# A Shrinking Projection Algorithm for Solving Split Equality Problem in Banach Spaces 

Ziyuan Zhang ${ }^{1}$, Tongxin Xu $^{2}$<br>${ }^{1}$ School of Mathematical Sciences, Tiangong University, Tianjin, China<br>${ }^{2}$ School of Mathematics and Statistics, Xidian University, Shaanxi, China

Received: 10 January 2023
Revised: 12 February 2023
Accepted: 22 February 2023
Published: 28 February 2023


#### Abstract

In the paper, a new shrinking projection method is proposed for solving split equality problem(SEP) in Banach spaces. For practical purposes, we substitute duality mapping for inner in Banach spaces. Under proper conditions, we give proofs of strong convergence for the SEP with two different choices of the step-size. Finally, we make some extensions and generalization.


Keywords - Split equality problem, Strong convergence, Duality mapping, Shrinking projection method, Banach space.

## 1. Introduction

In 1994, Censor and Elfving [3] firstly introduced a new problem named split feasibility problem (SFP for short): finding a point $x^{*}$ in $E_{1}$ with the property:

$$
\begin{equation*}
x^{*} \in C \text { and } A x^{*} \in Q \tag{1.1}
\end{equation*}
$$

where $E_{1}$ and $E_{2}$ are two real Banach spaces, $C$ and $Q$ are nonempty closed convex subsets of $E_{1}$ and $E_{2}$, respectively. $A$ is a bounded linear operator.

In 2013, Moudafi [12] introduced the SEP induced by SFP, which can be formulated as:

$$
\begin{equation*}
\text { find } x \in C, y \in Q \text { such that } A x=B y \tag{1.2}
\end{equation*}
$$

where $H_{1}, H_{2}, H_{3}$ are three real Hilbert spaces, $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ are two bounded linear operators.$C \subset$ $H_{1}$ and $Q \subset H_{2}$ are two nonempty closed convex subsets.

When $B=I$, the $\operatorname{SEP}$ (1.2) will reduce to the SFP (1.1).
The SEP has received plenty of attention owing to its extraordinary practicality and wide applicability in numerous fields of applied mathematics; for example: decomposition methods for partial differential equations, applications in game theory (see [1]) and intensity-modulated radiation therapy (see [4][5]) and so on. Furthermore, Moudafi proposed the following scheme for dealing with the SEP in Hilbert space:

$$
\left\{\begin{array}{l}
x_{k+1}=P_{C_{k}}\left(x_{k}-\gamma A^{*}\left(A x_{k}-B y_{k}\right)\right)  \tag{1.3}\\
y_{k+1}=P_{Q_{k}}\left(y_{k}+\gamma B^{*}\left(A x_{k+1}-B y_{k}\right)\right)
\end{array}\right.
$$

The author obtained the property of weak convergence of (1.3) under certain proper assumptions and the appropriate parameters.

In 2014, to get the strong convergence result, Shi et al. [16] offered a modification of Moudafi's ACQA algorithms in Hilbert spaces to handle the SEP as follow:

$$
\begin{equation*}
w_{n+1}=P_{s}\left\{\left(1-\alpha_{n}\right)\left[I-\gamma G^{*} G\right] w_{n}\right\} \tag{1.4}
\end{equation*}
$$

i.e.,

$$
\left\{\begin{array}{l}
x_{k_{+1}}=P_{c}\left\{\left(1-\alpha_{k}\right) x_{k}-\gamma A^{*}\left(A x_{k}-B y_{k}\right)\right\}, n \geq 0,  \tag{1.5}\\
y_{v_{k}}=P_{\Omega}\left\{\left(1-\alpha_{k}\right) y_{k}+\gamma B^{*}\left(A x_{k}-B v_{k}\right)\right\}, n \geq 0 .
\end{array}\right.
$$

Based on the relationship between the SFP (1.1) and the SEP (1.2), we would seek an iterative algorithm to solve SEP (1.2) by the methods for handling the SFP (1.1).

Next, we will recommend a slice of iterative algorithms, which have dealt with the SFP in Banach spaces. In 2014, Takahashi [23] suggested a new projection method for solving the SFP in Banach spaces:

$$
\left\{\begin{array}{l}
z_{n}=n-r_{n} J_{X^{*}} A^{*} J_{Y}\left(I-P_{Q}\right) A x_{n},  \tag{1.6}\\
C_{n}=\left\{z \in C:\left\langle z_{n}-z, J_{X}\left(x_{n}-z_{n}\right)\right\rangle \geq 0\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J_{X}\left(x_{0}-x_{n}\right)\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right), \forall n \in N,
\end{array}\right.
$$

where $r_{n}$ is a positive parameter, $J_{X}$ and $J_{Y}$ are two duality mappings on $X$ and $Y$, respectively.
In 2015, by referring to the shrinking projection method, Takahashi [24] proposed the other method:

$$
\left\{\begin{array}{l}
z_{n}=x_{n}-r_{n} J_{X^{*}} A^{*} J_{Y}\left(I-P_{Q}\right) A x_{n}  \tag{1.7}\\
Q_{n+1}=\left\{z \in Q_{n}:\left\langle z_{n}-z, J_{X}\left(x_{n}-z_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1}=P_{Q_{n}}\left(x_{0}\right), \forall n \in N
\end{array}\right.
$$

Under the assumption that $X$ is reflexive, smooth and uniformly convex, which is obviously weaker than the condition applied in [13], the author proved that the two methods are strongly convergence to the solution of SFP.
There are more articles solving the SEP and other related problem; see, for instance, $[2,9,17,11,19,21,18,20,14]$.
The aim of this paper is to build a new algorithm by modifying the iterative scheme (1.7) in Banach space for solving the SEP and prove the result of strong convergence. The paper will be organized as follow: In Section 2, we firstly recall several necessary lemmas and definitions. In Section 3, we secondly recommended our shrinking projection algorithm and prove the strong convergence property. In Section 4, some extensions will be introduced.

## 2. Preliminaries

In this section, we introduce the meaning of letters in the article and a few basic lemmas.
Let $X, Y, Z$ be real 2-convex and uniformly smooth and thus reflexive Banach space. So, $X^{*}, Y^{*}, Z^{*}$ are three 2 -smooth and uniformly convex dual space of $X, Y, Z$. In our paper, $\langle\because \cdot\rangle$ means the duality pairing between the original space and its dual space. The notion " $\rightarrow$ " represents the result of strong convergence; " $\rightarrow$ " means weak convergence; and $\omega_{w}\left(z_{n}\right)$ is the set of weak cluster points of a sequence $\left\{z_{n}\right\} . T^{-1}(0)=\{a \in Z: T a=0\}$ shows the null-point set of an operator $T$ which is defined on $Z$. For $z \in Z$, we let $J_{t}\left(I-P_{X}\right) u=J_{t}\left(u-P_{X} u\right)$. We assume that $C, Q$ are nonempty closed convex subsets of $X, Y$, respectively. $A: X \rightarrow Z, B: Y \rightarrow Z$ are two bounded linear operators. Let $f_{2}(z)$ is a function under these assumptions

$$
f_{2}(z):=\frac{1}{2}\|z\|^{2}, \quad z \in S
$$

which is strictly convex and Fréchet differentiable, where $S:=X \times Y$. Its derivative is

$$
J_{2}:=f_{2}^{\prime}
$$

By the definition of $J_{2}^{*}$, we let the duality mapping of the dual $X^{*}$ and $Y^{*}$ with the gauge function $t \mapsto t$. Among that, $J_{2}, J_{2}^{*}$ are uniformly continuous on bounded sets and bijective with $\left(J_{2}\right)^{-1}=J_{2}^{*}$.

Then, the following several lemmas will be applied in the proof of principal theorem.
Lemma 2.1. [22] Let $J_{Y}$ be the duality mapping on space $Y$.
(1) $J_{Y}$ is surjective if and only if $Y$ is reflexive.
(2) $J_{Y}$ is injective if and only if $Y$ is strictly convex.
(3) $J_{Y}$ is single-valued if and only if $Y$ is smooth.
(4) If $Y$ is smooth, then $J_{Y}$ is monotone, that is,

$$
\left\langle x-y, J_{Y} x-J_{Y} y\right\rangle \geq 0, \forall x, y \in Y
$$

Additionally, if $Y$ is a strictly convex space, then $J_{Y}$ is strictly monotone, that is,

$$
\left\langle x-y, J_{Y} x-J_{Y} y\right\rangle=0 \Longrightarrow x=y
$$

(5) If $Y$ is smooth, reflexive and strictly convex, we can get that $J_{Y}$ is one-to-one, single-valued with the property $J_{Y}^{-1}=J_{Y^{*}}$, where $J_{Y^{*}}$ is the duality mapping of $Y^{*}$.

Lemma 2.2. [13] Let $\left\{u_{n}\right\}$ be a sequence in $Z$, and $C \subseteq Z$ be a nonempty closed convex subset. After that, for $u \in Z$, the following inequalities hold.
(1) $\left\langle z-P_{C}(u), J_{X}\left(u-P_{C}(u)\right)\right\rangle \leq 0, \forall z \in C$.
(2) $\left\|u-P_{C}(u)\right\|^{2} \leq\left\langle u-z, J_{X}\left(u-P_{C}(u)\right)\right\rangle, \forall z \in C$.
(3) If $x_{n} \rightharpoonup x$ and $\left\|x-P_{C}(x)\right\| \rightarrow 0$, then $x \in C$.

Lemma 2.3. $[7,6,23]$ Let $N>0$ and $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be two sequences in $X$ such that $\left\|x_{n}\right\|=N,\left\|y_{n}\right\|=N$ and $\left\|x_{n}+y_{n}\right\| \rightarrow 2 N$ as $n \rightarrow \infty$. If $X$ is uniformly convex, we can get $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 2.4. $[7,6,23]$ Let $\left\{x_{n}\right\}$ be a sequence in $X$ such that $x_{n} \rightharpoonup x$ as well as $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\|x\|$. Furthermore, if $X$ is uniformly convex, we can get $\lim _{n \rightarrow \infty} x_{n}=x$.

## 3. Main Results

To get a perfect algorithm, the following lemmas are essential. By the lemma, the split equality problem can be converted to an equivalent null-point problem, which actually also be equivalent to the fixed-point problem.

Lemma 3.1. Let $\mathrm{T}(\mathrm{z}):=J_{r}^{*}\left[J_{t}\left(I-P_{S}\right) z+G^{*} J_{2} G z\right]$. Then $\Gamma=T^{-1}(0)$, where $\mathrm{z}=(\mathrm{x}, \mathrm{y}), \mathrm{G}=[\mathrm{A},-\mathrm{B}], J_{r}^{*}=\left[J_{2}^{*}, J_{2}^{*}\right]^{T}, J_{t}=$ $\left[J_{2}, J_{2}\right]^{T}$.

Proof: Clearly, $\Gamma \subseteq T^{-1}(0)$. Now let $\mathrm{z} \in T^{-1}(0)$. By Lemma 2.2, we have

$$
\left\|z-P_{S} z\right\|^{2} \leq\left\langle J_{t}\left(I-P_{S}\right) z, z-u\right\rangle
$$

and

$$
\left\langle J_{2} G z, G z-G u\right\rangle=\|G z\|^{2}=\left\langle J_{2} G z-J_{2} G u, G z-G u\right\rangle=\left\langle G^{*} J_{2} G z, z-u\right\rangle,
$$

where $u \in \Gamma$. By these inequalities, we have

$$
\left\|z-P_{S} z\right\|^{2}+\left\langle J_{2} G z, G z-G u\right\rangle \leq\left\langle J_{t}\left(I-P_{S}\right) z, z-u\right\rangle+\left\langle G^{*} J_{2} G z, z-u\right\rangle=0 .
$$

Then, since

$$
\left\|z-P_{S} z\right\|^{2} \geq 0 \text { and }\left\langle J_{2}(G z-G u), G z-G u\right\rangle=\|G z\|^{2} \geq 0
$$

we can get:

$$
\left\|z-P_{S} z\right\|^{2}=\|G z\|^{2}=0
$$

Thus, $z=P_{S} z$ and $G z=0$, that is, $z \in \Gamma$. Hence $T^{-1}(0) \subseteq \Gamma$.
Altogether, we have $T^{-1}(0)=\Gamma$. This completes our proof.
The next algorithm will be proposed for coping with the split equality problem in Banach spaces. Choose $z_{0}=\left(x_{0}, y_{0}\right) \in$ $\mathrm{X} \times \mathrm{Y}$ as well as $\mathrm{S}_{0}=\mathrm{X} \times \mathrm{Y}$. Given $z_{n}$, update $z_{n+1}$ by the iteration formula:

$$
\left\{\begin{array}{l}
w_{n}=z_{n}-r_{n} J_{r}^{*}\left[J_{t}\left(I-P_{S}\right) z_{n}+G^{*} J_{2} G z_{n}\right] \\
S_{n+1}=\left\{w \in S_{n}:\left\langle w_{n}-w, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \geq 0\right\} \\
z_{n+1}=P_{S_{n+1}}\left(z_{0}\right), \forall n \in \mathbb{N}
\end{array}\right.
$$

where $z_{n}=\left(x_{n}, y_{n}\right), w_{n}=\left(u_{n}, v_{n}\right), S_{n}=C_{n} \times Q_{n}, w=(u, v)$.
Lemma 3.2. Assume that $X, Y$ and $Z$ all are reflexive, smooth and strictly convex Banach spaces. If $r_{n}$ is chosen so that $0<$ $a \leq r_{n} \leq 1 /\left(1+\|G\|^{2}\right)$, where $a>0$ is a real number; then for every $n \in N$, the set $S_{n}$ is nonempty, closed and convex. Consequently, the algorithm that we proposed is well defined.

Proof: Now it is enough to show that $S_{n}$ is nonempty because $S_{n}$ is obviously closed and convex. We next show that $\Gamma \subseteq S_{n}$. Let $m \in \Gamma$, we have

$$
\begin{align*}
\left\langle z_{n}-m, J_{t}\left(z_{n}-w_{n}\right)\right\rangle & =r_{n}\left\langle z_{n}-m, J_{t}\left(I-P_{S}\right) z_{n}+G^{*} J_{2} G z_{n}\right\rangle=r_{n}\left\langle z_{n}-m, J_{t}\left(I-P_{S}\right) z_{n}\right\rangle+r_{n}\left\langle G z_{n}-G m, J_{2} G z_{n}\right\rangle \\
& \geq r_{n}\left\|z_{n}-P_{S} z_{n}\right\|^{2}+r_{n}\left\langle G z_{n}, J_{2} G z_{n}\right\rangle=r_{n}\left(\left\|z_{n}-P_{S} z_{n}\right\|^{2}+\left\|G z_{n}\right\|^{2}\right), \tag{3.2}
\end{align*}
$$

which implies

$$
\begin{aligned}
& \left\langle w_{n}-m, J_{t}\left(z_{n}-w_{n}\right)\right\rangle=\left\langle w_{n}-z_{n}, J_{t}\left(z_{n}-w_{n}\right)\right\rangle+\left\langle z_{n}-m, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \\
= & \left.\left\langle z_{n}-m, J_{t}\left(z_{n}-w_{n}\right)\right\rangle-\left\|w_{n}-z_{n}\right\|^{2} \geq-\left\|z_{n}-w_{n}\right\|^{2}+r_{n}\left\|z_{n}-P_{S} z_{n}\right\|^{2}+\left\|G z_{n}\right\|^{2}\right) .
\end{aligned}
$$

On the other hand, according to Young's inequality,

$$
\begin{aligned}
\left\|z_{n}-w_{n}\right\|^{2} & =r_{n}{ }^{2}\left\|J_{t}\left(I-P_{S}\right) z_{n}+G^{*} J_{2} G z_{n}\right\|^{2} \leq r_{n}{ }^{2}\left(\left\|J_{t}\left(I-P_{S}\right) z_{n}\right\|+\|G\|\left\|J_{2} G z_{n}\right\|\right)^{2} \\
& =r_{n}^{2}\left(\left\|J_{t}\left(I-P_{S}\right) z_{n}\right\|^{2}+\|G\|^{2}\left\|J_{2} G z_{n}\right\|^{2}\right)+2 r_{n}^{2}\left\|J_{t}\left(I-P_{S}\right) z_{n}\right\|\|G\|\left\|J_{2} G z_{n}\right\| \\
& \leq r_{n}{ }^{2}\left(\left\|J_{t}\left(I-P_{S}\right) z_{n}\right\|^{2}+\|G\|^{2}\left\|J_{2} G z_{n}\right\|^{2}\right)+r_{n}{ }^{2}\left(\|G\|^{2}\left\|J_{t}\left(I-P_{S}\right) z_{n}\right\|^{2}+\left\|J_{2} G z_{n}\right\|^{2}\right) \\
& =r_{n}^{2}\left(1+\|G\|^{2}\right)\left(\left\|J_{t}\left(I-P_{S}\right) z_{n}\right\|^{2}+\left\|J_{2} G z_{n}\right\|^{2}\right)=r_{n}{ }^{2}\left(1+\|G\|^{2}\right)\left(\left\|z_{n}-P_{S} z_{n}\right\|^{2}+\left\|G z_{n}\right\|^{2}\right),
\end{aligned}
$$

then,

$$
\left\langle w_{n}-m, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \geq r_{n}\left(1-r_{n}\left(1+\|G\|^{2}\right)\right)\left(\left\|z_{n}-P_{S} z_{n}\right\|^{2}+\left\|G z_{n}\right\|^{2}\right) \geq 0
$$

Hence, $m \in S_{n}$. Since $m$ is decided in $\Gamma$ arbitrarily, we get that $\Gamma \in S_{n}$ for all $n \in N$. Now it is obviously that the set $S_{n}$ is nonempty, closed and convex. Therefore, the algorithm we proposed is well defined.

Next, we will show the convergence of the recommended algorithm.
Theorem 3.3. We suppose that X and Y are reflexive, smooth and uniformly convex Banach spaces. We also assume that Z is a smooth, reflexive and strictly convex space. If $r_{n}$ is fixed and satisfies the inequality: $0<\mathrm{a} \leq r_{n} \leq \frac{1}{1+\|G\|^{2}}$, the algorithm (3.1) will generate a sequence $\left\{z_{n}\right\}$ which is converges strongly to $\hat{z} \in \Gamma$, where $\hat{z} \in P_{\Gamma}\left(z_{0}\right)$.

Proof: We initially prove this limit:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\|=0 \tag{3.3}
\end{equation*}
$$

Let $\bar{w} \in \Gamma$, we know that $\bar{w} \in S_{n}, z_{n+1} \in S_{n+1} \subseteq S_{n}$. Thus, for each $n \in \mathbb{N}$, we have

$$
\left\|z_{0}-z_{n}\right\|=\left\|z_{0}-P_{S_{n}}\left(z_{0}\right)\right\| \leq \min \left(\left\|z_{0}-\bar{w}\right\|,\left\|z_{0}-z_{n+1}\right\|\right)
$$

The result indicates that $\left\{\left\|z_{0}-z_{n}\right\|\right\}$ is bounded and nondecreasing; As a consequence, $\lim _{n \rightarrow \infty}\left\|z_{0}-z_{n}\right\|$ exists. Now we let $\mathrm{M}:=\lim _{n \rightarrow \infty}\left\|z_{0}-z_{n}\right\|$. We have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup \left\|\left(z_{n+1}-z_{0}\right)+\left(z_{n}-z_{0}\right)\right\| \\
\leq & \lim _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{0}\right\|+\left\|z_{0}-z_{\mathrm{n}}\right\|\right)=2 \mathrm{M}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf \left\|\left(z_{n+1}-z_{0}\right)+\left(z_{n}-z_{0}\right)\right\| \\
= & \lim _{n \rightarrow \infty} \inf 2\left\|\frac{z_{n+1}+z_{n}}{2}-z_{0}\right\| \geq \lim _{n \rightarrow \infty} 2\left\|z_{0}-z_{n}\right\|=2 \mathrm{M}
\end{aligned}
$$

where $\frac{z_{n}+z_{n+1}}{2} \in S_{n}$. So we can get

$$
\lim _{n \rightarrow \infty}\left\|\left(z_{n+1}-z_{0}\right)+\left(z_{n}-z_{0}\right)\right\|=2 M .
$$

Since $X, Y$ are uniformly convex spaces, by the Lemma 2.3 this yields that

$$
\lim _{n \rightarrow \infty}\left\|z_{n+1}-z_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\left(z_{n+1}-z_{0}\right)-\left(z_{n}-z_{0}\right)\right\|=0
$$

Furthermore, since $z_{n+1} \in S_{n+1}$, by the defifinition of $S_{n+1}$, then we have:

$$
\left\langle w_{n}-z_{n+1}, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \geq 0
$$

which implies that

$$
\begin{aligned}
& \left\|z_{n}-w_{n}\right\|^{2} \\
= & \left\langle z_{n}-w_{n}, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \\
= & \left\langle z_{n}-z_{n+1}, J_{t}\left(z_{n}-w_{n}\right)\right\rangle+\left\langle z_{n+1}-w_{n}, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \\
\leq & \left\langle z_{n}-z_{n+1}, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \\
\leq & \left\|z_{n}-z_{n+1}\right\| \cdot\left\|z_{n}-w_{n}\right\| .
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\|=0$.
We next will prove that each weak cluster point of $\left\{z_{n}\right\}$ is a solution of the split equality problem. In order to get the result, we let z be any weak cluster point of $\left\{z_{n}\right\}$ and take a subsequence $\left\{\mathrm{z}_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ converging weakly to z . According to (3.2) and (3.3), we get:

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|z_{n_{k}}-P_{s} z_{n_{k}}\right\|=\lim _{n \rightarrow \infty}\left\|z_{n}-P_{s} z_{n}\right\|=0,  \tag{3.4}\\
\lim _{n \rightarrow \infty}\left\|G z_{n}\right\|=0, \tag{3.5}
\end{gather*}
$$

by the Lemma 2.2, then $\mathrm{z} \in \mathrm{S}$. And

$$
0 \leq\|G z\|^{2}=\left\langle G z, J_{2} G z\right\rangle=\left\langle z, G^{*} J_{2} G z\right\rangle=\lim _{n \rightarrow \infty}\left\langle z_{n}, G^{*} J_{2} G z\right\rangle=\lim _{n \rightarrow \infty}\left\langle G z_{n}, J_{2} G z\right\rangle \leq \lim _{n \rightarrow \infty}\left\|G z_{n}\right\|\|G z\|=0 .
$$

Hence, $z \in \Gamma$. Since $z$ is arbitrary, we get the conclusion we desire.
In the end, we should prove that $\left\{z_{n}\right\}$ converges strongly to $\hat{z} \in P_{\Gamma}\left(z_{0}\right)$. We can take any $z \in \omega_{w}\left(z_{n}\right)$. Then, $z \in \Gamma$. There exists a subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ converging weakly to $z$. Therefore, we have:

$$
\left\|z_{0}-\hat{z}\right\|=\left\|z_{0}-P_{\Gamma}\left(z_{0}\right)\right\| \leq\left\|z_{0}-z\right\| \leq \lim _{k \rightarrow \infty}\left\|z_{0}-z_{n_{k}}\right\|=\lim _{k \rightarrow \infty}\left\|z_{0}-P_{S_{n_{k}}}\left(z_{0}\right)\right\| \leq\left\|z_{0}-\hat{z}\right\| .
$$

According to the property of projection and the uniqueness of projection, hence,

$$
\hat{z}=z, \lim _{k \rightarrow \infty}\left\|z_{0}-z_{n_{k}}\right\|=\left\|z_{0}-\hat{z}\right\| .
$$

Since $z$ is decided arbitrarily, this suggests that $\omega_{w}\left(z_{n}\right)$ is a single-point set. So, we can get $\left\{z_{n}\right\}$ converges weakly to $\hat{z}$. We can conclude that $z_{0}-z_{n_{k}} \rightharpoonup z_{0}-\hat{z}$. By Lemma 2.4, the uniform convexity implies $\lim _{k \rightarrow \infty} z_{n_{k}}=\hat{z}$. Since $\left\{z_{n}\right\}$ converges weakly, it yields $\lim _{n \rightarrow \infty} z_{n}=\hat{z}$ as desired.

## 4. Generalization

Reproduced with permission. [Ref.] Copyright Year, Publisher. Let $X, Y$ be real p-uniformly convex and uniformly smooth and thus reflexive Banach spaces. So, there be q-uniformly smooth and uniformly convex dual space $X^{*}, Y^{*}$ (see e.g. [ $8,10,6,15])$. The parameters satisfy:

$$
p>2, q<2, \frac{1}{p}+\frac{1}{q}=1
$$

Under the above assumptions, the function

$$
f_{p}(z):=\frac{1}{p}\|z\|^{p}, z \in S
$$

is strictly convex and Fréchet differentiable, where $S:=\mathrm{X} \times \mathrm{Y}$. Its derivative

$$
J_{p}:=f_{p}^{\prime}
$$

is a nonlinear mapping from $X \times Y$ to $X^{*} \times Y^{*}$ which is called the duality mapping of $X \times Y$ with a gauge function $t \mapsto t^{p-1}$. It is homogenous of degree $p-1$ and we can get

$$
\left\langle J_{p}(x), x\right\rangle=\|x\|^{p}
$$

and

$$
\left\|J_{p}(x)\right\|=\|x\|^{p-1}
$$

where we write $\left\langle x^{*}, x\right\rangle=\left\langle x, x^{*}\right\rangle=x^{*}(x)$ for the application of $x^{*} \in S^{*}$ on $x \in S$. By $J_{q}^{*}$ we define the duality mapping of the dual $S^{*}$ with a gauge function $\mathrm{t} \mapsto \mathrm{t}^{q-1}$. Both $J_{p}$ and $J_{q}^{*}$ are uniformly continuous on bounded sets and bijective with $\left(J_{p}\right)^{-1}=J_{q}^{*}$. If we consider the function in Hilbert spaces, then $J_{2}$ will be the identity mapping.

Lemma 4.1. Let $U$ be a real Banach space, and $C \subseteq U$ be a nonempty closed convex subset. Then, for $u \in X$, the following inequality hold:

$$
\left\|u-P_{C} u\right\|^{p} \leq\left\langle-J_{p}\left(P_{C} u-u\right), u-z\right\rangle, \forall z \in C
$$

Proof: We know that the projection can be expressed by a variational inequality (see [13]): the element $P_{C} u$ is the metric projection of $u$ onto $C$ iff

$$
\left\langle J_{p}\left(P_{C} u-u\right), z-P_{C} u\right\rangle \geq 0, \forall z \in C
$$

i.e.,

$$
\left\langle J_{p}\left(P_{C} u-u\right), z-u\right\rangle+\left\langle J_{p}\left(P_{C} u-u\right), u-P_{C} u\right\rangle \geq 0, \forall z \in C .
$$

Then

$$
\left\|u-P_{C} u\right\|^{p} \leq\left\langle-J_{p}\left(P_{C} u-u\right), u-z\right\rangle, \forall z \in C
$$

Hence, the inequality is valid.

Lemma 4.2. Let $\mathrm{T}(\mathrm{z}):=J_{r}^{*}\left[G^{*} J_{p} G z-J_{t}\left(P_{s} x-I\right) z\right]$. Then $\Gamma=T^{-1}(0)$, where $\mathrm{z}=(\mathrm{x}, \mathrm{y}), \mathrm{G}=[\mathrm{A},-\mathrm{B}], J_{r}^{*}=\left[J_{p}^{*}, J_{p}^{*}\right]^{T}, J_{t}=$ $\left[J_{p}, J_{p}\right]^{T}$.

Proof: Clearly, $\Gamma \subseteq T^{-1}(0)$. Now let $\mathrm{z} \in T^{-1}(0)$. By Lemma 4.1, for each $m \in \Gamma$, we have

$$
\begin{gathered}
\left\|z-P_{s} z\right\|^{p} \leq\left\langle-J_{t}\left(P_{s} x-I\right) z, z-m\right\rangle, \\
\|G z\|^{p}=\left\langle J_{p} G z, G z\right\rangle=\left\langle J_{p} G z, G z-G m\right\rangle=\left\langle J_{p} G z, G(z-m)\right\rangle=\left\langle G^{*} J_{p} G z, z-m\right\rangle,
\end{gathered}
$$

By these inequalities, we have

$$
\left\|z-P_{S} z\right\|^{p}+\|G z\|^{p} \leq\left\langle-J_{t}\left(P_{S} x-I\right) z, z-m\right\rangle+\left\langle G^{*} J_{p} G z, z-m\right\rangle=0 .
$$

On the other hand, since

$$
\left\|z-P_{S} z\right\|^{p} \geq 0 \text { and }\|G z\|^{p} \geq 0,
$$

thus

$$
\left\|z-P_{S} z\right\|=\|G z\|=0 .
$$

So $z=P_{S} z$ and $G z=0$, that is, $z \in \Gamma$. Hence $T^{-1}(0) \subseteq \Gamma$.
Altogether, we have $T^{-1}(0)=\Gamma$.
We provide the following algorithm which can cope with the split equality problem in Banach spaces. Let $z_{0}=$ $\left(x_{0}, y_{0}\right) \in X \times Y$ and $S_{0}=X \times Y$. We should calculate and get $z_{n}$, then update $z_{n+1}$ by the iteration formula:

$$
\left\{\begin{array}{l}
\left.w_{n}=z_{n}-r_{n}\right)_{r}^{*}\left[G^{*} J_{p} G z_{n}-J_{t}\left(P_{S}-I\right) z_{n}\right],  \tag{4.1}\\
S_{n+1}=\left\{w \in S_{n}:\left\langle w_{n}-w, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \geq 0\right\}, \\
z_{n+1}=P_{S_{n+1}}\left(z_{0}\right), \forall n \in \mathbb{N} .
\end{array}\right.
$$

where $z_{n}=\left(x_{n}, y_{n}\right), w_{n}=\left(u_{n}, v_{n}\right), S_{n}=C_{n} \times Q_{n}, w=(u, v)$.
Lemma 4.3. We suppose that X and Y are two reflexive, smooth and strictly convex spaces. The set $S_{n}$ is nonempty, convex and closed. The algorithm we proposed is well defined iff $r_{n}$ is chosen so that

$$
r_{n}^{p-1}=\frac{\left\|z_{n}-P_{S} z_{n}\right\|^{p}+\left\|G z_{n}\right\|^{p}}{\left(\| \|_{t}\left(P_{S} x-I\right) z_{n}\|+\| G\| \| J_{p} G z_{n} \|\right)^{q}} .
$$

Proof: It is enough to prove that $S_{n}$ is nonempty because it is obviously closed and convex. Hence, we should reveal that $\Gamma \subseteq$ $S_{n}$. Let $u \in \Gamma$, we have

$$
\begin{aligned}
& \left\langle z_{n}-u, J_{t}\left(z_{n}-w_{n}\right)\right\rangle=r_{n}\left\langle z_{n}-u, G^{*} J_{p} G z_{n}-J_{t}\left(P_{S}-I\right) z_{n}\right\rangle \\
= & r_{n}\left\langle G z_{n}-G u, J_{p} G z_{n}\right\rangle-r_{n}\left\langle z_{n}-u, J_{t}\left(P_{S}-I\right) z_{n}\right\rangle \\
\geq & r_{n}\left\langle G z_{n}, J_{p} G z_{n}\right\rangle-r_{n}\left\langle z_{n}-P_{S} z_{n}, J_{t}\left(P_{S}-I\right) z_{n}\right\rangle \\
= & r_{n}\left(\left\|z_{n}-P_{S} z_{n}\right\|^{p}+\left\|G z_{n}\right\|^{p}\right),
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \left\langle w_{n}-u, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \\
= & \left\langle w_{n}-z_{n}, J_{t}\left(z_{n}-w_{n}\right)\right\rangle+\left\langle z_{n}-u, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \\
= & -\left\|w_{n}-z_{n}\right\|^{p}+\left\langle z_{n}-u, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \\
\geq & r_{n}\left(\left\|z_{n}-P_{s} z_{n}\right\|^{p}+\left\|G z_{n}\right\|^{p}\right)-\left\|z_{n}-w_{n}\right\|^{p},
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
& \left\|z_{n}-w_{n}\right\|^{p} \\
= & \left\|r_{r} J J_{r}^{*}\left[G^{*} J_{p} G z_{n}-J_{t}\left(P_{S}-I\right) z_{n}\right]\right\|^{p} \\
= & r_{n}^{p}\left\|G^{*} J_{p} G z_{n}-J_{t}\left(P_{S}-I\right) z_{n}\right\|^{q} \\
\leq & r_{n}^{p}\left(\left\|J_{J}\left(P_{S} x-I\right) z_{n}\right\|+\|G\|\| \|_{p} G z_{n} \|\right)^{q} \\
= & r_{n}\left(\left\|z_{n}-P_{S} z_{n}\right\|^{p}+\left\|G z_{n}\right\|^{p}\right) . \tag{4.2}
\end{align*}
$$

Then

$$
\left\langle w_{n}-u, J_{t}\left(z_{n}-w_{n}\right)\right\rangle \geq 0
$$

Hence, $\mathrm{m} \in S_{n}$. Since m is decided in $\Gamma$ arbitrarily, we can get that $\Gamma \subseteq S_{n}$ for all $\mathrm{n} \in \mathbb{N}$. We can know that the set $S_{n}$ is nonempty, closed and convex. Consequently, the algorithm we proposed is well defined.

We then prove that the sequence $\left\{z_{n}\right\}$ generated by (4.1) converges strongly to $\hat{z} \in \Gamma$. According to the proof of the foregoing theorem, it is enough to confirm that (3.4) and (3.5) still hold. Similarly, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\|=0$. By (4.2), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} r_{n}\left(\left\|z_{n}-P_{S} z_{n}\right\|^{p}+\left\|G z_{n}\right\|^{p}\right)=0 \tag{4.3}
\end{equation*}
$$

This together with (4.3) yields (3.4) and (3.5) as desired. Hence, the proof is completed.
Remark 4.4. Our algorithm is new even in Hilbert spaces. In fact, if we consider SEP in Hilbert space, the algorithm we proposed will be simplified as:

$$
\left\{\begin{array}{l}
w_{n}=z_{n}-r_{n}\left[G^{*} G z_{n}-\left(P_{S}-I\right) z_{n}\right] \\
S_{n+1}=\left\{w \in S_{n}:\left\langle w_{n}-w, z_{n}-w_{n}\right\rangle \geq 0\right\}, \\
z_{n+1}=P_{S_{n+1}}\left(z_{0}\right), \forall n \in \mathbb{N} .
\end{array}\right.
$$

## 5. Conclusion

In this paper, we propose a new shrinking projection iterative algorithm. It can cope with the split equality problem (SEP) in Banach spaces. Under several proper conditions, we give proofs of strong convergence for the SEP with two different choices of the step-size. Finally, we make some extensions and generalization.

## Acknowledgments

The authors would like to express their sincere thanks to the editors and reviewers for reading our manuscript very carefully and for their valuable comments and suggestions.

## References

[1] Hedy Attouch et al., "Alternating Proximal Algorithms for Weakly Coupled Minimization Problems, Applications to Dynamical Games and PDE's," Journal of Convex Analysis, vol. 15, no. 3, pp. 485-506, 2008.
[2] Yasir Arfat, "Multi-Inertial Parallel Hybrid Projection Algorithm for Generalized Split Null Point Problems," Journal of Applied Mathematics and Computing, vol. 68, pp. 3179-3198, 2022. Crossref, https://doi.org/10.1007/s12190-021-01660-4
[3] Yair Censor, Tommy Elfving, "A Multiprojection Algorithm Using Bregman Projections in a Product Space," Numerical Algorithms, vol. 8, pp. 221-239, 1994. Crossref, https://doi.org/10.1007/BF02142692
[4] Yair Censor et al., "The Multiple-Sets Split Feasibility Problem and its Applications for Inverse Problems," Inverse Problems, vol. 21, no. 6, pp. 2071-2084, 2005. Crossref, https://doi.org/10.1088/0266-5611/21/6/017
[5] Yair Censor et al., "A Unified Approach for Inversion Problems in Intensity-Modulated Radiation Therapy," Physics in Medicine \& Biology, vol. 51, no. 10, pp. 2353-2365, 2006. Crossref, https://doi.org/10.1088/0031-9155/51/10/001
[6] J. Lindenstrauss, and L. Tzafriri , Classical Banach spaces II: Function spaces, Springer, 1979.
[7] Ioana Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Springer Netherlands, 1990.
[8] Joseph Diestel, Geometry of Banach Space-Selected Topics, Springer, 1975.
[9] Mohammad Eslamian, Yekini Shehu and Olaniyi S. Iyiola, "A Strong Convergence Theorem for a General Split Equality Problem with Applications to Optimization and Equilibrium Problem," Calcolo, vol. 55, no. 4, pp. 1-31, 2018. Crossref, https://doi.org/10.1007/s10092-018-0290-3
[10] T. Figiel, "On the Moduli of Convexity and Smoothness," Studia Mathematica, vol. 56, no. 2, pp. 12-55, 1976.
[11] O.S. Iyiola, and Y. Shehu, "A Cyclic Iterative Method for Solving Multiple Sets Split Feasibility Problems in Banach Spaces," Quaestiones Mathematicae, vol. 39, no. 7, pp. 959-975, 2016. Crossref, https://doi.org/10.2989/16073606.2016.1241957
[12] Abdellatif Moudafi, "A Relaxed Alternating CQ-Algorithm for Convex Feasibility Problems.," Nonlinear Analysis: Theory, Methods \& Applications, vol. 79, pp. 117-121, 2013. Crossref, https://doi.org/10.1016/j.na.2012.11.013
[13] F Schöpfer, Thomas Schuster, and Alfred K. Louis, " An Iterative Regularization Method for the Solution of the Split Feasibility Problem in Banach Spaces," Inverse Problems, vol. 24, no. 5, 2008. Crossref, https://doi.org/10.1088/0266-5611/24/5/055008
[14] Dianlu Tian, and Lining Jiang, "Two-Step Methods and Relaxed Two-Step Methods for Solving the Split Equality Problem," Computational and Applied Mathematics, vol. 40, pp. 83, 2021. Crossref, https://doi.org/10.1007/s40314-021-01465-y
[15] F. Schöpfer, A.K. Louis, and T. Schuster, "Nonlinear Iterative Methods for Linear ill-Posed Problems in Banach Spaces," Inverse Problems, vol. 22, no. 1, pp.311, 2006. Crossref, https://doi.org/10.1088/0266-5611/22/1/017
[16] Luo Yi Shi, Rudong Chen, and Yujing Wu, "Strong Convergence of Iterative Algorithms for Split Equality Problem," Journal of Inequalities and Applications, vol. 2014, no. 478, 2014. Crossref, https://doi.org/10.1186/1029-242X-2014-478
[17] Suthep Suantai, "Strong Convergence of a Self-Adaptive Method for the Split Feasibility Problem in Banach Spaces," Journal of Fixed Point Theory and Applications, vol. 20, no. 68, pp. 1-21, 2018. Crossref, https://doi.org/10.1007/s11784-018-0549-y
[18] Yekine Shehu, and Olaniyi S. Iyiola, "Strong Convergence Result for Proximal Split Feasibility Problem in Hilbert Spaces," Optimization, vol. 66, no. 12, pp. 2275-2290, 2017. Crossref, https://doi.org/10.1080/02331934.2017.1370648
[19] Yekine Shehu, and Olaniyi S. Iyiola, "Convergence Analysis for the Proximal Split Feasibility Problem Using an Inertial Extrapolation Term Method," Journal of Fixed Point Theory and Applications, vol. 19, pp. 2483-2510, 2017. Crossref, https://doi.org/10.1007/s11784-017-0435-z
[20] Yekine Shehu, Ferdinard Ogbuisi, and Olaniyi S. Iyiola, "Strong Convergence Theorem for Solving Split Equality Fixed Point Problem which Does not Involve the Prior Knowledge of Operator Norms," Bulletin of the Iranian Mathematical Society, vol. 43, no. 2, pp. 349371, 2017.
[21] Y.Shehu, O.S. Iyiola, and C.D. Enyi, "An Iterative Algorithm for Solving Split Feasibility Problems and Fixed Point Problems in Banach Spaces," Numerical Algorithms, vol. 72, no. 4, pp. 835-864, 2016. Crossref, https://doi.org/10.1007/s11075-015-0069-4
[22] Wataru Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2000.
[23] Wataru Takahashi, "The Split Feasibility Problem in Banach Spaces," Journal of nonlinear and convex analysis, vol. 15, no. 6, pp. 13491355, 2014.
[24] Wataru Takahashi, "The Split Feasibility Problem and the Shrinking Projection Method in Banach Spaces," Journal of Nonlinear and Convex Analysis, vol. 16, no. 7, pp. 1449-1459, 2015.

