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Abstract - In the paper, a new shrinking projection method is proposed for solving split equality problem(SEP) in Banach 

spaces. For practical purposes, we substitute duality mapping for inner in Banach spaces. Under proper conditions, we give 

proofs of strong convergence for the SEP with two different choices of the step-size. Finally, we make some extensions and 

generalization. 
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1. Introduction 
In 1994, Censor and Elfving [3] firstly introduced a new problem named split feasibility problem (SFP for short): finding 

a point 𝑥∗ in 𝐸1 with the property:  

                                                                                   𝑥∗ ∈ 𝐶 and 𝐴𝑥∗ ∈ 𝑄,                                                                     (1.1)    

                                                             

where 𝐸1 and 𝐸2 are two real Banach spaces, 𝐶 and 𝑄 are nonempty closed convex subsets of 𝐸1 and 𝐸2, respectively. 𝐴 

is a bounded linear operator. 

 

In 2013, Moudafi [12] introduced the SEP induced by SFP, which can be formulated as: 

 

                                                              find 𝑥 ∈ 𝐶, 𝑦 ∈ 𝑄 such that 𝐴𝑥 = 𝐵𝑦,                                                               (1.2) 

 

where 𝐻1, 𝐻2, 𝐻3 are three real Hilbert spaces, 𝐴 ∶ 𝐻1 → 𝐻3 and 𝐵 ∶  𝐻2 → 𝐻3 are two bounded linear operators . 𝐶 ⊂
𝐻1 and 𝑄 ⊂  𝐻2 are two nonempty closed convex subsets. 

 

When 𝐵 = 𝐼, the SEP (1.2) will reduce to the SFP (1.1). 

 

The SEP has received plenty of attention owing to its extraordinary practicality and wide applicability in numerous fields 

of applied mathematics; for example: decomposition methods for partial differential equations, applications in game theory 

(see [1]) and intensity-modulated radiation therapy (see [4][5]) and so on. Furthermore, Moudafi proposed the following 

scheme for dealing with the SEP in Hilbert space: 

 

                                                                {
𝑥𝑘+1 = 𝑃𝐶𝑘(𝑥𝑘 − 𝛾𝐴

∗(𝐴𝑥𝑘 − 𝐵𝑦𝑘)),     

𝑦𝑘+1 = 𝑃𝑄𝑘(𝑦𝑘 + 𝛾𝐵
∗(𝐴𝑥𝑘+1 − 𝐵𝑦𝑘)).

                                                        (1.3) 

 

The author obtained the property of weak convergence of (1.3) under certain proper assumptions and the appropriate 

parameters. 

 

In 2014, to get the strong convergence result, Shi et al. [16] offered a modification of Moudafi’s ACQA algorithms in 

Hilbert spaces to handle the SEP as follow: 

𝑤𝑛+1 = 𝑃𝑆{(1 − 𝛼𝑛)[𝐼 −  𝛾𝐺
∗𝐺]𝑤𝑛},                                                           (1.4) 

i.e., 
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{
𝑥𝑘+1 = 𝑃𝐶{(1 −  𝛼𝑘)𝑥𝑘 −  𝛾𝐴

∗(𝐴𝑥𝑘 − 𝐵𝑦𝑘)}, 𝑛 ≥  0,

𝑦𝑘+1 = 𝑃𝑄{(1 − 𝛼𝑘)𝑦𝑘 +  𝛾𝐵
∗(𝐴𝑥𝑘 − 𝐵𝑦𝑘)}, 𝑛 ≥  0.

                                              (1.5) 

 

Based on the relationship between the SFP (1.1) and the SEP (1.2), we would seek an iterative algorithm to solve SEP 

(1.2) by the methods for handling the SFP (1.1). 

 

Next, we will recommend a slice of iterative algorithms, which have dealt with the SFP in Banach spaces. 

In 2014, Takahashi [23] suggested a new projection method for solving the SFP in Banach spaces: 

                                                 

{
 
 

 
 𝑧𝑛 =  𝑛 − 𝑟𝑛𝐽𝑋∗𝐴

∗𝐽𝑌(𝐼 −  𝑃𝑄)𝐴𝑥𝑛，                  

𝐶𝑛 = {𝑧 ∈  𝐶 ∶  〈𝑧𝑛 −  𝑧, 𝐽𝑋(𝑥𝑛 − 𝑧𝑛)〉  ≥  0},

𝑄𝑛 = {𝑧 ∈  𝐶 ∶  〈𝑥𝑛 −  𝑧, 𝐽𝑋(𝑥0 − 𝑥𝑛)〉  ≥  0},

𝑥𝑛+1 =  𝑃𝐶𝑛⋂𝑄𝑛(𝑥0), ∀𝑛 ∈  𝑁,                              

                                                     (1.6) 

 

where 𝑟𝑛 is a positive parameter, 𝐽𝑋 and 𝐽𝑌 are two duality mappings on 𝑋 and 𝑌, respectively. 

 

In 2015, by referring to the shrinking projection method, Takahashi [24] proposed the other method: 

{

𝑧𝑛 = 𝑥𝑛 − 𝑟𝑛𝐽𝑋∗𝐴
∗𝐽𝑌(𝐼 − 𝑃𝑄)𝐴𝑥𝑛,                                        

𝑄𝑛+1 = {𝑧 ∈ 𝑄𝑛:  〈𝑧𝑛 −  𝑧,  𝐽𝑋(𝑥𝑛 − 𝑧𝑛)〉  ≥  0}，              

𝑥𝑛+1 =  𝑃𝑄𝑛(𝑥0), ∀𝑛 ∈  𝑁，                                                     

                                             (1.7) 

 

Under the assumption that 𝑋 is reflexive, smooth and uniformly convex, which is obviously weaker than the condition 

applied in [13], the author proved that the two methods are strongly convergence to the solution of SFP. 

There are more articles solving the SEP and other related problem; see, for instance, [2, 9, 17, 11, 19, 21, 18, 20, 14]. 

 

The aim of this paper is to build a new algorithm by modifying the iterative scheme (1.7) in Banach space for solving the 

SEP and prove the result of strong convergence. The paper will be organized as follow: In Section 2, we firstly recall several 

necessary lemmas and definitions. In Section 3, we secondly recommended our shrinking projection algorithm and prove the 

strong convergence property. In Section 4, some extensions will be introduced. 

 

2. Preliminaries  
In this section, we introduce the meaning of letters in the article and a few basic lemmas. 

Let 𝑋, 𝑌, 𝑍 be real 2-convex and uniformly smooth and thus reflexive Banach space. So, 𝑋∗, 𝑌∗, 𝑍∗ are three 2-smooth 

and uniformly convex dual space of 𝑋, 𝑌, 𝑍. In our paper, <∙,∙> means the duality pairing between the original space and its 

dual space. The notion "→" represents the result of strong convergence; "⇀" means weak convergence; and 𝜔𝑤(𝑧𝑛) is the set 

of weak cluster points of a sequence {𝑧𝑛}. 𝑇
−1(0) = {𝑎 ∈ 𝑍: 𝑇𝑎 = 0} shows the null-point set of an operator 𝑇 which is 

defined on 𝑍. For 𝑧 ∈ 𝑍, we let 𝐽𝑡(𝐼 − 𝑃𝑋)𝑢 = 𝐽𝑡(𝑢 − 𝑃𝑋𝑢). We assume that 𝐶, 𝑄 are nonempty closed convex subsets of 

𝑋, 𝑌, respectively. 𝐴:𝑋 → 𝑍, 𝐵: 𝑌 → 𝑍 are two bounded linear operators. Let 𝑓2(𝑧) is a function under these assumptions 

𝑓2(𝑧) ≔
1

2
‖𝑧‖2, 𝑧 ∈ 𝑆, 

 

which is strictly convex and 𝐹𝑟𝑒́𝑐ℎ𝑒𝑡 differentiable, where 𝑆:= 𝑋 ×  𝑌. Its derivative is 

𝐽2: = 𝑓2
′. 

 

By the definition of 𝐽2
∗, we let the duality mapping of the dual 𝑋∗ and 𝑌∗ with the gauge function 𝑡 ↦  𝑡. Among that, 

𝐽2, 𝐽2
∗ are uniformly continuous on bounded sets and bijective with (𝐽2)

−1 = 𝐽2
∗. 

Then, the following several lemmas will be applied in the proof of principal theorem. 

 

Lemma 2.1. [22] Let 𝐽𝑌 be the duality mapping on space 𝑌. 

(1) 𝐽𝑌 is surjective if and only if 𝑌 is reflexive. 

(2) 𝐽𝑌 is injective if and only if 𝑌 is strictly convex. 

(3) 𝐽𝑌 is single-valued if and only if 𝑌 is smooth. 

(4) If 𝑌 is smooth, then 𝐽𝑌 is monotone, that is, 
〈𝑥 − 𝑦, 𝐽𝑌𝑥 − 𝐽𝑌𝑦〉 ≥ 0, ∀𝑥, 𝑦 ∈ 𝑌.  



Ziyuan Zhang & Tongxin Xu / IJMTT, 69(2), 147-154, 2023 

 

149 

Additionally, if 𝑌 is a strictly convex space, then 𝐽𝑌 is strictly monotone, that is, 
〈𝑥 − 𝑦, 𝐽𝑌𝑥 − 𝐽𝑌𝑦〉 = 0 ⟹ 𝑥 = 𝑦. 

(5) If 𝑌 is smooth, reflexive and strictly convex, we can get that 𝐽𝑌  is one-to-one, single-valued with the property 𝐽𝑌
−1 = 𝐽𝑌∗ , 

where 𝐽𝑌∗ is the duality mapping of 𝑌∗ . 
 

Lemma 2.2. [13] Let {𝑢𝑛} be a sequence in 𝑍, and 𝐶 ⊆ Z be a nonempty closed convex subset. After that, for 𝑢 ∈ 𝑍, the 

following inequalities hold. 

(1) 〈𝑧 − 𝑃𝐶(𝑢), 𝐽𝑋(𝑢 − 𝑃𝐶(𝑢))〉 ≤ 0, ∀𝑧 ∈ 𝐶. 
(2) ‖𝑢 − 𝑃𝐶(𝑢)‖

2 ≤ 〈𝑢 − 𝑧, 𝐽𝑋(𝑢 − 𝑃𝐶(𝑢))〉, ∀𝑧 ∈ 𝐶. 
(3) If 𝑥𝑛 ⇀ 𝑥 and ‖𝑥 − 𝑃𝐶(𝑥)‖ ⟶ 0, then 𝑥 ∈ 𝐶. 

 

Lemma 2.3. [7, 6, 23] Let 𝑁 > 0 and {𝑥𝑛}, {𝑦𝑛} be two sequences in 𝑋 such that ‖𝑥𝑛‖ = 𝑁, ‖𝑦𝑛‖ = 𝑁 and ‖𝑥𝑛 + 𝑦𝑛‖ ⟶ 2𝑁 

as 𝑛 →  ∞. If 𝑋 is uniformly convex, we can get lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = 0. 

 

Lemma 2.4. [7, 6, 23] Let {𝑥𝑛} be a sequence in 𝑋 such that 𝑥𝑛 ⇀ 𝑥 as well as lim
𝑛→∞

‖𝑥𝑛‖ = ‖𝑥‖. Furthermore, if 𝑋 is uniformly 

convex, we can get lim
𝑛→∞

𝑥𝑛 = 𝑥. 

 

3. Main Results  
To get a perfect algorithm, the following lemmas are essential. By the lemma, the split equality problem can be 

converted to an equivalent null-point problem, which actually also be equivalent to the fixed-point problem.  
 

Lemma 3.1. Let  T(z) ≔ 𝐽𝑟
∗[𝐽𝑡(𝐼 − 𝑃𝑆)𝑧 + 𝐺

∗𝐽2𝐺𝑧]. Then Γ = 𝑇−1(0) , where z = (x, y),  G = [A,−B],  𝐽𝑟
∗ = [𝐽2

∗, 𝐽2
∗]𝑇 ,  𝐽𝑡 = 

[𝐽2, 𝐽2]
𝑇. 

 

Proof: Clearly, Γ ⊆ 𝑇−1(0). Now let z ∈ 𝑇−1(0). By Lemma 2.2, we have 

‖𝑧 − 𝑃𝑆𝑧‖
2 ≤ 〈𝐽𝑡(𝐼 − 𝑃𝑆)𝑧, 𝑧 − 𝑢〉, 

and 
〈𝐽2𝐺𝑧, 𝐺𝑧 − 𝐺𝑢〉 = ‖𝐺𝑧‖2 = 〈𝐽2𝐺𝑧 − 𝐽2𝐺𝑢, 𝐺𝑧 − 𝐺𝑢〉 = 〈𝐺

∗𝐽2𝐺𝑧, 𝑧 − 𝑢〉, 
where 𝑢 ∈ Γ. By these inequalities, we have 

‖𝑧 − 𝑃𝑆𝑧‖
2 + 〈𝐽2𝐺𝑧, 𝐺𝑧 − 𝐺𝑢〉 ≤ 〈𝐽𝑡(𝐼 − 𝑃𝑆)𝑧 , 𝑧 − 𝑢〉 + 〈𝐺

∗𝐽2𝐺𝑧, 𝑧 − 𝑢〉 = 0. 
Then, since 

‖𝑧 − 𝑃𝑆𝑧‖
2 ≥ 0 and 〈𝐽2(𝐺𝑧 − 𝐺𝑢), 𝐺𝑧 − 𝐺𝑢〉 = ‖𝐺𝑧‖

2 ≥ 0, 
we can get: 

‖𝑧 − 𝑃𝑆𝑧‖
2 = ‖𝐺𝑧‖2 = 0. 

 

Thus, 𝑧 = 𝑃𝑆𝑧 and 𝐺𝑧 = 0, that is, z ∈ Γ. Hence 𝑇−1(0) ⊆ Γ. 

Altogether, we have  𝑇−1(0) = Γ. This completes our proof. 

 

The next algorithm will be proposed for coping with the split equality problem in Banach spaces. Choose 𝑧0 = (𝑥0, 𝑦0)  ∈
 X × Y as well as S0 = X × Y. Given 𝑧𝑛, update 𝑧𝑛+1 by the iteration formula: 

{

𝑤𝑛 = 𝑧𝑛 − 𝑟𝑛𝐽𝑟
∗[𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛 + 𝐺

∗𝐽2𝐺𝑧𝑛],      

𝑆𝑛+1 = {𝑤 ∈ 𝑆𝑛: 〈𝑤𝑛 − 𝑤, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 ≥ 0}

𝑧𝑛+1 = 𝑃𝑆𝑛+1(𝑧0), ∀𝑛 ∈ ℕ.                                  
, 

where 𝑧𝑛 = (𝑥𝑛 , 𝑦𝑛), 𝑤𝑛 = (𝑢𝑛, 𝑣𝑛), 𝑆𝑛 = 𝐶𝑛 × 𝑄𝑛, 𝑤 = (𝑢, 𝑣). 
 

Lemma 3.2. Assume that 𝑋, 𝑌 and 𝑍 all are reflexive, smooth and strictly convex Banach spaces. If 𝑟𝑛  is chosen so that 0 <
𝑎 ≤ 𝑟𝑛 ≤  1/(1 + ‖𝐺‖2 ), where 𝑎 > 0 is a real number; then for every 𝑛 ∈  𝑁, the set 𝑆𝑛 is nonempty, closed and convex. 

Consequently, the algorithm that we proposed is well defined. 

 

Proof: Now it is enough to show that 𝑆𝑛 is nonempty because 𝑆𝑛 is obviously closed and convex. We next show that Γ ⊆ 𝑆𝑛. 

Let 𝑚 ∈  𝛤, we have 
〈𝑧𝑛 −𝑚, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 = 𝑟𝑛〈𝑧𝑛 −𝑚, 𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛 + 𝐺

∗𝐽2𝐺𝑧𝑛〉 = 𝑟𝑛〈𝑧𝑛 −𝑚, 𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛〉 + 𝑟𝑛〈𝐺𝑧𝑛 − 𝐺𝑚, 𝐽2𝐺𝑧𝑛〉 
                                                  ≥ 𝑟𝑛‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖

2 + 𝑟𝑛〈𝐺𝑧𝑛 , 𝐽2𝐺𝑧𝑛〉 = 𝑟𝑛(‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖
2 + ‖𝐺𝑧𝑛‖

2),                                          (3.2) 
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which implies 
〈𝑤𝑛 −𝑚, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 = 〈𝑤𝑛 − 𝑧𝑛 , 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 + 〈𝑧𝑛 −𝑚, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 

                                        = 〈𝑧𝑛 −𝑚, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 − ‖𝑤𝑛 − 𝑧𝑛‖
2 ≥ −‖𝑧𝑛 − 𝑤𝑛‖

2 + 𝑟𝑛‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖
2 + ‖𝐺𝑧𝑛‖

2). 
On the other hand, according to Young’s inequality,  

‖𝑧𝑛 − 𝑤𝑛‖
2 = 𝑟𝑛

2‖𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛 + 𝐺
∗𝐽2𝐺𝑧𝑛‖

2  ≤ 𝑟𝑛
2(‖𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛‖ + ‖𝐺‖‖𝐽2𝐺𝑧𝑛‖)

2 

                           = 𝑟𝑛
2(‖𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛‖

2 + ‖𝐺‖2‖𝐽2𝐺𝑧𝑛‖
2) + 2𝑟𝑛

2‖𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛‖‖𝐺‖‖𝐽2𝐺𝑧𝑛‖ 

                                        ≤ 𝑟𝑛
2(‖𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛‖

2 + ‖𝐺‖2‖𝐽2𝐺𝑧𝑛‖
2) + 𝑟𝑛

2(‖𝐺‖2‖𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛‖
2 + ‖𝐽2𝐺𝑧𝑛‖

2) 
                                                       = 𝑟𝑛

2(1 + ‖𝐺‖2)(‖𝐽𝑡(𝐼 − 𝑃𝑆)𝑧𝑛‖
2 + ‖𝐽2𝐺𝑧𝑛‖

2) = 𝑟𝑛
2(1 + ‖𝐺‖2)(‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖

2 + ‖𝐺𝑧𝑛‖
2), 

then, 
〈𝑤𝑛 −𝑚, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 ≥ 𝑟𝑛(1 − 𝑟𝑛(1 + ‖𝐺‖

2))(‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖
2 + ‖𝐺𝑧𝑛‖

2) ≥ 0. 
 

Hence, 𝑚 ∈  𝑆𝑛. Since m is decided in 𝛤 arbitrarily, we get that 𝛤 ∈ 𝑆𝑛 for all 𝑛 ∈  𝑁. Now it is obviously that the set 

𝑆𝑛 is nonempty, closed and convex. Therefore, the algorithm we proposed is well defined.  

 

Next, we will show the convergence of the recommended algorithm.  

 

Theorem 3.3. We suppose that X and Y are reflexive, smooth and uniformly convex Banach spaces. We also assume that Z is 

a smooth, reflexive and strictly convex space. If 𝑟𝑛 is fixed and satisfies the inequality: 0 < a ≤ 𝑟𝑛 ≤
1

1+‖𝐺‖2
, the algorithm 

(3.1) will generate a sequence {𝑧𝑛} which is converges strongly to 𝑧̂ ∈ Γ, where 𝑧̂ ∈ 𝑃Γ(𝑧0). 
Proof: We initially prove this limit: 

                                                                                  lim
𝑛→∞

‖𝑧𝑛 − 𝑤𝑛‖ = 0.                                                                               (3.3) 

 

Let 𝑤̅ ∈ Γ, we know that 𝑤̅ ∈ 𝑆𝑛, 𝑧𝑛+1 ∈ 𝑆𝑛+1 ⊆ 𝑆𝑛 .  Thus, for each 𝑛 ∈ ℕ, we have 

 

‖𝑧0 − 𝑧𝑛‖ = ‖𝑧0 − 𝑃𝑆𝑛(𝑧0)‖ ≤ min(‖𝑧0 − 𝑤̅‖, ‖𝑧0 − 𝑧𝑛+1‖). 

 

The result indicates that {‖𝑧0 − 𝑧𝑛‖} is bounded and nondecreasing; As a consequence, lim
𝑛→∞

‖𝑧0 − 𝑧𝑛‖ exists. Now we let 

M ≔ lim
𝑛→∞

‖𝑧0 − 𝑧𝑛‖. We have 

lim
𝑛→∞

sup ‖(𝑧𝑛+1 − 𝑧0) + (𝑧𝑛 − 𝑧0)‖ 

≤ lim
𝑛→∞

(‖𝑧𝑛+1 − 𝑧0‖ + ‖𝑧0 − 𝑧n‖) = 2M, 

and 

lim
𝑛→∞

inf ‖(𝑧𝑛+1 − 𝑧0) + (𝑧𝑛 − 𝑧0)‖ 

                                = lim
𝑛→∞

inf 2 ‖
𝑧𝑛+1 + 𝑧𝑛

2
− 𝑧0‖ ≥ lim

𝑛→∞
2‖𝑧0 − 𝑧𝑛‖ = 2M, 

where 
𝑧𝑛+𝑧𝑛+1

2
∈ 𝑆𝑛. So we can get 

lim
𝑛→∞

‖(𝑧𝑛+1 − 𝑧0) + (𝑧𝑛 − 𝑧0)‖ = 2𝑀. 

Since 𝑋 , 𝑌 are uniformly convex spaces, by the Lemma 2.3 this yields that 

lim
𝑛→∞

‖𝑧𝑛+1 − 𝑧𝑛‖ = lim
𝑛→∞

‖(𝑧𝑛+1 − 𝑧0) − (𝑧𝑛 − 𝑧0)‖ = 0. 

Furthermore, since 𝑧𝑛+1 ∈ 𝑆𝑛+1, by the defifinition of  𝑆𝑛+1, then we have: 
〈𝑤𝑛 − 𝑧𝑛+1, 𝐽𝑡(𝑧𝑛 −𝑤𝑛)〉 ≥ 0, 

which implies that 

                                                                                    ‖𝑧𝑛 −𝑤𝑛‖
2 

                                                                                = 〈𝑧𝑛 −𝑤𝑛 , 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 
                                     = 〈𝑧𝑛 − 𝑧𝑛+1, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 + 〈𝑧𝑛+1 − 𝑤𝑛 , 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 

                                                                                ≤ 〈𝑧𝑛 − 𝑧𝑛+1, 𝐽𝑡(𝑧𝑛 −𝑤𝑛)〉 
                                                                                ≤ ‖𝑧𝑛 − 𝑧𝑛+1‖ ∙ ‖𝑧𝑛 − 𝑤𝑛‖. 

Hence, lim
𝑛→∞

‖𝑧𝑛 − 𝑤𝑛‖ =0. 

 

We next will prove that each weak cluster point of {𝑧𝑛} is a solution of the split equality problem. In order to get the 

result, we let z be any weak cluster point of {𝑧𝑛} and take a subsequence {z𝑛𝑘  } of {𝑧𝑛} converging weakly to z. According to 

(3.2) and (3.3), we get:  
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lim
𝑘→∞

‖z𝑛𝑘 − 𝑃𝑆z𝑛𝑘‖ = lim
𝑛→∞

‖𝑧𝑛 − 𝑃𝑆z𝑛‖ = 0,                                                                 (3.4) 

 lim
𝑛→∞

‖𝐺𝑧𝑛‖ =0,                                                                                         (3.5) 

by the Lemma 2.2, then z ∈ S. And    

0 ≤ ‖𝐺𝑧‖2 = 〈𝐺𝑧, 𝐽2𝐺𝑧〉 = 〈𝑧, 𝐺
∗𝐽2𝐺𝑧〉 = lim

𝑛→∞
〈𝑧𝑛, 𝐺

∗𝐽2𝐺z〉 = lim
𝑛→∞

〈𝐺𝑧𝑛 , 𝐽2𝐺z〉 ≤ lim
𝑛→∞

‖𝐺𝑧𝑛‖‖Gz‖ =0. 

Hence, z ∈ Γ. Since z is arbitrary, we get the conclusion we desire. 

In the end, we should prove that {𝑧𝑛} converges strongly to 𝑧̂ ∈ 𝑃Γ(𝑧0). We can take any 𝑧 ∈ 𝜔𝑤(𝑧𝑛). Then, 𝑧 ∈ 𝛤. There 

exists a subsequence {𝑧𝑛𝑘} of {𝑧𝑛} converging weakly to 𝑧. Therefore, we have: 

‖𝑧0 − 𝑧̂‖ = ‖𝑧0 − 𝑃Γ(𝑧0)‖ ≤ ‖𝑧0 − 𝑧‖ ≤ lim
𝑘→∞

‖𝑧0 − 𝑧𝑛𝑘‖ = lim
𝑘→∞

‖𝑧0 − 𝑃𝑆𝑛𝑘
(𝑧0)‖ ≤ ‖𝑧0 − 𝑧̂‖. 

According to the property of projection and the uniqueness of projection, hence, 

𝑧̂ = 𝑧, lim
𝑘→∞

‖𝑧0 − 𝑧𝑛𝑘‖ = ‖𝑧0 − 𝑧̂‖. 

Since 𝑧 is decided arbitrarily, this suggests that 𝜔𝑤(𝑧𝑛) is a single-point set. So, we can get {𝑧𝑛}  converges weakly to 𝑧̂. 

We can conclude that 𝑧0 − 𝑧𝑛𝑘 ⇀ 𝑧0 − 𝑧̂. By Lemma 2.4, the uniform convexity implies lim
𝑘→∞

𝑧𝑛𝑘 = 𝑧̂. Since {𝑧𝑛} converges 

weakly, it yields lim
𝑛→∞

𝑧𝑛 = 𝑧̂ as desired. 

 

4. Generalization 
Reproduced with permission. [Ref.] Copyright Year, Publisher. Let 𝑋, 𝑌 be real p-uniformly convex and uniformly 

smooth and thus reflexive Banach spaces. So, there be q-uniformly smooth and uniformly convex dual space 𝑋∗, 𝑌∗ (see e.g. 

[8, 10, 6, 15]). The parameters satisfy: 

𝑝 > 2, 𝑞 < 2,
1

𝑝
+
1

𝑞
= 1. 

Under the above assumptions, the function 

𝑓𝑝(𝑧) ≔
1

𝑝
‖𝑧‖𝑝, 𝑧 ∈ 𝑆, 

 

is strictly convex and Fr𝑒́chet differentiable, where S ≔ X × Y. Its derivative 

 

𝐽𝑝 ≔ 𝑓𝑝
′ 

 

is a nonlinear mapping from X × Y to 𝑋∗ × 𝑌∗ which is called the duality mapping of X × Y with a gauge function t ↦ t𝑝−1. It 

is homogenous of degree 𝑝 − 1 and we can get 
〈𝐽𝑝(𝑥), 𝑥〉 = ‖𝑥‖𝑝, 

and 

‖𝐽𝑝(𝑥)‖ = ‖𝑥‖𝑝−1, 

 

where we write 〈𝑥∗, 𝑥〉 = 〈𝑥, 𝑥∗〉 = 𝑥∗(𝑥) for the application of 𝑥∗ ∈  𝑆∗ on 𝑥 ∈ 𝑆. By 𝐽𝑞
∗ we define the duality mapping 

of the dual 𝑆∗ with a gauge function t ↦ t𝑞−1. Both 𝐽𝑝 and 𝐽𝑞
∗ are uniformly continuous on bounded sets and bijective with 

(𝐽𝑝)
−1 = 𝐽𝑞

∗. If we consider the function in Hilbert spaces, then 𝐽2 will be the identity mapping. 

 

Lemma 4.1. Let 𝑈 be a real Banach space, and 𝐶 ⊆ 𝑈 be a nonempty closed convex subset. Then, for 𝑢 ∈ 𝑋, the following 

inequality hold: 
‖𝑢 − 𝑃𝐶𝑢‖

𝑝 ≤ 〈−𝐽𝑝(𝑃𝐶𝑢 − 𝑢), 𝑢 − 𝑧〉, ∀𝑧 ∈ 𝐶. 

 

Proof: We know that the projection can be expressed by a variational inequality (see [13]): the element 𝑃𝐶𝑢 is the metric 

projection of 𝑢 onto 𝐶 iff 
〈𝐽𝑝(𝑃𝐶𝑢 − 𝑢), 𝑧 − 𝑃𝐶𝑢〉 ≥ 0, ∀𝑧 ∈ 𝐶. 

i.e., 
〈𝐽𝑝(𝑃𝐶𝑢 − 𝑢), 𝑧 − 𝑢〉 + 〈𝐽𝑝(𝑃𝐶𝑢 − 𝑢), 𝑢 − 𝑃𝐶𝑢〉 ≥ 0, ∀𝑧 ∈ 𝐶. 

Then 
‖𝑢 − 𝑃𝐶𝑢‖

𝑝 ≤ 〈−𝐽𝑝(𝑃𝐶𝑢 − 𝑢), 𝑢 − 𝑧〉, ∀𝑧 ∈ 𝐶. 

Hence, the inequality is valid. 
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Lemma 4.2. Let T(z) ≔ 𝐽𝑟
∗[𝐺∗𝐽𝑝𝐺𝑧 − 𝐽𝑡(𝑃𝑆𝑥 − 𝐼)𝑧]. Then Γ = 𝑇−1(0), where z = (x, y), G = [A,−B],  𝐽𝑟

∗ = [𝐽𝑝
∗ , 𝐽𝑝

∗]𝑇 ,  𝐽𝑡 = 

[𝐽𝑝, 𝐽𝑝]
𝑇. 

 

Proof: Clearly, Γ ⊆ 𝑇−1(0). Now let z ∈ 𝑇−1(0). By Lemma 4.1, for each 𝑚 ∈ Γ, we have 

‖𝑧 − 𝑃𝑆𝑧‖
𝑝 ≤ 〈−𝐽𝑡(𝑃𝑆𝑥 − 𝐼)𝑧, 𝑧 − 𝑚〉, 

‖𝐺𝑧‖𝑝 = 〈𝐽𝑝𝐺𝑧, 𝐺𝑧〉 = 〈𝐽𝑝𝐺𝑧, 𝐺𝑧 − 𝐺𝑚〉 = 〈𝐽𝑝𝐺𝑧, 𝐺(𝑧 − 𝑚)〉 = 〈𝐺∗𝐽𝑝𝐺𝑧, 𝑧 − 𝑚〉, 

By these inequalities, we have 
‖𝑧 − 𝑃𝑆𝑧‖

𝑝 + ‖𝐺𝑧‖𝑝 ≤ 〈−𝐽𝑡(𝑃𝑆𝑥 − 𝐼)𝑧, 𝑧 − 𝑚〉 + 〈𝐺
∗𝐽𝑝𝐺𝑧, 𝑧 − 𝑚〉 = 0. 

On the other hand, since 
‖𝑧 − 𝑃𝑆𝑧‖

𝑝 ≥ 0 and ‖𝐺𝑧‖𝑝 ≥ 0, 
thus 

‖𝑧 − 𝑃𝑆𝑧‖ = ‖𝐺𝑧‖ = 0. 
So 𝑧 = 𝑃𝑆𝑧 and 𝐺𝑧 = 0, that is, z ∈ Γ. Hence 𝑇−1(0) ⊆ Γ. 

Altogether, we have  𝑇−1(0) = Γ. 
 

We provide the following algorithm which can cope with the split equality problem in Banach spaces. Let 𝑧0 =
(𝑥0, 𝑦0)  ∈ 𝑋 × 𝑌 and  𝑆0 = 𝑋 × 𝑌. We should calculate and get 𝑧𝑛, then update 𝑧𝑛+1 by the iteration formula: 

{

𝑤𝑛 = 𝑧𝑛 − 𝑟𝑛𝐽𝑟
∗[𝐺∗𝐽𝑝𝐺𝑧𝑛 − 𝐽𝑡(𝑃𝑆 − 𝐼)𝑧𝑛],   

𝑆𝑛+1 = {𝑤 ∈ 𝑆𝑛: 〈𝑤𝑛 − 𝑤, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 ≥ 0

𝑧𝑛+1 = 𝑃𝑆𝑛+1(𝑧0), ∀𝑛 ∈ ℕ.                                

},                                                             (4.1) 

where 𝑧𝑛 = (𝑥𝑛 , 𝑦𝑛), 𝑤𝑛 = (𝑢𝑛, 𝑣𝑛), 𝑆𝑛 = 𝐶𝑛 × 𝑄𝑛, 𝑤 = (𝑢, 𝑣). 
 

Lemma 4.3. We suppose that X and Y are two reflexive, smooth and strictly convex spaces. The set 𝑆𝑛 is nonempty, convex 

and closed. The algorithm we proposed is well defined iff 𝑟𝑛 is chosen so that 

𝑟𝑛
𝑝−1

=
‖𝑧𝑛−𝑃𝑆𝑧𝑛‖

𝑝+‖𝐺𝑧𝑛‖
𝑝

(‖𝐽𝑡(𝑃𝑆𝑥−𝐼)𝑧𝑛‖+‖𝐺‖‖𝐽𝑝𝐺𝑧𝑛‖)
𝑞. 

Proof: It is enough to prove that 𝑆𝑛 is nonempty because it is obviously closed and convex. Hence, we should reveal that Γ ⊆
𝑆𝑛. Let 𝑢 ∈ Γ, we have 

〈𝑧𝑛 − 𝑢, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 = 𝑟𝑛〈𝑧𝑛 − 𝑢, 𝐺
∗𝐽𝑝𝐺𝑧𝑛 − 𝐽𝑡(𝑃𝑆 − 𝐼)𝑧𝑛〉 

=𝑟𝑛〈𝐺𝑧𝑛 − 𝐺𝑢, 𝐽𝑝𝐺𝑧𝑛〉 − 𝑟𝑛〈𝑧𝑛 − 𝑢, 𝐽𝑡(𝑃𝑆 − 𝐼)𝑧𝑛〉 

                                                   ≥ 𝑟𝑛〈𝐺𝑧𝑛 , 𝐽𝑝𝐺𝑧𝑛〉 − 𝑟𝑛〈𝑧𝑛 − 𝑃𝑆𝑧𝑛, 𝐽𝑡(𝑃𝑆 − 𝐼)𝑧𝑛〉 

                                                  = 𝑟𝑛(‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖
𝑝 + ‖𝐺𝑧𝑛‖

𝑝), 
which implies 

〈𝑤𝑛 − 𝑢, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 
                                        = 〈𝑤𝑛 − 𝑧𝑛, 𝐽𝑡(𝑧𝑛 −𝑤𝑛)〉 + 〈𝑧𝑛 − 𝑢, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 

= −‖𝑤𝑛 − 𝑧𝑛‖
𝑝 + 〈𝑧𝑛 − 𝑢, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 

                               ≥ 𝑟𝑛(‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖
𝑝 + ‖𝐺𝑧𝑛‖

𝑝)−‖𝑧𝑛 − 𝑤𝑛‖
𝑝, 

On the other hand, 
‖𝑧𝑛 −𝑤𝑛‖

𝑝 

                                    = ‖𝑟𝑛𝐽𝑟
∗[𝐺∗𝐽𝑝𝐺𝑧𝑛 − 𝐽𝑡(𝑃𝑆 − 𝐼)𝑧𝑛]‖

𝑝
 

                               = 𝑟𝑛
𝑝‖𝐺∗𝐽𝑝𝐺𝑧𝑛 − 𝐽𝑡(𝑃𝑆 − 𝐼)𝑧𝑛‖

𝑞
 

                                             ≤ 𝑟𝑛
𝑝(‖𝐽𝑡(𝑃𝑆𝑥 − 𝐼)𝑧𝑛‖ + ‖𝐺‖‖𝐽𝑝𝐺𝑧𝑛‖)

𝑞 

                                                                                        = 𝑟𝑛(‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖
𝑝 + ‖𝐺𝑧𝑛‖

𝑝).                                                        (4.2) 

Then 
〈𝑤𝑛 − 𝑢, 𝐽𝑡(𝑧𝑛 − 𝑤𝑛)〉 ≥ 0. 

 

Hence, m ∈ 𝑆𝑛. Since m is decided in Γ arbitrarily, we can get that Γ ⊆ 𝑆𝑛 for all n ∈ ℕ. We can know that the set 𝑆𝑛 is 

nonempty, closed and convex. Consequently, the algorithm we proposed is well defined.  

 

We then prove that the sequence {𝑧𝑛} generated by (4.1) converges strongly to 𝑧̂ ∈ Γ. According to the proof of the 

foregoing theorem, it is enough to confirm that (3.4) and (3.5) still hold. Similarly, we obtain lim
𝑛→∞

‖𝑧𝑛 − 𝑤𝑛‖ = 0. By (4.2), 

we have 

lim
𝑛→∞

𝑟𝑛(‖𝑧𝑛 − 𝑃𝑆𝑧𝑛‖
𝑝 + ‖𝐺𝑧𝑛‖

𝑝) = 0.                                                                   (4.3) 
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This together with (4.3) yields (3.4) and (3.5) as desired. Hence, the proof is completed. 

 

Remark 4.4. Our algorithm is new even in Hilbert spaces. In fact, if we consider SEP in Hilbert space, the algorithm we 

proposed will be simplified as: 

{

𝑤𝑛 = 𝑧𝑛 − 𝑟𝑛[𝐺
∗𝐺𝑧𝑛 − (𝑃𝑆 − 𝐼)𝑧𝑛],        

𝑆𝑛+1 = {𝑤 ∈ 𝑆𝑛: 〈𝑤𝑛 −𝑤, 𝑧𝑛 − 𝑤𝑛〉 ≥ 0

𝑧𝑛+1 = 𝑃𝑆𝑛+1(𝑧0), ∀𝑛 ∈ ℕ.                         
}, 

5. Conclusion  
 In this paper, we propose a new shrinking projection iterative algorithm. It can cope with the split equality problem (SEP) 

in Banach spaces. Under several proper conditions, we give proofs of strong convergence for the SEP with two different choices 

of the step-size. Finally, we make some extensions and generalization. 
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