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Abstract - For 𝑛 ≥ 4, the cartesian product 𝑃3 × 𝐶𝑛 is a polyhedral graph, where 𝑃3 is a 3-path and 𝐶𝑛 is a 𝑛 -cycle. A set ℋ 

of disjoint even faces of 𝑃3 × 𝐶𝑛 is called resonant pattern if 𝑃3 × 𝐶𝑛 has a perfect matching 𝑀 such that the boundary of every 

even face in ℋ is 𝑀 -alternating. Let 𝑘 be a positive integer, 𝑃3 × 𝐶𝑛 is 𝑘 -resonant if any 𝑖 ≤ 𝑘 disjoint even faces of 𝑃3 × 𝐶𝑛 

form a resonant pattern. Moreover, if graph 𝑃3 × 𝐶𝑛 is 𝑘 -resonant for any integer 𝑘, then it is called maximally resonant. In 

this study, we provide a complete characterization for the k-resonance of 𝑃3 × 𝐶𝑛. We show that every graph 𝑃3 × 𝐶𝑛 is 1- 

resonant, 2- resonant, 3- resonant and it is not 𝑘 -resonant(𝑘 ≥ 4)except for 𝑃3 × 𝐶4, 𝑃3 × 𝐶6, 𝑃3 × 𝐶8. Moreover, we get a 

corollary that 𝑃3 × 𝐶𝑛 is maximally resonant if and only if it is 4-resonant. 
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1. Introduction 
Resonance is an important topic in mathematical chemistry with a rapidly growing literature. Its originlies in the work of 

Clar on the aromatic sextet theory [1] and the work of Randić’s on the conjugated circuit model [2,3,4]. This concept of the 

“aromatic sextet” used in resonant theory explains very well π-electronic properties, i.e., relative stabilities, aromaticities, and 

reactivities of isomeric benzenoid hydrocarbons. In Randić’s theory, the conjugated hexagon has the largest contribution to the 

resonance energy among all (4𝑛 + 2)-length conjugated circuits which contribute positively to the resonance energy of 

molecule. 

 

In mathematics [5], a conjugated circuit is named an alternating cycle. A matching in a graph 𝐺 is a set 𝑀 of edges of 𝐺 

such that no two edges in 𝑀 have a vertex in common. A matching 𝑀 of 𝐺 is perfect if any vertex of 𝐺 is incident with an edge 

of 𝑀. For a graph 𝐺 with a matching 𝑀, a cycle 𝐶 of 𝐺 is called an𝑀 -alternating cycle if the edges of 𝐶 appear alternately in 

and off 𝑀. A set ℋ of disjoint even faces of a graph 𝐺 is called resonant pattern if 𝐺 has a perfect matching 𝑀 such that the 

boundary of every even face in ℋ is 𝑀 -alternating, equivalently, if 𝐺 −ℋ has a perfect matching, where 𝐺 −ℋ represents 

the subgraph obtained from𝐺 by deleting all vertices of ℋ together with their incident edges. A graph 𝐺 is 𝑘 -resonant, if every 

i (0 ≤ 𝑖 ≤ 𝑘) pairwise disjoint even faces form a resonant pattern. Obviously, if a graph is 𝑘 -resonant, it is also (𝑘 − 1)-
resonant for integer 𝑘 ≥ 1. If the graph 𝐺 is 𝑘 -resonant for any positive integer k (𝑘 ≥ 1), then the graph is maximally 

resonant. 

   

The discussion of some molecular graphs has made the study of resonance theory very important and common. The 

resonance of molecular graphs was firstly studied in benzene systems [6]. Later, Zhang and Chen [7] gave some sufficient 

necessary conditions for 1-resonant benzenoid systems.  

 

Theorem 1.1. [7] Every hexagon of a hexagonal system 𝐻 is resonant if and only if there exists a perfect matching 𝑀 of 𝐻such 

that the boundary of 𝐻 is an 𝑀 -alternating cycle. 

 

Soon after, Zhang and Zheng [8] gave a similar characterization for generalized hexagonal systems. Moreover, Zheng [9] 

first proposed 𝑘 -resonant when studying hexagonal systems. Further, Zheng [10] characterized general 𝑘 -resonant benzenoid 

systems and obtained the following results. 

 

Theorem 1.2.  [10] Every 3-resonant benzenoid systems is also 𝑘 -resonant for any integer k ≥ 3. 

The same results are still held for coronoid systems [11], open-ended carbon nanotube [12], toroidal polyhexes [13,14] , 

Klein-bottle polyhexes [15], fullerene graphs [16], boron-nitrogen fullerenes [17], polygonal systems [18], cubic bipartite 

polyhedral graphs [19], (3,6)-fullerenes [20]. In fact, these molecular graphs are maximally resonant if and only if they are 3-
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resonant. In recent years, Liu et al. [21,22] provided the 𝑘 -resonance of grid graphs. Not long ago, Yang et al. [23] discussed 

the resonance of the graph 𝑃2 × 𝐶𝑛  ( i.e. 𝑛 -prism, 𝑛 ≥ 3) and obtained that it is 𝑘 -resonant for any positive integer k

(𝑘 ≥ 1).  
 

Since the 𝑘 -resonance of the molecular graphs indicates the stability of the corresponding moleculars, in this paper, we 

consider the 𝑘 -resonance of the cartesian product graph 𝑃3 × 𝐶𝑛. In section 2, we give some basic notations and preliminary 

results. In section 3, we prove that all cartesian product graphs 𝑃3 × 𝐶𝑛 are 1-resonant, 2-resonant, 3-resonant and the only 𝑘 

-resonant (𝑘 ≥ 4)graphs 𝑃3 × 𝐶𝑛 are 𝑃3 × 𝐶4, 𝑃3 × 𝐶6 and 𝑃3 × 𝐶8. Furthermore, we come to the conclusion that a cartesian 

product graph 𝑃3 × 𝐶𝑛 is maximally resonant if and only if it is 4-resonant. 

 

2.  Definitions and Preliminary Results 
Definition 2.1. [23] Let 𝐺1 be a simple graph with vertex-set 𝑉(𝐺1) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑚}, edge-set 𝐸(𝐺1) and 𝐺2 be another 

simple graph with vertex-set 𝑉(𝐺2) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛}, edge-set 𝐸(𝐺2). The cartesian product of simple graphs 𝐺1 and 

𝐺2 is the graph 𝐺1 × 𝐺2, which is defined as follows: 

(1) 𝑉(𝐺1 × 𝐺2) = 𝑉(𝐺1) × 𝑉(𝐺2) = {(𝑣𝑖
𝑗
)|1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛};  

(2) 𝐸(𝐺1 × 𝐺2) = {(𝑣𝑝
𝑎𝑣𝑞

𝑏)|𝑣𝑎𝑣𝑏 ∈ 𝐸(𝐺1), 𝑣𝑝 = 𝑣𝑞; or 𝑣𝑝𝑣𝑞∈ 𝐸(𝐺2), 𝑣
𝑎 = 𝑣𝑏}.  

 

Definition 2.2. A path is a non-empty simple graph 𝑃 = (𝑉, 𝐸) such that 𝑉(𝑃) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑚} and 𝐸(𝑃) = {𝑣1𝑣2, 𝑣2𝑣3, 
⋯ , 𝑣𝑚−1𝑣𝑚}, where all the vertices 𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑚 are pairwise distinct. We always denote a path with 𝑚 vertices by 𝑃𝑚, 

and say 𝑃𝑚  a 𝑚 -path . Sometimes, we also call 𝑃 = 𝑣1𝑣2𝑣3⋯𝑣𝑚 an 𝑣1-𝑣𝑚 path. If 𝑃 = 𝑣1𝑣2𝑣3⋯𝑣𝑚 is a path with 𝑚 ≥ 3, 

then we call the graph 𝐶 consisting of 𝑃  together with the edge 𝑣1𝑣𝑚  a cycle. As with paths, denote by 𝐶𝑚 . 𝐶𝑚 =
𝑣1𝑣2𝑣3⋯𝑣𝑚𝑣1 represents a cycle with 𝑚 vertices, and say 𝐶𝑚  a 𝑚 -cycle. 

 

Definition 2.3. When 𝑛 ≥ 3, the cartesian product graph 𝑃3 × 𝐶𝑛 is a polyhedral graph,  where 𝑃3 is a 3-path and 𝐶𝑛 is a 𝑛 

-cycle. 
 

Definition 2.4. [24] A graph is said to be embeddable in the plane, or planar, if it can be drawn in the plane so that its edges 

intersect only at their ends. Such a drawing is called a planar embedding of the graph. 

 

In this paper, the graphs considered are all plane. 
 

Definition 2.5. For a face f of a plane graph G, its boundary is a closed walk and 𝜕(𝑓) represents for the boundary of 𝑓. we 

often represent a face f by its boundary if unconfused. 
 

Definition 2.6. In a planar embedding, a face is said to be an even face if its boundary is an even cycle, and an odd face if its 

boundary is an odd cycle. 
 

Definition 2.7. Vertices and edges contained in the boundary of a face f are said to belong to f or to be on f, and denoted the 

sets of vertices and edges on 𝜕(𝑓)by 𝑉(𝑓) and 𝐸(𝑓), respectively. 
 

Definition 2.8. A face of a plane graph G is called resonant if its boundary is an 𝑀 -alternating cycle with a perfect matching 

𝑀of G. 
 

Definition 2.9. Two different faces 𝑓1,𝑓2of a plane graph G are disjoint if 𝑉(𝑓1) ∩ 𝑉(𝑓2) = ∅, and we say 𝑓1 is a neighboring 

face of 𝑓2 if 𝑉(𝑓1) ∩ 𝑉(𝑓2) ≠ ∅. 
 

Definition 2.10. The symmetric difference of two finite sets 𝐴 and 𝐵is denoted as 𝐴⊕ 𝐵 = (𝐴 ∪ 𝐵) − (𝐴 ∩ 𝐵) . 
For more terminologies used in this paper, please see literatures [24, 25]. 

Let 𝑉(𝑃3) = {𝑣1, 𝑣2, 𝑣3},𝑉(𝐶𝑛) = {𝑣1, 𝑣2, ⋯ 𝑣𝑛}, where 𝑣𝑖  is adjacent to 𝑣𝑖+1 for 𝑖 = 1,2,3⋯𝑛 , 𝑣𝑛+1 = 𝑣1 . Set 𝑃3 =

𝑣1𝑣2𝑣3,𝐶𝑛 = 𝑣1𝑣2𝑣3⋯𝑣𝑛𝑣1. According to the definition of cartesian products, 𝑉(𝑃3 × 𝐶𝑛) = {𝑣𝑖
𝑗|1 ≤ 𝑗 ≤ 3,1 ≤ 𝑖 ≤

𝑛}. Let the planar embedding of 𝑃3 × 𝐶𝑛 be shown in Figure 1. It is easy to know that  𝑃3 × 𝐶𝑛 consists of (2𝑛 + 2) faces, of 

which two 𝑛 -sided faces and 2𝑛 quadrilateral faces. The number of vertices of the graph 𝑃3 × 𝐶𝑛 is 3𝑛. A 𝑘 -resonant graph 

𝑃3 × 𝐶𝑛 should have even vertices, so 𝑛 is even. Moreover, 𝐶𝑛 is a 𝑛 -cycle, 𝑛 ≥ 3. Thus, we always suppose 𝑛 ≥ 4 in the 

next discussion.  The labeling for 𝑃3 × 𝐶𝑛 is shown in Figure 1. 
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          Fig. 1 The graph 𝑷𝟑 × 𝑪𝒏. 

 
We denote the quadrilateral face with the boundary 𝑣𝑎

1𝑣𝑎+1
1 𝑣𝑎+1

2 𝑣𝑎
2𝑣𝑎

1 as 𝑓𝑎 and the quadrilateral face with the boundary 

𝑣𝑎
2𝑣𝑎+1

2 𝑣𝑎+1
3 𝑣𝑎

3𝑣𝑎
2  as 𝑔𝑎 , where 𝑎 = 1,2,3⋯𝑛 , 𝑣𝑛+1

1 = 𝑣1
1, 𝑣𝑛+1

2 = 𝑣1
2 , 𝑣𝑛+1

3 = 𝑣1
3 . Faces with the boundaries of 

𝒗𝟏
𝟏𝒗𝟐

𝟏𝒗𝟑
𝟏⋯𝒗𝒏

𝟏𝒗𝟏
𝟏  and 𝑣1

3𝑣2
3𝑣3

3⋯𝑣𝑛
3𝑣1

3  are represented as 𝑓𝑛+1  and 𝑔𝑛+1 , respectively. (See the labelling of faces of the 

graph𝑃3 × 𝐶𝑛 in Figure 1).  

 

We can divide the faces of 𝑃3 × 𝐶𝑛 into four classes, one type is the internal n-sided face 𝑓𝑛+1, one is the outer n-sided 

face 𝑔𝑛+1, one is quadrilateral faces 𝑓𝑎 (𝑎 = 1,2,3⋯𝑛), and the other is quadrilateral faces 𝑔𝑎 (𝑎 = 1,2,3⋯𝑛). Let the set of 

quadrilateral faces𝑓𝑎  (𝑎 = 1,2,3⋯𝑛) be ℱ1  and the set of quadrilateral faces 𝑔𝑎  be ℱ2 , then ℱ1 = {𝑓𝑎|𝑎 = 1,2,3⋯𝑛} and 

ℱ2 = {𝑔𝑎|𝑎 = 1,2,3⋯𝑛}. From the structural properties of the graph 𝑃3 × 𝐶𝑛, we can see that 𝑓𝑛+1 and 𝑔𝑛+1 are symmetrical, 

ℱ1 and ℱ2 are symmetrical. 

 

Next we give four perfect matchings for 𝑃3 × 𝐶𝑛,𝑀1 = {𝑣1
1𝑣1

2, 𝑣2
1𝑣2

2, 𝑣3
1𝑣3

2⋯𝑣𝑛
1𝑣𝑛

2, 𝑣1
3𝑣2

3, 𝑣3
3𝑣4

3⋯𝑣𝑛−1
3 𝑣𝑛

3},𝑀2 =
{𝑣1

1𝑣2
1, 𝑣1

2𝑣2
2, 𝑣1

3𝑣2
3, 

𝑣3
1𝑣4

1, 𝑣3
2𝑣4

2, 𝑣3
3𝑣4

3⋯𝑣𝑛−1
1 𝑣𝑛

1, 𝑣𝑛−1
2 𝑣𝑛

2, 𝑣𝑛−1
3 𝑣𝑛

3} , 𝑀3 = {𝑣1
2𝑣1

3, 𝑣2
2𝑣2

3, 𝑣3
2𝑣3

3⋯𝑣𝑛
2𝑣𝑛

3, 𝑣1
1𝑣2

1, 𝑣3
1𝑣4

1⋯𝑣𝑛−1
1 𝑣𝑛

1} , 𝑀4 =
{𝑣2

1𝑣3
1, 𝑣2

2𝑣3
2, 𝑣2

3𝑣3
3,𝑣4

1𝑣5
1, 𝑣4

2𝑣5
2, 𝑣4

3𝑣5
3 

⋯𝑣𝑛
1𝑣1

1, 𝑣𝑛
2𝑣1

2, 𝑣𝑛
3𝑣1

3}, as shown in Figure 2 (double edges). 

 

                                        
 

𝑀1 (a)                                                                                             𝑀2 (b) 
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𝑀3 (c)                                                                                     𝑀4 (d) 

 
Fig. 2 The 𝑷𝟑 × 𝑪𝒏 with four perfect matchings 𝑴𝟏 (a) , 𝑴𝟐 (b), 𝑴𝟑 (c)  and 𝑴𝟒 (d). 

3. Main results 
Lemma 3.1. 𝑃3 × 𝐶𝑛 (𝑛 ≥ 4) is 1-resonant. 
Proof. Let ℎ be any face in 𝑃3 × 𝐶𝑛. If ℎ is a quadrilateral face, by symmetry, suppose ℎ ∈ ℱ1, we can get the boundary of 

every quadrilateral face in ℱ1 is 𝑀1 -alternating, i.e. ℎ is a resonant face. If ℎ is an 𝑛 -sided face, then ℎ ∈ {𝑓𝑛+1, 𝑔𝑛+1}, we 

can find that 𝜕(ℎ) is 𝑀2-alternating cycle. Each face of the graph 𝑃3 × 𝐶𝑛 is resonant, hence the graph 𝑃3 × 𝐶𝑛 (𝑛 ≥ 4) is 1-

resonant. 

 

Lemma 3.2. 𝑃3 × 𝐶𝑛 (𝑛 ≥ 4) is 2-resonant.  

Proof. We choose any pair of disjoint faces ℎ1 and ℎ2 in 𝑃3 × 𝐶𝑛. To prove that 𝑃3 × 𝐶𝑛 is 2-resonant , it is sufficient to prove 

that for any pair of disjoint even faces ℎ1 and ℎ2,  there exists a perfect matching 𝑀 such that 𝜕(ℎ1) and 𝜕(ℎ2) are both 𝑀 -

alternating cycles. According to the classification of the faces in 𝑃3 × 𝐶𝑛, we have the following four cases. 

 

Case 1. ℎ1, ℎ2 ∈ {𝑓𝑛+1, 𝑔𝑛+1}. 
If ℎ1, ℎ2 ∈ {𝑓

𝑛+1, 𝑔𝑛+1}, then we can know that 𝜕(ℎ1) and 𝜕(ℎ2) are 𝑀2-alternating cycle. 

 

Case 2. One of ℎ1, ℎ2 ∈ {𝑓𝑛+1, 𝑔𝑛+1}, one of ℎ1 and ℎ2 is a quadrilateral face.  

Without loss of generality, suppose ℎ1 = 𝑔𝑛+1, then ℎ2 ∈ ℱ1. Every quadrangle in ℱ1 is 𝑀1-alternating. Hence 𝜕(ℎ1) 

and 𝜕(ℎ2) are both 𝑀1-alternating cycle.  

 

Case 3. Both ℎ1, ℎ2 are quadrilateral faces and ℎ1, ℎ2 ∈ ℱ1 or ℎ1, ℎ2 ∈ ℱ2. 

We can see from Figure 2 that the boundaries of any two disjoint quadrilateral faces in ℱ1 or ℱ2 are 𝑀1-alternating or 

𝑀3-alternating, respectively. So any two disjoint quadrilateral faces in ℱ1 or ℱ2 form a resonant pattern of 𝑃3 × 𝐶𝑛.  

 

Case 4. Both ℎ1, ℎ2 are quadrilateral faces and ℎ1 ∈ ℱ1,ℎ2 ∈ ℱ2. 
Let's take any quadrilateral face in ℱ1, without loss of generality, firstly assume 

1 ih f= (𝑖 = 1,3,5,⋯𝑛 − 1), we have 

ℎ2 ≠ {𝑔𝑖−1, 𝑔𝑖 ,𝑔𝑖+1} and let 𝑔0 = 𝑔𝑛. Then, we find that 𝜕(ℎ2) is 𝑀2-alternating cycle or none of the four edges of 𝐸(ℎ2) 
belong to 𝑀2. If 𝜕(ℎ2) is 𝑀2-alternating cycle, then both 𝜕(ℎ1) and 𝜕(ℎ2) are 𝑀2-alternating cycles, which means {ℎ1, ℎ2} 
forms a resonant pattern. Otherwise, let ℎ2 = 𝑔𝑎(𝑎 ≠ 𝑖 − 1, 𝑖, 𝑖 + 1), set 𝑀5: = 𝑀2⊕𝐸(𝑔𝑎−1)⊕ 𝐸(𝑔𝑎+1). It is clear 

that 𝑀5  is a perfect matching alternating on both 𝜕(ℎ1)  and 𝜕(ℎ2) . Next suppose 
1 ih f= (𝑖 = 2,4,6,⋯𝑛) , then ℎ2 ≠

{𝑔𝑖−1, 𝑔𝑖 ,𝑔𝑖+1} and let 𝑔𝑛+1 = 𝑔1. Now we get 𝜕(ℎ1)is 𝑀4- alternating cycle from Figure 2(d), and we can know 𝜕(ℎ2) is 

𝑀4-alternating cycle or none of the four edges of 𝐸(ℎ2) belongs to 𝑀4. Then the similar analysis as above we can get both 

𝜕(ℎ1) and 𝜕(ℎ2) are alternating cycles with respect to some perfect matching of 𝑃3 × 𝐶𝑛. 
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Thus, any two disjoint quadrilateral faces in 𝑃3 × 𝐶𝑛 can form a resonant pattern, that is, 𝑃3 × 𝐶𝑛 (𝑛 ≥ 4) is 2-resonant. 

 

Lemma 3.3. 𝑃3 × 𝐶𝑛 (𝑛 ≥ 4) is 3-resonant.  

Proof. We take any three pairwise disjoint faces in 𝑃3 × 𝐶𝑛, denoted by ℎ1, ℎ2, ℎ3. We distinguish the following three cases 

according to the number of 𝑛 -sided faces in {ℎ1, ℎ2, ℎ3}.  
 

Case 1. There are exactly two 𝑛 -sided faces in {ℎ1, ℎ2, ℎ3}. 
Without loss of generality, suppose ℎ1, ℎ2 ∈ {𝑓𝑛+1, 𝑔𝑛+1}, then there are not exist three disjoint even faces, which is trivial. 

 

Case 2. There is exactly one 𝑛 -sided face in {ℎ1, ℎ2, ℎ3}.  

Without loss of generality, suppose ℎ1 = 𝑔𝑛+1, then we have ℎ2, ℎ3 ≠ 𝑓𝑛+1 and ℎ2, ℎ3 ∈ ℱ1. Instantly we have all 

𝜕(ℎ1), 𝜕(ℎ2), 𝜕(ℎ3) are 𝑀1-alternating cycle. Hence ℎ1,ℎ2, and ℎ3 form a resonant pattern of 𝑃3 × 𝐶𝑛.  

Case 3. There are no 𝑛 -sided faces in ℎ1, ℎ2and ℎ3. 

We know that ℎ1, ℎ2and ℎ3 are all quadrilateral faces, ℎ1, ℎ2, ℎ3 ∈ {ℱ1, ℱ2}. Without loss of generality, let's assume 

ℎ1, ℎ2 ∈ ℱ1, ℎ3 ∈ ℱ2. As can be seen from Figure 2(a), the boundaries of any two disjoint quadrilateral faces in ℱ1 are 𝑀1-

alternating cycles. Next we analyze ℎ3. We can distinguish the following two cases. 

Subcase 3.1. None of the edges of 𝐸(ℎ3) belong to 𝑀1. 

Let ℎ3=𝑔𝑖  and 
ig (𝑖 = 2,4,6,⋯ , 𝑛)  be the face where none of the four edges of 𝐸(ℎ3) belong to 𝑀1 . Let 𝑀6:= 𝑀1⊕

𝐸(𝑓𝑖) ⊕ 𝐸(𝑔𝑛+1). It is clear that 𝑀6 is a perfect matching of 𝑃3 × 𝐶𝑛 such that 𝜕(ℎ1), 𝜕(ℎ2), 𝜕(ℎ3) are simultaneously 𝑀6-

alternating.  

Subcase 3.2. Only one edge of 𝐸(ℎ3) belongs to 𝑀1. 

We suppose ℎ3=𝑔𝑗. Let 
jg (𝑗 = 1,3,5,⋯ , 𝑛 − 1) be the face where one edge of 𝐸(𝑔𝑗) belongs to 𝑀1. Let 𝑀7: = 𝑀1 ⊕

𝐸(𝑓𝑗). We can know that 𝑀7 is a perfect matching alternating on 𝜕(ℎ1), 𝜕(ℎ2) and 𝜕(ℎ3).  

So ℎ1, ℎ2and ℎ3 can form a resonant pattern of 𝑃3 × 𝐶𝑛, we have proofed Lemma 3.3. 

 

Lemma 3.4. For any positive integer 𝑘 ≥ 1,𝑃3 × 𝐶𝑛(4 ≤ 𝑛 ≤ 8) is 𝑘 -resonant. 

Proof. According to the Lemmas 3.1-3.3, we show that 𝑃3 × 𝐶𝑛 is 1-resonant, 2-resonant and 3-resonant. No any four pairwise 

disjoint even faces can be found in 𝑃3 × 𝐶4, so it is trivial, i.e., 𝑃3 × 𝐶4 is maximally resonant.  It is easy to prove that 𝑃3 × 𝐶6 

is 4-resonant and 𝑃3 × 𝐶8 is 5-resonant. We also know that any five pairwise disjoint even faces in 𝑃3 × 𝐶6 cannot be found 

and there are no any six pairwise disjoint even faces in 𝑃3 × 𝐶8. Hence 𝑃3 × 𝐶𝑛(4 ≤ 𝑛 ≤ 8) is 𝑘 -resonant for any positive 

integer 𝑘 ≥ 1. 

 

Lemma 3.5. For any positive integer 𝑘 ≥ 4, 𝑃3 × 𝐶𝑛 (𝑛 ≥ 10) is not 𝑘 -resonant. 

Proof. Let ℎ1, ℎ2,ℎ3 and ℎ4 be the four pairwise disjoint quadrilateral faces in 𝑃3 × 𝐶𝑛 as shown in Figure 3. Then 𝑃3 × 𝐶𝑛 − 

{ℎ1, ℎ2, ℎ3, ℎ4} consists of  an odd component of seven vertices(see Figure 3, the seven black vertices), that is, 𝑃3 × 𝐶𝑛-

{ℎ1, ℎ2, ℎ3, ℎ4} does not have a perfect matching. So 𝑃3 × 𝐶𝑛 is not 4-resonant, then it is also not 𝑘 -resonant (𝑘 ≥ 4). 

       

     
Fig. 3 The illustration for the proof of Lemma 3.5.  

 
From the above proofing process, and combining with Lemmas 3.4-3.5, we can get the following direct result. 

Corollary 3.6. The graph 𝑃3 × 𝐶𝑛 is maximally resonant if and only if it is 4-resonant. 
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