Original Article

k-Resonance of the Cartesian Product Graph $P_{3} \times C_{n}$

Yanfei Ma ${ }^{1}$, Rui Yang ${ }^{2}$
School of Mathematics and Information Science, Henan Polytechnic University, Henan, China.

Received: 07 January 2023 Revised: 10 February 2023 Accepted: 21 February 2023 Published: 28 February 2023

Abstract

For $n \geq 4$, the cartesian product $P_{3} \times C_{n}$ is a polyhedral graph, where P_{3} is a 3-path and C_{n} is a n-cycle. A set \mathcal{H} of disjoint even faces of $P_{3} \times C_{n}$ is called resonant pattern if $P_{3} \times C_{n}$ has a perfect matching M such that the boundary of every even face in \mathcal{H} is M-alternating. Let k be a positive integer, $P_{3} \times C_{n}$ is k-resonant if any $i \leq k$ disjoint even faces of $P_{3} \times C_{n}$ form a resonant pattern. Moreover, if graph $P_{3} \times C_{n}$ is k-resonant for any integer k, then it is called maximally resonant. In this study, we provide a complete characterization for the k-resonance of $P_{3} \times C_{n}$. We show that every graph $P_{3} \times C_{n}$ is 1resonant, 2- resonant, 3- resonant and it is not k-resonant $\left(k \geq 4\right.$)except for $P_{3} \times C_{4}, P_{3} \times C_{6}, P_{3} \times C_{8}$. Moreover, we get a corollary that $P_{3} \times C_{n}$ is maximally resonant if and only if it is 4 -resonant.

Keywords - Perfect matching, $P_{3} \times C_{n}, k$-Resonance, Cartesian product graph, Maximally resonant.

1. Introduction

Resonance is an important topic in mathematical chemistry with a rapidly growing literature. Its originlies in the work of Clar on the aromatic sextet theory [1] and the work of Randić's on the conjugated circuit model [2,3,4]. This concept of the "aromatic sextet" used in resonant theory explains very well π-electronic properties, i.e., relative stabilities, aromaticities, and reactivities of isomeric benzenoid hydrocarbons. In Randic's theory, the conjugated hexagon has the largest contribution to the resonance energy among all ($4 n+2$)-length conjugated circuits which contribute positively to the resonance energy of molecule.

In mathematics [5], a conjugated circuit is named an alternating cycle. A matching in a graph G is a set M of edges of G such that no two edges in M have a vertex in common. A matching M of G is perfect if any vertex of G is incident with an edge of M. For a graph G with a matching M, a cycle C of G is called an M-alternating cycle if the edges of C appear alternately in and off M. A set \mathcal{H} of disjoint even faces of a graph G is called resonant pattern if G has a perfect matching M such that the boundary of every even face in \mathcal{H} is M-alternating, equivalently, if $G-\mathcal{H}$ has a perfect matching, where $G-\mathcal{H}$ represents the subgraph obtained from G by deleting all vertices of \mathcal{H} together with their incident edges. A graph G is k-resonant, if every $i(0 \leq i \leq k)$ pairwise disjoint even faces form a resonant pattern. Obviously, if a graph is k-resonant, it is also ($k-1$)resonant for integer $k \geq 1$. If the graph G is k-resonant for any positive integer $k(k \geq 1)$, then the graph is maximally resonant.

The discussion of some molecular graphs has made the study of resonance theory very important and common. The resonance of molecular graphs was firstly studied in benzene systems [6]. Later, Zhang and Chen [7] gave some sufficient necessary conditions for 1 -resonant benzenoid systems.

Theorem 1.1. [7] Every hexagon of a hexagonal system H is resonant if and only if there exists a perfect matching M of H such that the boundary of H is an M-alternating cycle.

Soon after, Zhang and Zheng [8] gave a similar characterization for generalized hexagonal systems. Moreover, Zheng [9] first proposed k-resonant when studying hexagonal systems. Further, Zheng [10] characterized general k-resonant benzenoid systems and obtained the following results.

Theorem 1.2. [10] Every 3-resonant benzenoid systems is also k-resonant for any integer $k \geq 3$.
The same results are still held for coronoid systems [11], open-ended carbon nanotube [12], toroidal polyhexes [13,14], Klein-bottle polyhexes [15], fullerene graphs [16], boron-nitrogen fullerenes [17], polygonal systems [18], cubic bipartite polyhedral graphs [19], (3,6)-fullerenes [20]. In fact, these molecular graphs are maximally resonant if and only if they are 3-
resonant. In recent years, Liu et al. [21,22] provided the k-resonance of grid graphs. Not long ago, Yang et al. [23] discussed the resonance of the graph $P_{2} \times C_{n}$ (i.e. n-prism, $n \geq 3$) and obtained that it is k-resonant for any positive integer k ($k \geq 1$).

Since the k-resonance of the molecular graphs indicates the stability of the corresponding moleculars, in this paper, we consider the k-resonance of the cartesian product graph $P_{3} \times C_{n}$. In section 2 , we give some basic notations and preliminary results. In section 3, we prove that all cartesian product graphs $P_{3} \times C_{n}$ are 1-resonant, 2-resonant, 3-resonant and the only k -resonant ($k \geq 4$) graphs $P_{3} \times C_{n}$ are $P_{3} \times C_{4}, P_{3} \times C_{6}$ and $P_{3} \times C_{8}$. Furthermore, we come to the conclusion that a cartesian product graph $P_{3} \times C_{n}$ is maximally resonant if and only if it is 4-resonant.

2. Definitions and Preliminary Results

Definition 2.1. [23] Let G_{1} be a simple graph with vertex-set $V\left(G_{1}\right)=\left\{v^{1}, v^{2}, v^{3}, \cdots, v^{m}\right\}$, edge-set $E\left(G_{1}\right)$ and G_{2} be another simple graph with vertex-set $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$, edge-set $E\left(G_{2}\right)$. The cartesian product of simple graphs G_{1} and G_{2} is the graph $G_{1} \times G_{2}$, which is defined as follows:
(1) $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)=\left\{\left(v_{i}^{j}\right) \mid 1 \leq j \leq m, 1 \leq i \leq n\right\}$;
(2) $E\left(G_{1} \times G_{2}\right)=\left\{\left(v_{p}^{a} v_{q}^{b}\right) \mid v^{a} v^{b} \in E\left(G_{1}\right), v_{p}=v_{q}\right.$; or $\left.v_{p} v_{q} \in E\left(G_{2}\right), v^{a}=v^{b}\right\}$.

Definition 2.2. A path is a non-empty simple graph $P=(V, E)$ such that $V(P)=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{m}\right\}$ and $E(P)=\left\{v_{1} v_{2}, v_{2} v_{3}\right.$, $\left.\cdots, v_{m-1} v_{m}\right\}$, where all the vertices $v_{1}, v_{2}, v_{3}, \cdots, v_{m}$ are pairwise distinct. We always denote a path with m vertices by P_{m}, and say P_{m} a m-path. Sometimes, we also call $P=v_{1} v_{2} v_{3} \cdots v_{m}$ an $v_{1}-v_{m}$ path. If $P=v_{1} v_{2} v_{3} \cdots v_{m}$ is a path with $m \geq 3$, then we call the graph C consisting of P together with the edge $v_{1} v_{m}$ a cycle. As with paths, denote by $C_{m} . C_{m}=$ $v_{1} v_{2} v_{3} \cdots v_{m} v_{1}$ represents a cycle with m vertices, and say C_{m} a m-cycle.

Definition 2.3. When $n \geq 3$, the cartesian product graph $P_{3} \times C_{n}$ is a polyhedral graph, where P_{3} is a 3-path and C_{n} is a n -cycle.

Definition 2.4. [24] A graph is said to be embeddable in the plane, or planar, if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing is called a planar embedding of the graph.

In this paper, the graphs considered are all plane.
Definition 2.5. For a face f of a plane graph G, its boundary is a closed walk and $\partial(f)$ represents for the boundary of f. we often represent a face f by its boundary if unconfused.

Definition 2.6. In a planar embedding, a face is said to be an even face if its boundary is an even cycle, and an odd face if its boundary is an odd cycle.

Definition 2.7. Vertices and edges contained in the boundary of a face f are said to belong to f or to be on f, and denoted the sets of vertices and edges on $\partial(f)$ by $V(f)$ and $E(f)$, respectively.

Definition 2.8. A face of a plane graph G is called resonant if its boundary is an M-alternating cycle with a perfect matching M of G.

Definition 2.9. Two different faces f_{1}, f_{2} of a plane graph G are disjoint if $V\left(f_{1}\right) \cap V\left(f_{2}\right)=\emptyset$, and we say f_{1} is a neighboring face of f_{2} if $V\left(f_{1}\right) \cap V\left(f_{2}\right) \neq \emptyset$.

Definition 2.10. The symmetric difference of two finite sets A and Bis denoted as $A \oplus B=(A \cup B)-(A \cap B)$.
For more terminologies used in this paper, please see literatures [24, 25].
Let $V\left(P_{3}\right)=\left\{v^{1}, v^{2}, v^{3}\right\}, V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \cdots v_{n}\right\}$, where v_{i} is adjacent to v_{i+1} for $i=1,2,3 \cdots n, v_{n+1}=v_{1}$. Set $P_{3}=$ $v^{1} v^{2} v^{3}, C_{n}=v_{1} v_{2} v_{3} \cdots v_{n} v_{1}$. According to the definition of cartesian products, $V\left(P_{3} \times C_{n}\right)=\left\{v_{i}^{j} \mid 1 \leq j \leq 3,1 \leq i \leq\right.$ $n\}$. Let the planar embedding of $P_{3} \times C_{n}$ be shown in Figure 1. It is easy to know that $P_{3} \times C_{n}$ consists of ($2 n+2$) faces, of which two n-sided faces and $2 n$ quadrilateral faces. The number of vertices of the graph $P_{3} \times C_{n}$ is $3 n$. A k-resonant graph $P_{3} \times C_{n}$ should have even vertices, so n is even. Moreover, C_{n} is a n-cycle, $n \geq 3$. Thus, we always suppose $n \geq 4$ in the next discussion. The labeling for $P_{3} \times C_{n}$ is shown in Figure 1 .

Fig. 1 The graph $P_{3} \times C_{n}$.
We denote the quadrilateral face with the boundary $v_{a}^{1} v_{a+1}^{1} v_{a+1}^{2} v_{a}^{2} v_{a}^{1}$ as f_{a} and the quadrilateral face with the boundary $v_{a}^{2} v_{a+1}^{2} v_{a+1}^{3} v_{a}^{3} v_{a}^{2}$ as g_{a}, where $a=1,2,3 \cdots n, v_{n+1}^{1}=v_{1}^{1}, v_{n+1}^{2}=v_{1}^{2}, v_{n+1}^{3}=v_{1}^{3}$. Faces with the boundaries of $v_{1}^{1} v_{2}^{1} v_{3}^{1} \cdots v_{n}^{1} v_{1}^{1}$ and $v_{1}^{3} v_{2}^{3} v_{3}^{3} \cdots v_{n}^{3} v_{1}^{3}$ are represented as f^{n+1} and g^{n+1}, respectively. (See the labelling of faces of the graph $P_{3} \times C_{n}$ in Figure 1) .

We can divide the faces of $P_{3} \times C_{n}$ into four classes, one type is the internal n-sided face f^{n+1}, one is the outer n-sided face g^{n+1}, one is quadrilateral faces $f_{a}(a=1,2,3 \cdots n)$, and the other is quadrilateral faces $g_{a}(a=1,2,3 \cdots n)$. Let the set of quadrilateral faces $f_{a}(a=1,2,3 \cdots n)$ be \mathscr{F}_{1} and the set of quadrilateral faces g_{a} be \mathscr{F}_{2}, then $\mathcal{F}_{1}=\left\{f_{a} \mid a=1,2,3 \cdots n\right\}$ and $\mathscr{F}_{2}=\left\{g_{a} \mid a=1,2,3 \cdots n\right\}$. From the structural properties of the graph $P_{3} \times C_{n}$, we can see that f^{n+1} and g^{n+1} are symmetrical, \mathscr{F}_{1} and \mathscr{F}_{2} are symmetrical.

Next we give four perfect matchings for $P_{3} \times C_{n}, M_{1}=\left\{v_{1}^{1} v_{1}^{2}, v_{2}^{1} v_{2}^{2}, v_{3}^{1} v_{3}^{2} \cdots v_{n}^{1} v_{n}^{2}, v_{1}^{3} v_{2}^{3}, v_{3}^{3} v_{4}^{3} \cdots v_{n-1}^{3} v_{n}^{3}\right\}, M_{2}=$ $\left\{v_{1}^{1} v_{2}^{1}, v_{1}^{2} v_{2}^{2}, v_{1}^{3} v_{2}^{3}\right.$,
$\left.v_{3}^{1} v_{4}^{1}, v_{3}^{2} v_{4}^{2}, v_{3}^{3} v_{4}^{3} \cdots v_{n-1}^{1} v_{n}^{1}, v_{n-1}^{2} v_{n}^{2}, v_{n-1}^{3} v_{n}^{3}\right\}, M_{3}=\left\{v_{1}^{2} v_{1}^{3}, v_{2}^{2} v_{2}^{3}, v_{3}^{2} v_{3}^{3} \cdots v_{n}^{2} v_{n}^{3}, v_{1}^{1} v_{2}^{1}, v_{3}^{1} v_{4}^{1} \cdots v_{n-1}^{1} v_{n}^{1}\right\}, ~ M_{4}=$ $\left\{v_{2}^{1} v_{3}^{1}, v_{2}^{2} v_{3}^{2}, v_{2}^{3} v_{3}^{3}, v_{4}^{1} v_{5}^{1}, v_{4}^{2} v_{5}^{2}, v_{4}^{3} v_{5}^{3}\right.$
$\left.\cdots v_{n}^{1} v_{1}^{1}, v_{n}^{2} v_{1}^{2}, v_{n}^{3} v_{1}^{3}\right\}$, as shown in Figure 2 (double edges).

M_{1} (a)

M_{2} (b)

Fig. 2 The $P_{3} \times C_{n}$ with four perfect matchings $M_{1}(\mathrm{a}), M_{2}(\mathrm{~b}), M_{3}(\mathrm{c})$ and $M_{4}(\mathrm{~d})$.

3. Main results

Lemma 3.1. $P_{3} \times C_{n}(n \geq 4)$ is 1-resonant.
Proof. Let h be any face in $P_{3} \times C_{n}$. If h is a quadrilateral face, by symmetry, suppose $h \in \mathscr{F}_{1}$, we can get the boundary of every quadrilateral face in \mathscr{F}_{1} is M_{1}-alternating, i.e. h is a resonant face. If h is an n-sided face, then $h \in\left\{f^{n+1}, g^{n+1}\right\}$, we can find that $\partial(h)$ is M_{2}-alternating cycle. Each face of the graph $P_{3} \times C_{n}$ is resonant, hence the graph $P_{3} \times C_{n}(n \geq 4)$ is 1resonant.

Lemma 3.2. $P_{3} \times C_{n}(n \geq 4)$ is 2-resonant.
Proof. We choose any pair of disjoint faces h_{1} and h_{2} in $P_{3} \times C_{n}$. To prove that $P_{3} \times C_{n}$ is 2-resonant, it is sufficient to prove that for any pair of disjoint even faces h_{1} and h_{2}, there exists a perfect matching M such that $\partial\left(h_{1}\right)$ and $\partial\left(h_{2}\right)$ are both M alternating cycles. According to the classification of the faces in $P_{3} \times C_{n}$, we have the following four cases.

Case 1. $h_{1}, h_{2} \in\left\{f^{n+1}, g^{n+1}\right\}$.
If $h_{1}, h_{2} \in\left\{f^{n+1}, g^{n+1}\right\}$, then we can know that $\partial\left(h_{1}\right)$ and $\partial\left(h_{2}\right)$ are M_{2}-alternating cycle.
Case 2. One of $h_{1}, h_{2} \in\left\{f^{n+1}, g^{n+1}\right\}$, one of h_{1} and h_{2} is a quadrilateral face.
Without loss of generality, suppose $h_{1}=g^{n+1}$, then $h_{2} \in \mathscr{F}_{1}$. Every quadrangle in \mathscr{F}_{1} is M_{1}-alternating. Hence $\partial\left(h_{1}\right)$ and $\partial\left(h_{2}\right)$ are both M_{1}-alternating cycle.

Case 3. Both h_{1}, h_{2} are quadrilateral faces and $h_{1}, h_{2} \in \mathscr{F}_{1}$ or $h_{1}, h_{2} \in \mathscr{F}_{2}$.
We can see from Figure 2 that the boundaries of any two disjoint quadrilateral faces in \mathscr{F}_{1} or \mathscr{F}_{2} are M_{1}-alternating or M_{3}-alternating, respectively. So any two disjoint quadrilateral faces in \mathscr{F}_{1} or \mathscr{F}_{2} form a resonant pattern of $P_{3} \times C_{n}$.

Case 4. Both h_{1}, h_{2} are quadrilateral faces and $h_{1} \in \mathscr{F}_{1}, h_{2} \in \mathscr{F}_{2}$.
Let's take any quadrilateral face in \mathscr{F}_{1}, without loss of generality, firstly assume $h_{1}=f_{i}(i=1,3,5, \cdots n-1)$, we have $h_{2} \neq\left\{g_{i-1}, g_{i}, g_{i+1}\right\}$ and let $g_{0}=g_{n}$. Then, we find that $\partial\left(h_{2}\right)$ is M_{2}-alternating cycle or none of the four edges of $E\left(h_{2}\right)$ belong to M_{2}. If $\partial\left(h_{2}\right)$ is M_{2}-alternating cycle, then both $\partial\left(h_{1}\right)$ and $\partial\left(h_{2}\right)$ are M_{2}-alternating cycles, which means $\left\{h_{1}, h_{2}\right\}$ forms a resonant pattern. Otherwise, let $h_{2}=g_{a}(a \neq i-1, i, i+1)$, set $M_{5}:=M_{2} \oplus E\left(g_{a-1}\right) \oplus E\left(g_{a+1}\right)$. It is clear that M_{5} is a perfect matching alternating on both $\partial\left(h_{1}\right)$ and $\partial\left(h_{2}\right)$. Next suppose $h_{1}=f_{i}(i=2,4,6, \cdots n)$, then $h_{2} \neq$ $\left\{g_{i-1}, g_{i}, g_{i+1}\right\}$ and let $g_{n+1}=g_{1}$. Now we get $\partial\left(h_{1}\right)$ is M_{4} - alternating cycle from Figure 2(d), and we can know $\partial\left(h_{2}\right)$ is M_{4}-alternating cycle or none of the four edges of $E\left(h_{2}\right)$ belongs to M_{4}. Then the similar analysis as above we can get both $\partial\left(h_{1}\right)$ and $\partial\left(h_{2}\right)$ are alternating cycles with respect to some perfect matching of $P_{3} \times C_{n}$.

Thus, any two disjoint quadrilateral faces in $P_{3} \times C_{n}$ can form a resonant pattern, that is, $P_{3} \times C_{n}(n \geq 4)$ is 2-resonant.
Lemma 3.3. $P_{3} \times C_{n}(n \geq 4)$ is 3-resonant.
Proof. We take any three pairwise disjoint faces in $P_{3} \times C_{n}$, denoted by h_{1}, h_{2}, h_{3}. We distinguish the following three cases according to the number of n-sided faces in $\left\{h_{1}, h_{2}, h_{3}\right\}$.

Case 1. There are exactly two n-sided faces in $\left\{h_{1}, h_{2}, h_{3}\right\}$.
Without loss of generality, suppose $h_{1}, h_{2} \in\left\{f^{n+1}, g^{n+1}\right\}$, then there are not exist three disjoint even faces, which is trivial.
Case 2. There is exactly one n-sided face in $\left\{h_{1}, h_{2}, h_{3}\right\}$.
Without loss of generality, suppose $h_{1}=g^{n+1}$, then we have $h_{2}, h_{3} \neq f^{n+1}$ and $h_{2}, h_{3} \in \mathscr{F}_{1}$. Instantly we have all $\partial\left(h_{1}\right), \partial\left(h_{2}\right), \partial\left(h_{3}\right)$ are M_{1}-alternating cycle. Hence h_{1}, h_{2}, and h_{3} form a resonant pattern of $P_{3} \times C_{n}$.
Case 3. There are no n-sided faces in h_{1}, h_{2} and h_{3}.
We know that h_{1}, h_{2} and h_{3} are all quadrilateral faces, $h_{1}, h_{2}, h_{3} \in\left\{\mathcal{F}_{1}, \mathcal{F}_{2}\right\}$. Without loss of generality, let's assume $h_{1}, h_{2} \in \mathscr{F}_{1}, h_{3} \in \mathscr{F}_{2}$. As can be seen from Figure 2(a), the boundaries of any two disjoint quadrilateral faces in \mathscr{F}_{1} are M_{1} alternating cycles. Next we analyze h_{3}. We can distinguish the following two cases.

Subcase 3.1. None of the edges of $E\left(h_{3}\right)$ belong to M_{1}.
Let $h_{3}=g_{i}$ and $g_{i}(i=2,4,6, \cdots, n)$ be the face where none of the four edges of $E\left(h_{3}\right)$ belong to M_{1}. Let $M_{6}:=M_{1} \oplus$ $E\left(f_{i}\right) \bigoplus E\left(g^{n+1}\right)$. It is clear that M_{6} is a perfect matching of $P_{3} \times C_{n}$ such that $\partial\left(h_{1}\right), \partial\left(h_{2}\right), \partial\left(h_{3}\right)$ are simultaneously M_{6} alternating.

Subcase 3.2. Only one edge of $E\left(h_{3}\right)$ belongs to M_{1}.
We suppose $h_{3}=g_{j}$. Let $g_{j}(j=1,3,5, \cdots, n-1)$ be the face where one edge of $E\left(g_{j}\right)$ belongs to M_{1}. Let $M_{7}:=M_{1} \oplus$ $E\left(f_{j}\right)$. We can know that M_{7} is a perfect matching alternating on $\partial\left(h_{1}\right), \partial\left(h_{2}\right)$ and $\partial\left(h_{3}\right)$.

So h_{1}, h_{2} and h_{3} can form a resonant pattern of $P_{3} \times C_{n}$, we have proofed Lemma 3.3.
Lemma 3.4. For any positive integer $k \geq 1, P_{3} \times C_{n}(4 \leq n \leq 8)$ is k-resonant.
Proof. According to the Lemmas 3.1-3.3, we show that $P_{3} \times C_{n}$ is 1-resonant, 2-resonant and 3-resonant. No any four pairwise disjoint even faces can be found in $P_{3} \times C_{4}$, so it is trivial, i.e., $P_{3} \times C_{4}$ is maximally resonant. It is easy to prove that $P_{3} \times C_{6}$ is 4-resonant and $P_{3} \times C_{8}$ is 5-resonant. We also know that any five pairwise disjoint even faces in $P_{3} \times C_{6}$ cannot be found and there are no any six pairwise disjoint even faces in $P_{3} \times C_{8}$. Hence $P_{3} \times C_{n}(4 \leq n \leq 8)$ is k-resonant for any positive integer $k \geq 1$.

Lemma 3.5. For any positive integer $k \geq 4, P_{3} \times C_{n}(n \geq 10)$ is not k-resonant.
Proof. Let h_{1}, h_{2}, h_{3} and h_{4} be the four pairwise disjoint quadrilateral faces in $P_{3} \times C_{n}$ as shown in Figure 3. Then $P_{3} \times C_{n}-$ $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$ consists of an odd component of seven vertices(see Figure 3, the seven black vertices), that is, $P_{3} \times C_{n}$ $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$ does not have a perfect matching. So $P_{3} \times C_{n}$ is not 4-resonant, then it is also not k-resonant $(k \geq 4)$.

Fig. 3 The illustration for the proof of Lemma 3.5.

From the above proofing process, and combining with Lemmas 3.4-3.5, we can get the following direct result.
Corollary 3.6. The graph $P_{3} \times C_{n}$ is maximally resonant if and only if it is 4-resonant.

References

[1] Eric Clar, The Aromatic Sextet, Wiley, London, 1972.
[2] Milan Randić, "Conjugated Circuits and Resonance Energies of Benzenoid Hydrocarbons," Chemical Physics Letters, vol. 38, no. 1, pp. 68-70, 1976. Crossref, https://doi.org/10.1016/0009-2614(76)80257-6
[3] M. Randić, "Graph Theoretical Approach to Local and Overall Aromaticity of Benzenoid Hydrocarbons," Tetrahedron, vol. 31, no. 1112, pp. 1477-1481, 1975. Crossref, https://doi.org/10.1016/0040-4020(75)87084-0
[4] Milan Randić, "Aromaticity of Polycyclic Conjugated Hydrocarbons," Chemical Reviews, vol. 103, pp. 3449-3605, 2003. Crossref, https://doi.org/10.1021/cr9903656
[5] Laszlo Lovász, and Michael D. Plummer, Matching Theory, American Mathematical Society, 2009.
[6] I. Gutman, Covering Hexagonal System with Hexagons, in: Graph Theory, Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad University, pp. 151-160, 1984.
[7] Fu-ji Zhang, and Rong-si Chen, "When each Hexagon of a Hexagonal System Covers It," Discrete Applied Mathematics, vol. 30, no. 1, pp. 63-75, 1991. Crossref, https://doi.org/10.1016/0166-218X(91)90014-N
[8] M. Zheng, " k-Resonant Benzenoid Systems," Journal of Molecular Structure(Theochem), vol. 231, pp. 321-334, 1991.
[9] Zhang Fuji, and Zheng Maolin, "Generalized Hexagonal Systems with Each Hexagon Being Resonant," Discrete Applied Mathematics, vol. 36, no. 1, pp. 67-73, 1992. Crossref, https://doi.org/10.1016/0166-218X(92)90205-O
[10] Maolin Zheng, "Construction of 3-Resonant Benzenoid Systems," Journal of Molecular Structure: THEOCHEM, vol. 277, pp. 1-14, 1992. Crossref, https://doi.org/10.1016/0166-1280(92)87125-J
[11] Rong-si Chen, and Xiao-feng Guo, "k- Coverable Coronoid Systems," Journal of Mathematical Chemistry, vol. 12, pp. 147-162, 1993. Crossref, https://doi.org/10.1007/BF01164632
[12] Fuji Zhang, and Lusheng Wang, "k- Resonance of Open-ended Carbon Nanotubes," Journal of Mathematical Chemistry, vol. 35, pp. 87-103, 2004. Crossref, https://doi.org/10.1023/B:JOMC.0000014306.86197.22
[13] Wai Chee Shiu, Peter Che Bor Lam, and Heping Zhang, "k- Resonance in Toroidal Polyhexes," Journal of Mathematical Chemistry, vol. 38, pp. 451-466, 2005. Crossref, https://doi.org/10.1007/s10910-004-6897-4
[14] Heping Zhang, and Dong Ye, "k-Resonant Toroidal Polyhexes," Journal of Mathematical Chemistry, vol. 44, pp. 270-285, 2008. Crossref, https://doi.org/10.1007/s10910-007-9310-2
[15] Wai Chee Shiu, and Heping Zhang, "A Complete Charaterization for ${ }^{k}$-Resonant Klein-bottle Polyhexes," Journal of Mathematical Chemistry, vol. 43, pp. 45-59, 2008. Crossref, https://doi.org/10.1007/s10910-006-9178-6
[16] D. Ye, Z. Qi, H. Zhang, "On ${ }^{k}$-Resonant Fullerene Graphs," SIAM Journal of Discrete Mathematics, vol. 23, pp. 1023-1044, 2009.
[17] Heping Zhang, and Saihua Liu, "2-resonance of Plane Bipartite Graphs and Its Applications to Boron-nitrogen Fullerenes," Discrete Applied Mathematics, vol. 158, no. 14, pp. 1559-1569, 2010. Crossref, https://doi.org/10.1016/j.dam.2010.05.012
[18] Saihua Liu, and Heping Zhang, "Maximally Resonant Polygonal Systems," Discrete Mathematics, vol. 310, no. 21, pp. 2790-2800, 2010. Crossref, https://doi.org/10.1016/j.disc.2010.06.011
[19] Wai Chee Shiu, Heping Zhang, and Saihua Liu, "Maximal Resonance of Cubic Bipartite Polyhedral Graphs," Journal of Mathematical Chemistry, vol. 48, pp. 676-686, 2010. Crossref, https://doi.org/10.1007/s10910-010-9700-8
[20] Rui Yang, and Heping Zhang, "Hexagonal Resonance of (3,6)-Fullerenes," Journal of Mathematical Chemistry, vol. 50, no. 1, pp. 261273, 2012. Crossref, http://dx.doi.org/10.1007/s10910-011-9910-8
[21] Saihua Liu, and Jianping Ou, "On Maximal Resonance of Polyomino Graphs," Journal of Mathematical Chemistry, vol. 51, pp. 603619, 2013. Crossref, https://doi.org/10.1007/s10910-012-0104-9
[22] Saihua Liu, Jianping Ou, and Youchuang Lin, "On k-Resonance of Grid Graphs on the Plane, Torus and Cylinder," Journal of Mathematical Chemistry, vol. 52, pp. 1807-1816, 2014. Crossref, https://doi.org/10.1007/s10910-014-0347-8
[23] R. Yang, C. Liu, N. Wu, The number of perfect matchings and ${ }^{k}$-resonance in ${ }^{n}$-prism, J. Shandong Uni. (Natural Sci.), vol. 57, no. 11, pp. 37-41, 2022.
[24] J. Adrian Bondy, and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, Springer, New York, 2008.
[25] Laszlo Lovász, and Michael D. Plummer, Matching Theory, American Mathematical Society, 2009.

