Alternating Group A_{8} is Simple using Iwasawa Theorem

Taqdis Ravish Pawle

Department of Mathematics, SVKM's Mithibai College of Arts, Chauhan Institute of Science \& Amrutben Jivanlal College of Commerce \& Economics(Autonomous), Vile Parle(W), Mumbai, Maharashtra, India.

Received: 03 February 2023
Revised: 04 March 2023
Accepted: 17 March 2023
Published: 31 March 2023
Abstract - The aim of this article is to prove that the Alternating Group A_{8} is simple, using Iwasawa Theorem.
Keywords - Alternating Group, Faithful action, Group action, Iwasawa theorem, Primitive action, Simple groups, Transitive action.

1. Introduction

In group theory, search for finite simple group has been interesting and difficult problem. Iwasawa theorem helps in classifying groups as simple. Alternating groups on n symbols, where $n \geq 5$ are simple. An attempt has been made to prove that alternating group on 8 symbols is simple.

1.1. Preliminaries

Definition 1.1 Group Action. Let G be a group and S be a set. Let $\operatorname{Sym}(S)$ denote the set of all bijections from S to S (under composition of functions). We say a group G acts on a set S if there exists a homomorphism $\quad \psi: G \rightarrow \operatorname{Sym}(S)$.

Definition 1.2 Faithful Action. A group G is said to act faithfully on S, if for any two distinct g, $h \in G$, there exists $x \in S$ such that $\mathrm{gx} \neq \mathrm{hx}$.

Definition 1.3 Transitive Action. The action of group G on a set S is said to be transitive if $\operatorname{Orb}_{\mathrm{G}}(\mathrm{a})=\mathrm{S}$, for some (and hence for all) $a \in S$, where $\operatorname{Orb}_{G}(a)=\{g . a \mid g \in G\}$.

Definition 1.4 Doubly Transitive Action. If $|S| \geq 2$ then we say G acts doubly transitive on a set S, if for any (a, b), (c, d) in $\mathrm{S} \times \mathrm{S}$ with $\mathrm{a} \neq \mathrm{b}$ and $\mathrm{c} \neq \mathrm{d}$ there exists $\mathrm{x} \in \mathrm{G}$ such that $\mathrm{xa}=\mathrm{c}$ and $\mathrm{xb}=\mathrm{d}$.

Definition 1.5 Primitive action. Suppose G is transitive on a set S. A block B of imprimitivity for G in S is a subset of S with $|B| \geq 2, B \neq S$, such that for all $x \in G$, either $x B=B$ or $x B \cap B=\varphi$. If no such block exists then we say G acts primitively on S .

1.2. Theorems

Theorem 1.1 Suppose that G is transitive on S. The action is primitive if and only if every $\operatorname{Stab}_{G}(a)$, where $a \in S$ is a maximal subgroup of G

Theorem 1.2 A_{n} is generated by $3-$ cycle
Theorem 1.3 Burnside's theorem in group theory states that if G is a finite group of order $p^{a} q^{b}$, where p and q are prime numbers and a, b are non-negative integers, then G is solvable.

Theorem 1.4 The action of group G on a set S is said to be faithful if and only if the homomorphism $\psi: G \rightarrow \operatorname{Sym}(S)$ is an injective map.

2. Statement of Iwasawa Theorem

Let G be a group acting on a set S such that the action of G is faithful and primitive on S and $G^{\prime}=G$. Fix s in S and set H $=\operatorname{Stab}_{\mathrm{G}}(\mathrm{s})$. Suppose there is a solvable normal subgroup K of H such that $\mathrm{G}=<\mathrm{U}\left\{\mathrm{K}^{\mathrm{x}}: \mathrm{x} \in \mathrm{G}\right\}>$. Then G is simple.

3. Proof of $A 8$ is simple using Iwasawa Theorem

3.1. Claim: A_{8} acts on S under the natural action of permutation faithfully, where S is a set of all 4 -sets on 8 symbols.

Proof: Let $\psi: \mathrm{A}_{8} \rightarrow \operatorname{Sym}(\mathrm{~S})$, be a map defined $\psi(\sigma)=\varphi_{\sigma}(\mathrm{x})=\sigma(\mathrm{x})$.
It suffices to show that homomorphism ψ has trivial kernal.
Subclaim 1) ψ is group homomorphism.
For $\sigma_{1}, \sigma_{2} \in \mathrm{~A}_{8}$, consider $\psi\left(\sigma_{1} \sigma_{2}\right)=\varphi_{\sigma 1 \sigma 2}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{S}$.
$=\sigma_{1} \sigma_{2}(\mathrm{x})$
$=\sigma_{1}\left(\sigma_{2}(\mathrm{x})\right)$
$=\varphi_{\sigma 1}\left(\sigma_{2}(\mathrm{x})\right)$
$=\varphi_{\sigma 1}\left(\varphi_{\sigma 2}(\mathrm{x})\right)$
$=\varphi_{\sigma 1} \varphi_{\sigma 2}$
$=\psi\left(\sigma_{1}\right) \psi\left(\sigma_{2}\right)$
Thus ψ is a group homomorphism.
Subclaim 2) ψ has trivial kernal.
$=\operatorname{ker}(\psi)=\left\{\sigma \in \mathrm{A}_{8} \mid \psi(\sigma)=\varphi_{\mathrm{e}}\right\}$
$=\left\{\sigma \in \mathrm{A}_{8} \mid \varphi_{\sigma}=\varphi_{\mathrm{e}}\right\}$
$=\left\{\sigma \in \mathrm{A}_{8} \mid \sigma(\mathrm{x})=\mathrm{e}(\mathrm{x})=\mathrm{x}, \forall \mathrm{x} \in \mathrm{S}\right\}$
$=\left\{\mathrm{I}_{\mathrm{A} 8}\right\} \ldots\{$ by property of $\sigma\}$.
Thus ψ has trivial kernal.
Hence the claim.
3.2. Claim: A_{8} acts transitive on S .

Proof: We need to show $\operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p})=S$, for some $p \in S$.
Without loss of generality, let $\mathrm{p}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
As $\operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p}) \subseteq \mathrm{S}$, so enough to show that $\mathrm{S} \subseteq \operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p})$.
We consider the following cases:
Case i: If all 4 symbols are common in p and 4 - set.
Example: $\{\mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{d}\} \in \mathrm{S}$ Choose $\mathrm{g}=\mathrm{e}=$ identity in A_{8}.
Then $g .\{a, b, c, d\}=\{a, b, c, d\}=\{c, a, b, d\}$.
Thus $\{c, a, b, d\} \in \operatorname{Orb}_{A 8}(p)$.
Case ii: If 3 symbols are common in p and 4- set.
Example: $\{a, b, c, z\} \in S$.
Choose $\mathrm{g}=(\mathrm{dz})(\mathrm{ab}) \in \mathrm{A}_{8}$.
Then g. $\{a, b, c, d\}=(d z)(a b) .\{a, b, c, d\}=\{a, b, c, z\}$.
Thus $\{a, b, c, z\} \in \operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p})$.
Case iii: If 2 symbols are common in p and 4 - set.
Example: $\{\mathrm{a}, \mathrm{b}, \mathrm{z}, \mathrm{i}\} \in \mathrm{S}$.
Choose $g=(c z)(d i) \in \mathrm{A}_{8}$.
Then $\mathrm{g} .\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=(\mathrm{cz})(\mathrm{di})\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{z}, \mathrm{i}\}$.
Thus $\{\mathrm{a}, \mathrm{b}, \mathrm{z}, \mathrm{i}\} \in \operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p})$
Case iv: If 1 symbol is common in p and 4 - set.
Example: $\{\mathrm{a}, \mathrm{z}, \mathrm{i}, \mathrm{j}\} \in \mathrm{S}$. Choose $\mathrm{g}=(\mathrm{bzci})(\mathrm{dj}) \in \mathrm{A}_{8}$.
Then $g .\{a, b, c, d\}=(b z c i)(d j)\{a, b, c, d\}=\{a, z, i, j\}$.
Thus $\{a, z, i, j\} \in \operatorname{Orb}_{A 8}(p)$.

Case v: If no symbols are common in p and 4 - set.
Example: $\{\mathrm{k}, \mathrm{z}, \mathrm{i}, \mathrm{j}\} \in \mathrm{S}$. Choose $\mathrm{g}=(\mathrm{ak})(\mathrm{bz})(\mathrm{ci})(\mathrm{dj}) \in \mathrm{A}_{8}$.
Then $g .\{a, b, c, d\}=(a k)(b z)(c i)(d j)\{a, b, c, d\}=\{k, z, i, j\}$.
Thus $\{\mathrm{k}, \mathrm{z}, \mathrm{i}, \mathrm{j}\} \in \operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p})$
Hence from all cases we get $S \subseteq \operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p})$.
Therefore $\mathrm{S}=\operatorname{Orb}_{\mathrm{A} 8}(\mathrm{p})$, so we conclude that group action is transitive.

3.3. To find stabilizer of an element of S.

Let $p=\{a, b, c, d\} \in S$, then to find $H=\operatorname{Stab}_{A 8}(p)$
$\mathrm{H}=\operatorname{Stab}_{\mathrm{A} 8}(\mathrm{p})$ has the following elements.

1) Identity element of A_{8}.

No. of such elements $=1$
2) a) All 3-cycles (ijk), where $\mathrm{i}, \mathrm{j}, \mathrm{k} \in\{\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}\}$.

No. of such elements $=8$
b) All 3-cycles (abc), where a, b, $c \in\{a, b, c, d\}$.

No. of such elements $=8$
3) Product of 3 cycles i.e., (ijk)(abc).

No. of such elements $=64$
4) Product of transpositions.
a) (ij)(kl), where $i, j, k, l \in\{i, j, k, l\}$.

No. of such elements $=3$
b) (ab)(cd), where $a, b, c, d \in\{a, b, c, d\}$.

No. of such elements= 3
c) (ab)(ij), where $a, b \in\{a, b, c, d\}$ and $i, j \in\{i, j, k, l\}$.

No. of such elements $=36$
5) a) Cycle of the form (ijk)(ab)(cd), where $i, j, k \in\{i, j, k, l\}$, where $a, b, c, d \in\{a, b, c, d\}$. No. of such elements $=24$
b) Cycle of the form $(a b c)(i j)(k l)$, where $i, j, k, l \in\{i, j, k, l\}$ and $a, b, c \in\{a, b, c, d\}$.

No. of such elements $=24$
6) a) Cycle of the form (ijkl)(ab), where $i, j, k, l \in\{i, j, k, l\}$ and $a, b \in\{a, b, c, d\}$. No. of such elements $=36$
b) Cycle of the form $(\operatorname{abcd})(\mathrm{ij})$, where $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l} \in\{\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}\}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. No. of such elements $=36$
7) Cycle of the form (ijkl)(abcd), where $i, j, k, l \in\{i, j, k, l\}$ and $a, b, c, d \in\{a, b, c, d\}$. No. of such elements $=36$
8) Cycle of the form (ij)(kl)(ab)(cd), where i, $j, k, l \in\{i, j, k, l\}$ and $a, b, c, d \in\{a, b, c, d\}$. No. of such elements $=9$

Thus $|\mathrm{H}|=|\operatorname{StabA} 8(\mathrm{p})|=288=2^{5} 3^{2}$

3.4. Claim: H is maximal Subgroup of G.

Since $\left.H \subset<U\left\{H^{x} \mid x \in A_{8}\right\}\right\rangle \subseteq G$, so enough to show that $\left\langle U\left\{H^{x} \mid x \in A_{8}\right\}\right\rangle=A_{8}$.
As $\mathrm{H}^{\mathrm{x}} \subseteq \mathrm{A}_{8}$, hence $\left\langle\mathrm{U}\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle \subseteq \mathrm{A}_{8}$.
So we show that $\mathrm{A}_{8} \subseteq\left\langle U\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle$.
As A_{8} is generated by $3-$ cycles so we show that all 3 - cycles of A_{8} belongs to $\left\langle U\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A} 8\right\}\right\rangle$.
a) 3-cycle with no symbol from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.

Example: (ijk) $\in \mathrm{A}_{8}$, choose $\mathrm{x}=\mathrm{e}$, where e is the identity in A_{8} and $\mathrm{h}=(\mathrm{ijk}) \in \mathrm{H}$.
Then $\mathrm{x}^{-1} \mathrm{hx}=\mathrm{e}^{-1}$ (ijk)e $=(\mathrm{ijk}) \in\left\langle U\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle$.
b) 3 - cycle with one symbol from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.

Example: (aij) $\in \mathrm{A}_{8}$, choose $\mathrm{x}=(\mathrm{ib})(\mathrm{jc})$, and $\mathrm{h}=(\mathrm{abc}) \in \mathrm{H}$.
Then $\mathrm{x}^{-1} \mathrm{hx}=((\mathrm{ib})(\mathrm{jc}))^{-1}(\mathrm{abc})(\mathrm{ib})(\mathrm{jc})=(\mathrm{aij}) \in\left\langle U\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle$.
c) 3 - cycle with two symbols from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.

Example: (abi) $\in \mathrm{A}_{8}$, choose $\mathrm{x}=(\mathrm{jk})$ (ic), and $\mathrm{h}=(\mathrm{abc}) \in \mathrm{H}$.
Then $\mathrm{x}^{-1} \mathrm{hx}=((\mathrm{jk})(\mathrm{ic}))^{-1}(\mathrm{abc})(\mathrm{jk})(\mathrm{ic})=(\mathrm{abi}) \in\left\langle U\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle$.
d) 3 - cycle with three symbols from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.

Example: $(a b c) \in A_{8}$, choose $x=e$, and $h=(a b c) \in H$.
Then $\mathrm{x}^{-1} \mathrm{hx}=(\mathrm{e})^{-1}(\mathrm{abc})(\mathrm{e})=(\mathrm{abc}) \in\left\langle\mathrm{U}\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle$.
Thus from all the cases we conclude that $\mathrm{A}_{8} \subseteq\left\langle\mathrm{U}\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle$.
Hence $\mathrm{A}_{8}=\left\langle U\left\{\mathrm{H}^{\mathrm{x}} \mid \mathrm{x} \in \mathrm{A}_{8}\right\}\right\rangle$.
Therefore we conclude that H is maximal subgroup of G . Hence by Theorem 1.1 group action is primitive on S .

3.5. Claim: $A_{8}=A_{8}$,

We know that $\mathrm{A}_{8}{ }^{\prime} \subseteq \mathrm{A}_{8} \ldots$ \{since every derived subgroup is subset of the group $\}$.
It is enough to prove that $\mathrm{A}_{8} \subseteq \mathrm{~A}_{8}{ }^{\prime}$.
Since A_{8} is generated by 3 -cycles, therefore it is enough to show that every 3 -cycle in A_{8} is contained in A_{8}.
Let (ijk) be arbitrary 3-cycle in A_{8}.
Consider $\sigma=$ (ilk) and $\tau=(\mathrm{kjm})$.
Then $\sigma \tau \sigma^{-1} \tau^{-1}=(\mathrm{ilk})(\mathrm{kjm})(\mathrm{ilk})^{-1}(\mathrm{kjm})^{-1}=(\mathrm{ilk})(\mathrm{kjm})(\mathrm{ikl})(\mathrm{kmj})=(\mathrm{ijk})$.
Hence (ijk) $\in \mathrm{A}_{8}$.
Since (ijk) was arbitrary element of A_{8}, Therefore $\mathrm{A}_{8} \subseteq \mathrm{~A}_{8}{ }^{\prime}$
Thus $\mathrm{A}_{8}=\mathrm{A}_{8}{ }^{\prime}$.

3.6. Claim: H is solvable

$|\mathrm{H}|=\left|\operatorname{Stab}_{A 8}(\mathrm{p})\right|=288=2^{5} 3^{2}=\mathrm{p}^{\mathrm{a}} \mathrm{q}^{\mathrm{b}}$, hence by Burnside's theorem H is solvable.

3.7. Let $K=H$.

Since every subgroup is normal to itself, hence K is normal in H .
From Claim 6) K is solvable.
From the steps followed in Claim 4) we conclude that $G=A_{8}=\left\langle U\left\{K^{x} \mid x \in A_{8}\right\}\right\rangle$.
Hence by Iwasawa theorem we conclude that A_{8} is simple.

4. Conclusion

We conclude that alternating group A_{8} is simple. Similarly other alternating subgroup A_{n}, where $\mathrm{n} \geq 5$ can also be proved simple using Iwasawa theorem.

5. Acknowledgments

The author is grateful to Almighty, Mentor, parents for the constant support and encouragement.

References

[1] Larry C. Grove, Classical Groups and Geometric Algebra, Graduate Studies in Mathematics, American Mathematical Society, vol. 39, 2002. [Google Scholar] [Publisher Link]
[2] David S. Dummit, and Richard M. Foote, Abstract Algebra, Third Edition, John Wiley \& Sons, 2003. [Publisher Link]
[3] K. Hoffman, and R. Kunze, Linear Algebra, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Second Edition.
[4] I.N.Herstein, Topics in Algebra, 2nd Edition, Wiley-India, John Wiley \& Sons, 1991. [Publisher Link]
[5] Serge Lang, Introduction to Linear Algebra, Second Edition, Springer, Undergraduate Text in Mathematics, 1986. [Google Scholar] [Publisher Link]
[6] N.S. Gopalkrishnan, University Algebra, Third Edition, New Age International, 2015. [Google Scholar]
[7] Michael Artin, Algebra, Second Edition, Prentice-Hall of India Pvt. Limited, 1996.
[8] Joseph A. Gallian, Contemporary Abstract Algebra, Seventh Edition, University of Minnesota Duluth.
[9] Thomas W. Hungerford, Graduate Texts in Mathematics, Algebra, Springer.
[10] Stephen Lovett, Abstract Algebra Structures and Applications, CRC Press, 2015. [CrossRef] [Google Scholar] [Publisher Link]
[11] Allan Clark, Elements of Abstract Algebra, 1935, ISBN 0-486-64725-0 [Google Scholar]
[12] Paolo Aluffi, Graduate Studies in Mathematics 104, Algebra, American Mathematical Society. [Google Scholar]
[13] John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, Pearson Education. [Google Scholar]
[14] Thomas W. Judson, Abstract Algebra Theory and Applications, Stephen F. Austin State University, 2012. [Google Scholar]
[15] Nathan Jacobson, Basic Algebra I, Second Edition, W.H. Freeman and Company, New York. [Google Scholar]
[16] Martin Isaacs, Finite Group Theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, 2008. [CrossRef] [Google Scholar] [Publisher Link]
[17] David A. Cox, John Little, and Donal O'Shea, An introduction to Computational Algebraic Geometry and commutative Algebra, Springer. [Publisher Link]
[18] Joseph J. Rotman, Graduate Texts in Mathematics, An Introduction to the Theory of Groups, Fourth Edition, Springer, 1995. [Google Scholar] [Publisher Link]
[19] Saunders Mac Lane, and Garrett Birkhoff, Algebra, Third edition, AMS Chelsea Publishing. [Google Scholar]
[20] Georgi E. Shilov, and Richard A. Silverman, Linear Algebra, Dover Publication, New York. [Google Scholar]
[21] Robert B. Ash, Basic Abstract Algebra [Google Scholar]
[22] Hemann Weyl, The Classical Groups, Their Invarients and Representations, Princeton Landmarks in Mathematics. [Google Scholar]
[23] Group Theory. [Online]. Available: https://en.wikipedia.org/wiki/Group_theory
[24] The IEEE Website, 2002. [Online]. Available: http://www.ieee.org/

