3. Suppose that 𝑧 ∈ 𝔸0 is an essential hyperbolic fixed point of 𝑓. Then the union of any stable branch and any 

unstable branch of 𝑧 contains an essential simple closed curve and a point on each component of the complement of this 

curve. 

Proof. From the definition of an essential hyperbolic fixed point, we know that there is a curve 𝛽 ∈ 𝔸0 consisting of branches 

of 𝑧 that intersect transversely. The fact that any branch of a fixed point has a non-empty transversal intersection with any 

unstable branch tells us that this curve can be chosen as the union of any pair of branches, one stable and one unstable. Let 

𝛼0 be the boundary of one of the components of the complement of 𝛽 that intersects a component of 𝕊2 − 𝔸0 and let 𝛼 be 

the boundary of the component of the complement of 𝛼0 that contains the other component of 𝕊2 − 𝔸0. Then 𝛼 consists of 

branch segments of 𝑧 that intersect transversely and is simple. So, it separates the two components of 𝕊2 − 𝔸0 and is therefore 

essential. Since 𝛼 is in the interior of 𝑈(𝑧), the branches of 𝑧 contain points of each of the components of 𝛼 

4. Moser Generic Diffeomorphisms 

Definition 21. Suppose that 𝑓 is an area-preserving diffeomorphism of an annular domain 𝔸0 and let 𝑃(𝑞) be the set of 

periodic points of 𝑓 with period 𝑞. It is said that 𝑓 is a Moser generic diffeomorphisms if it satisfies the generic properties 

𝑃1, 𝑃2, 𝑃3 y and also the Jordan curves that enclose neighborhoods of any periodic elliptic point have rotation number on 

not constant in any neighborhood of the elliptic point. 

Because of the Kupka-Smale theorem ([46]) and the results in [1] and [3], we have the following result. 
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Theorem 17. If 𝑀 is the sphere or the annulus, then the set of Moser generic diffeomorphism maps on 𝑀 is a residual subset 

of the set 𝐷𝑖𝑓𝑓(𝑟, 𝜔, 𝑀). 

For Moser generic diffeomorphisms we have the following result proved by Franks in [33] 

Proposition 4. If 𝑝 is a hyperbolic fixed point of a Moser generic diffeomorphism in 𝕊2, then 

𝑊𝑠(𝑝) = 𝑊𝑢(𝑝) 

Now, we will prove the main result. 

Theorem 18. Let 𝑓 be a Moser generic diffeomorphism in 𝔸 = 𝕊1 × [0,1] that has no periodic points on the boundary of 𝔸 

and 𝐾 an essential continuum invariant. If 𝜌 =
𝑝

𝑞
 (𝑝, 𝑞 relative primes) is in 𝜌(𝐾), then, the set of periodic points of 𝑓 is not 

empty, and there exist an essential hyperbolic periodic point in 𝐾. 

Proof. Since 𝜌 is rational it follows immediately that 𝑓 has a periodic point in 𝐾. In particular, if 𝜌 = 0 there is a fixed point. 

We will show that there is an essential hyperbolic periodic point.  

We denote 𝑓 as the extension of 𝑓 to the compactification of prime ends of 𝔸, that is, the compactification obtained by adding 

two copies of 𝕊1 to the top and bottom of the annulus. The set �̂� is homeomorphic to the sphere 𝕊2. We will denote as 𝑈+ y 

𝑈− the components of �̂�\𝐾, these turn out tobe simply connected invariant domains since 𝐾 is connected. From theorem 14 

we can affirm that 𝑈+ y 𝑈− have irrational rotation number. Thus, we can find a closed disk 𝐷+ ⊂ 𝑈+ that contains all fixed 

point of 𝑓 that are in 𝑈+ y such that 𝐼(𝑓, 𝐷+) = 1. Similarly, we can find a 𝐷− ⊂ 𝑈− with the same property.  

Since the set of periodic points of 𝑓 is non-empty, by hypothesis, it must be finite and as a consequence of the Lefschetz 

formula not all fixed points can be elliptical. 

Let z be a non-essential hyperbolic fixed point. Let 𝑧 be a non-essential hyperbolic fixed point. We can associate to every 

nonessential hyperbolic fixed point 𝑧a simply connected and invariant domain 𝑈(𝑧) that is formed by the union of topological 

disks formed by branches of the stable and unstable variety of 𝑧 (theorem 16 and 17).  

There exists a finite number of domains 𝑈(𝑧) that are disjoint and contain all non-essential fixed points of 𝑓 .  We can assume 

with rotation number equal to zero. In each of these domains we are going to choose a disk 𝔻 ⊂ 𝑈(𝑧) that contains all the 

fixed points in 𝑈(𝑧) and such that 𝐼(𝑓, 𝔻) = 1. For each domain 𝑈(𝑧) we have a disk with this property which we are going 

to denote as: 

(𝔻𝑖)1≤𝑖≤𝑘  𝑘 ≥ 0. 

Let us also consider the finite family of fixed points of 𝑓 that are not in the interior of the 𝔻𝑖, and they are essential, 

(𝑧𝑗)
1<𝑗<𝑙

  𝑙 ≥ 0. 

The idea is to prove that 𝑙 > 0, thus we could guarantee that there are essential hyperbolic periodic points. 

By the Lefschetz formula we have 

∑ 𝐼

𝜔∈𝐹𝑖𝑥(�̂�)

(𝑓, 𝔻𝜔) = 2 

that is, 

∑ 𝐼

𝑙

𝑗=1

(𝑓, 𝑧𝑗) + ∑ 𝐼

𝑘

𝑖=1

(𝑓, 𝔻𝑖) + 𝐼(𝑓, 𝐷+) + 𝐼(𝑓, 𝐷−) = 2 

 

since 𝑓 = 𝑓 en 𝔸 then, 𝐼(𝑓, 𝔻) = 𝐼(𝑓, 𝔻𝑖) = 1 

Thus,  



Fabián Sánchez Salazar & Cesar Augusto Rodríguez Duque / IJMTT, 69(2), 98-107, 2023 

 

106 

∑ 𝐼

𝑙

𝑗=1

(𝑓, 𝑧𝑗) + 𝑘 = 0, 

and 

∑ 𝐼

𝑙

𝑗=1

(𝑓, 𝑧𝑗) = −𝑘, 

since 𝑓 preserves area and orientation 𝐼(𝑓, 𝑧𝑗) = ±1, for all 𝑗 and 𝐼(𝑓, 𝑧𝑗) = 1 when 𝑧𝑗 is elliptic. Therefore 𝑙 > 0, then, to 

have equality there must be some 𝑧𝑖 such that 𝐼(𝑓, 𝑧𝑖) ≤ 0, this 𝑧 is hyperbolic and essential, since 𝑧 is not in any of the 𝔻𝑖. 

This completes the proof. 

5. Conclusion 
The rotation number plays a fundamental role in the study of diffeomorphisms defined in the circle, the annulus, and the 

sphere. Particularly, when the rotation number is rational, the existence of periodic orbits can be guaranteed under certain 

additional conditions depending on the dimension of space. 

Finally, using the rotation number, it is possible to prove the existence of essential hyperbolic periodic points in the 

Moser generic diffeomorphisms defined in the ring. 
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