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Abstract - This paper describes the computed approach of such fuzzy fractional Abel differential equation (FFADE) 

according to a specific make using the extended power series (PS) formula in case of nonlinear. The methodology is based 

on applying representational processing to create a fractional power series solution in the form of a residual power series 

(RPS) with the smallest number of computations possible. The suggested approach is consistent with the initial problem 

difficulty, and the results are promising. The effective computational examples offered to ensure the method and explain the 

numerical expressions of the analytic solution to its potency, flexibility, and efficiency towards answering similar fractional 

equations. To demonstrate answer, visual and numerical data were provided and statistically evaluated. 

Keywords - Abel initial value problems, Fuzzy,  Fractional differential equations, Strongly generalized differentiability, 

Residual power series. 

1. Introduction 
 The purpose of the article is to improve the use of the RPS approach to create and identify several fractional PS solutions 

of the fractional in the Caputo concept. The fundamental benefit of this approach is its efficiency in finding the equations of 

elements of the mathematical formulation by using simply differential operators, as opposed to certain other well-known 

methodologies that need integral operators, which is challenging in the fractional situation. Furthermore, the suggested 

approach may be employed in frame domain adaptation and can even be utilized without regard to the nature of the equation or 

the kind of categorization. The reader is invite to read for further information on the RPS approach [1, 2, 3, 5, 4]. Systems of 

fuzzy fractional differential equations are founded in mathematical modeling, astrophysics, technology, biotechnology, 

computational analysis of life events uncertain or ambiguous, etc. Because it is frequently hard to obtain restricted solutions to 

solutions of fuzzy fractional differential equations experienced in reality, various writers have investigated these issues with 

value utilizing mathematical approaches. As a result, a category of differential equation systems has a prominent position in the 

mathematical modeling literature[6, 7, 8, 9]. 
 

 Some compared with the standard are represented mathematically by fractional ODEs. Indeed, this will contribute to a 

better understanding of these real-world systems, decrease the skill required and facilitate a control scheme sans sacrificing 

some characteristics. Fractional ODEs have received a lot of interest since they are frequently adopted to represent different 

included flow fields, data processing, operations research, statistical inference, probability concept, a chance for success, and 

economics. Although analytical and mathematical approaches are significant in fractional differential equation areas, fractional 

should be solved. In most circumstances, the fractional is obtained analytically and the result is given in a linear system, in 

which the solution of such an equation is always required owing to interests. As a result, effective and dependable computer 

simulation is essential. In more realistic settings, the fractional is typically approximated using numerical approaches. In any 

case, several authors have addressed the approximate solution to the fractional using well-known methods [10, 11, 12, 13, 14]. 

 

 The aim of this research is always to improve the need for the RPS method to evaluate the solution of fuzzy FADEs in 

the power series but include appropriate controls under strongly generalized differentiation. We consider the following 

nonlinear fuzzy FADE:  

 𝐷𝛼�̃�(𝑡) = 𝐴�̃�3(𝑡) + 𝐵�̃�2(𝑡) + 𝐸�̃�(𝑡) + 𝐹, 0 < 𝛽 ≤ 1,0 ≤ 𝑡 ≤ 𝑅.                                                     (1.1) 

 with the fuzzy initial condition  

 �̃�(0) = �̃�0, (1.2) 
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 where �̃�3(𝑡) ≠ 0, A, B, E and F ∈ ℜ, �̃�0 is arbitrary fuzzy number, 𝐷𝛼  is the caputo fractional derivative for order 𝛼 and �̃�(𝑡) 
is unknown fuzzy function of the crisp variable 𝑡. However, assume IVPs (1.1) and (1.2) each 𝑡 > 0 has a unique fuzzy 

solution. Doing 𝑅𝐹 is used to refer to a set of all fuzzy numbers defined in 𝑅. The RPS calculation is a novel numeric plan 

created to examine and decipher the arrangement of first and second request dubious IVPs. This strategy used to provide power 

series and fractional power series solutions to a few problems that arise in the field of design and science. The proposed 

approach targets constructing an answer of a power series development just as limiting remaining blunder capacities for 

processing the obscure coefficients of power series by applying a specific differential administrator without linearly or 

constraint on the structure [1, 19, 25-28]. Again, we refer to [15, 16, 24, 21] to see numerous qualities to show and reconsider 

some radical strategies for managing the various problems that occur in ordinary miracles. 

 

The following is how this article is arranged. In next section provides definitions and theorems for Caputo’s fractional 

derivative operator and residual power series. Section 3 presents the major theoretical conclusion, which is a formulation of the 

fuzzy fractional Abel differential equation. The basic methodology discussed in Section 4, where the residual power series 

approach for the fuzzy fractional Abel differential equations is used to demonstrate the proposed procedure’s high performance 

and dependability. The paper concludes with some numerical examples and a conclusion. 

 

2. Preliminaries 
 The importance definitions and related properties of the hypothesis of fuzzy calculus are reviews in this part. As a rule, a 

fuzzy number 𝑢 is a fuzzy subset of 𝑅 with normal, closed, convex, curved, and upper semi-continuous membership function 

of bounded support.  

 

Definition 2.1[20] Let the membership function u: S → [0,1]. Where S is characterized nonempty set, u(s) is the degree of 

membership of set. A fuzzy set u is called convex if u, s, t ∈ ℜ and λ ∈ [0,1],u(λs + (1 − λ)t) ≥ min{u(s), u(t)} is called 

upper semi-continuous. If for each r ∈ [0,1],{s ∈ ℜ|u(s) ≥ r} is closed set, if {s ∈ ℜ|u(s) = 1} is normal set, if {s ∈ ℜ|u(s) >
0} is support of a fuzzy set.  

 

Definition 2.2 [20] Let u is a fuzzy number iff [u]r is compact convex subset of ℜ for r ∈ [0,1] and [u]1 ≠ ϕ. If u is a fuzzy 

number, then [u]r = [u1(r), u2(r)], for each s ∈ [u]r, r ∈ [0,1], where u1(r) =min{s} , u2(r) =max{s} and [u]r is called 

r −cut representation form.  

 

Theorem 2.3[20] Let u1, u2: [0,1] → ℜ satisfy the below conditions:   

    1.  u1 is a bounded non decreasing function,  

    2.  u2 is a bounded non increasing function,  

    3.  u1(1) ≤ u2(1),  
    4.  limr→k−u1(r) = u1(k) and limr→k−u2(r) = u2(k), k ∈ (0,1],  
    5.  limr→0+u1(r) = u1(0) and limr→0+u2(r) = u2(0).  
 Then u:ℜ → [0,1], defined by u(s) = sup{r|u1(r) ≤ s ≤ u2(r)} is a fuzzy number with parameter [u1(r), u2(r)].  

 

Definition 2.4[20] If u and v are two fuzzy numbers, for each r ∈ [0,1], we’ve   

    1.  [u + v]r = [u]r + [v]r = [u1r + v1r, u2r + v2r],  
    2.  [λu]r = λ[u]r = [min{λu1r, λu2r},max{λu1r, λu2r}],  
    3. uv]r = [u]r[v]r = [min{u1rv1r, u1rv2r, u2rv1r, u2rv2r}, 

max{u1rv1r, u1rv2r, u2rv1r, u2rv2r}], 
    4.  u = v iff [u]r = [v]r iff u1r = v1r and u2r = v2r , 
collection of all fuzzy numbers with addition and scalar multiplication is a convex cone.  

 

Definition 2.5[23] Let u, v and w ∈ ℜF
∗ , such that u = v + w; then w is called the Hukuhara differentiable of u and v, denoted 

by u ⊖ v. Let u⊖ v ≠ u + (−1)v = u − v is Hukuhara differentiable, then [u ⊖ v]r = [u1r − v1r, u2r − v2r].  
 

Definition 2.6[17] Let g is strongly differentiable at t0 ∈ [a, b] and g: [a, b] → ℜF such that   

1.  For each h > 0, the Hukuhara differences g(t0 + h) ⊖ g(t0), g(t0) ⊖ g(t0 − h) and   

 

 limh→0+
g(t0+h)⊖g(t0)

h
= limh→0+

g(t0)⊖g(t0−h)

h
 

 = g′(t0) 
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2.  For each h > 0, the Hukuhara differences g(t0) ⊖ g(t0 + h), g(t0 − h)⊖ g(t0) and   

 limh→0+
g(t0)⊖g(t0+h)

−h
= limh→0+

g(t0−h)⊖g(t0)

−h
 

 = g′(t0) 
 

Theorem 2.7 [18] For each r ∈ [0,1], g: [a, b] → ℜF and [g(t)]r = [g1r(t), g2r(t)]. Such that g1r and g2r are differentiable 

functions on [a, b] 
    1.  If g is (1) −differentiable on [a, b] then [g′(t)]r = [g′

1r
(t), g′

2r
(t)], 

    2.  If g is (2) −differentiable on [a, b] then [g′(t)]r = [g′
2r
(t), g′

1r
(t)]. 

 

Theorem 2.8[18] Let g: [a, b] → ℜF be a fuzzy-valued function. For fixed t0 ∈ [a, b] and ϵ > 0 if there exist δ > 0 such that 

|t − t0| < δ which implies d(g(t), g(t0)) < ϵ, then we say that g is continuous at t0.  

 

Definition 2.9[28] Let g ∈ LF(I). The Riemann-Liouville fractional integral of order α of the fuzzy number valued function g is 

defined as Jαg(x) =
1

Γ(α)
∫
x

a

g(ξ)

(x−ξ)1−α
dξ , x > a where Γ(α) is the well-known Gamma function. 

 

Definition 2.10[29, 30, 26] Let g ∈ AC(I), then Riemann-Liouville fractional derivative of order α of the crisp function g exists 

almost every where on I and can be represented by .a
RL Dαf(x) =

1

Γ(1−α)

d

dx
∫
x

a
g(ξ)(x − ξ)−αdξ 

 Note that Riemann-Liouville fractional derivative of order α of g is the first order derivative of the fractional integral 1 −
α of g.  

 

Definition 2.11[29, 30, 26] Let g ∈ AC(I). Then Caputo fractional derivative of order α of the crisp function g exists almost 

everywhere on I and can be represented by .a
C Dαg(x) =

1

Γ(1−α)
∫
x

a
g′(ξ)(x − ξ)−αdξ 

 

Note that Caputo fractional derivative of order α of g is the fractional integral 1 − α of the first order derivative of g.  

 

Definition 2.12[22] Let g ∈ (AC)F(I) and G(x) =
1

Γ(1−α)
∫
x

a
g(ξ)(x − ξ)−αdξ, for x > a. G is (1)-differentiable, then Riemann-

Liouville fractional derivative of order α of the fuzzy number valued function g exists, .a
RL D1

αg(x) =
d

dx
G(x). G is (2)-

differentiable, then Riemann-Liouville fractional derivative of order α of the fuzzy number valued function g exists, 

.a
RL D2

αg(x) =
d

dx
G(x).  

 

3. Formulation of Fuzzy Fractional Abel Differential Equation 
Consider the nonlinear fuzzy fractional Abel differential equations,  

 

 Dαg̃(t) = Ag̃3(t) + Bg̃2(t) + Eg̃(t) + F, 0 < α ≤ 1,0 ≤ t ≤ R. (3.1) 

 

 with the fuzzy initial condition  

 

 g̃(0) = g̃0, (3.2) 

 

 where g̃3(t) ≠ 0, A, B, E and F ∈ ℜ, g̃(t) = [0, T] → ℜF and g̃0 ∈ ℜF.  

 

 To construct the section of fuzzy fractional Abel differential equation(FFADE) (3.1) based on the type of differentiability 

and fuzzy initial condition (3.2), we consider the r − cut level representation of Dαg̃(t), g̃3(t), g̃2(t), g̃(t) and g̃(0) as 

[Dαg1rt), D
αg2r(t)], [g1r

3 t), g2r
3 (t)], [g1r

2 t), g2r
2 (t)], [g1rt), g2r(t)], [g0,1rt), g0,2r(t)], respectively. Consequently, the FFADEs 

(3.1) and (3.2) should be written with the parametric form as follows: 

  

[Dαg̃(t)]r = A[g̃3(t)]r + B[g̃2(t)]r + E[g̃(t)]r + F, t > 0. (3.3) 

 

 with the fuzzy initial condition  

 

 [g̃(0)]r = [g̃0]
r. (3.4) 
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Now, the algorithm presents us the residual power series strongly differentiability for solving initial value problems 

(3.3) and (3.4) in r-cut level representation that converted to crisp systems of ODEs. To obtain the fuzzy solution g̃(t) for the 

initial value problems (3.3) and (3.4), two cases are considered according to kinds of differentiability, where g̃(t) is either 

(1) − differentiable or (2) − differentiable. 

Case 1: If g̃(t) is (1) − differentiable, then initial value problems (3.3) and (3.4) can be converted into the following 

crisp system:  

 

Dαg1r(t) = Ag1r
3 (t) + Bg1r

2 (t) + Eg1r(t) + F,

Dαg2r(t) = Ag2r
3 (t) + Bg2r

2 (t) + Eg2r(t) + F,  (3.5) 

 with the fuzzy initial condition  

 

g1r(0) = g0,1r,

g2r(0) = g0,2r,  (3.6) 

 Consequently, the following steps should be taken:   

    • Solve the system (3.5) and (3.6) using the procedure of residual power series algorithm.  

    • Ensure that the solution [g1rt), g2r(t)] and [Dαg1r(t), D
αg2r(t)] are valid r-cut level sets, ∀r ∈ [0,1]. 

    • Obtain the (1)-solution g̃ whose r- cut level representation is [g1r(t), g2r(t)]. 
 Case 2: If g̃(t) is (2) − differentiable, then initial value problems (3.3) and (3.4) can be converted into the following 

crisp system:  

 
Dαg1r(t) = Ag2r

3 (t) + Bg2r
2 (t) + Eg2r(t) + F,

Dαg2r(t) = Ag1r
3 (t) + Bg1r

2 (t) + Eg1r(t) + F,
 (3.7) 

  

with the fuzzy initial condition  

 
g1r(0) = g0,1r,

g2r(0) = g0,2r,
 (3.8) 

  

Consequently, the following steps should be taken:   

    • Solve the system (3.7) and (3.8) using the procedure of residual power series algorithm.  

    • Ensure that the solution [g1rt), g2r(t)] and [Dαg1r(t), D
αg2r(t)] are valid r-cut level sets, ∀r ∈ [0,1]. 

    • Obtain the (2)-solution g̃ whose r- cut level representation is [g2r(t), g1r(t)]. 
 

4. The Residual Power Series Method for the Fuzzy Fractional Abel Differential Equation 
 In this section, we seek to obtain the (1)- solution for the fuzzy fractional Abel differential equation (3.3) and (3.4) by 

employing the procedures of residual power series method. Further, same procedure can be followed (2)-differentiable, we 

assume that �̃�(𝑡) is (1)- differentiable, therefore the solutions of equations (3.5) and (3.6) at 𝑡 = 0 have the following forms:  

 

𝑔1𝑟(𝑡) = ∑∞
𝑘=0 𝑎𝑘

𝑡𝑘𝛼

Γ(1+𝑘𝛼)
,

𝑔2𝑟(𝑡) = ∑∞
𝑘=0 𝑏𝑘

𝑡𝑘𝛼

Γ(1+𝑘𝛼)
.

 (4.1) 

 By using the initial conditions 𝑔1𝑟(0) = 𝑔0,1𝑟 = 𝑝0 and 𝑔2𝑟(0) = 𝑔0,2𝑟 = 𝑞0 as initial approximations. Then, the expression 

of (4.1) can be written as:  

 

𝑔1𝑟(𝑡) = 𝑔0,1𝑟 + ∑∞
𝑘=1 𝑎𝑘

𝑡𝑘𝛼

Γ(1+𝑘𝛼)
,

𝑔2𝑟(𝑡) = 𝑔0,2𝑟 + ∑∞
𝑘=1 𝑏𝑘

𝑡𝑘𝛼

Γ(1+𝑘𝛼)
.

 (4.2) 

 Consequently, the 𝑖𝑡ℎ − truncated series solutions of 𝑔1𝑟(𝑡) and 𝑔2𝑟(𝑡) can be written as:  
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𝑔𝑖,1𝑟(𝑡) = 𝑔0,1𝑟 + ∑𝑖
𝑘=1 𝑎𝑘

𝑡𝑘𝛼

Γ(1+𝑘𝛼)
,

𝑔𝑖,2𝑟(𝑡) = 𝑔0,2𝑟 + ∑𝑖
𝑘=1 𝑏𝑘

𝑡𝑘𝛼

Γ(1+𝑘𝛼)
,

 (4.3) 

 According the residual power series approach, the 𝑖𝑡ℎ − residual functions of system (3.5) and (3.6) are defined by  

 

 
𝑅𝑒𝑠𝑖,1𝑟(𝑡) = 𝐷𝛼𝑔1𝑟(𝑡) − 𝐴𝑔1𝑟

3 (𝑡) − 𝐵𝑔1𝑟
2 (𝑡) − 𝐸𝑔1𝑟(𝑡) − 𝐹,

𝑅𝑒𝑠𝑖,2𝑟(𝑡) = 𝐷𝛼�̃�2𝑟(𝑡) − 𝐴𝑔2𝑟
3 (𝑡) − 𝐵𝑔2𝑟

2 (𝑡) − 𝐸𝑔2𝑟(𝑡) − 𝐹.
 (4.4) 

 

 where the ∞𝑡ℎ − residual functions are given by  

 

𝑅𝑒𝑠∞,1𝑟(𝑡) = 𝑙𝑖𝑚𝑖→∞𝑅𝑒𝑠𝑖,1𝑟(𝑡) = 𝐷𝛼𝑔1𝑟(𝑡) − 𝐴𝑔1𝑟
3 (𝑡) − 𝐵𝑔1𝑟

2 (𝑡) − 𝐸𝑔1𝑟(𝑡) − 𝐹,

𝑅𝑒𝑠∞,2𝑟(𝑡) = 𝑙𝑖𝑚𝑖→∞𝑅𝑒𝑠𝑖,2𝑟(𝑡) = 𝐷𝛼𝑔2𝑟(𝑡) − 𝐴𝑔2𝑟
3 (𝑡) − 𝐵𝑔2𝑟

2 (𝑡) − 𝐸𝑔2𝑟(𝑡) − 𝐹,  (4.5) 

 As in residual power series, put 𝑅𝑒𝑠∞,𝑖𝑟(𝑡) = 0 for each 𝑡 ∈ [0, 𝑅], 𝑅 is radius of convergence and 𝑖 = {1,2}, which are 

infinitely differentiable functions at 𝑡 = 0. Then we get 
𝑑𝑘−1

𝑑𝑡𝑘−1
𝑅𝑒𝑠∞,𝑖𝑟(0) =

𝑑𝑘−1

𝑑𝑡𝑘−1
𝑅𝑒𝑠𝑘,𝑖𝑟(0) = 0, for 𝑘 = 1,2,3, … 𝑗. The 

residual power series algorithm basic fact the parameters 𝑎𝑘 and 𝑏𝑘 , 𝑘 ≥ 1. 

 

 To find the coefficients 𝑎1 and 𝑏1 , substitute 𝑔1,1𝑟(𝑡) = 𝑔0,1𝑟 + 𝑎1
𝑡𝛼

Γ(1+𝛼)
 and 𝑔1,2𝑟(𝑡) = 𝑔0,2𝑟 + 𝑏1

𝑡𝛼

Γ(1+𝛼)
 to apply the 

residual functions, 𝑅𝑒𝑠1,1𝑟(𝑡) and 𝑅𝑒𝑠1,2𝑟(𝑡), at 𝑖 = 1 of (4.4) we get: 

 

 𝑅𝑒𝑠1,1𝑟(𝑡) = 𝐷𝛼𝑔1,1𝑟(𝑡) − 𝐴𝑔1,1𝑟
3 (𝑡) − 𝐵𝑔1,1𝑟

2 (𝑡) − 𝐸𝑔1,1𝑟(𝑡) − 𝐹, 

 = 𝐷𝛼 (𝑔0,1𝑟 + 𝑎1
𝑡𝛼

Γ(1+𝛼)
) − 𝐴 (𝑔0,1𝑟 + 𝑎1

𝑡𝛼

Γ(1+𝛼)
)
3

− 𝐵 (𝑔0,1𝑟 + 𝑎1
𝑡𝛼

Γ(1+𝛼)
)
2

 

 −𝐸 (𝑔0,1𝑟 + 𝑎1
𝑡𝛼

Γ(1+𝛼)
) − 𝐹, 

 

 𝑅𝑒𝑠1,2𝑟(𝑡) = 𝐷𝛼𝑔1,2𝑟(𝑡) − 𝐴𝑔1,2𝑟
3 (𝑡) − 𝐵𝑔1,2𝑟

2 (𝑡) − 𝐸𝑔1,2𝑟(𝑡) − 𝐹, 

 = 𝐷𝛼 (𝑔0,2𝑟 + 𝑏1
𝑡𝛼

Γ(1+𝛼)
) − 𝐴 (𝑔0,2𝑟 + 𝑏1

𝑡𝛼

Γ(1+𝛼)
)
3

− 𝐵 (𝑔0,2𝑟 + 𝑏1
𝑡𝛼

Γ(1+𝛼)
)
2

 

 −𝐸 (𝑔0,2𝑟 + 𝑏1
𝑡𝛼

Γ(1+𝛼)
) − 𝐹, 

 

Using the residual power series fact that 𝛼 = 1, 𝑅𝑒𝑠1,1𝑟(0) = 0 and 𝑅𝑒𝑠1,2𝑟(0) = 0 in (4.6) it yields that 𝑎1 = 𝐴𝑔0,1𝑟
3 +

𝐵𝑔0,1𝑟
2 + 𝐸𝑔0,1𝑟 + 𝐹 and 𝑏1 = 𝐴𝑔0,2𝑟

3 + 𝐵𝑔0,2𝑟
2 + 𝐸𝑔0,2𝑟 + 𝐹 . Then the first approximations are:  

 

 
𝑔1,1𝑟(𝑡) = 𝑎0 + (𝐴𝑎0

3 + 𝐵𝑎0
2 + 𝐸𝑎0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
,

𝑔1,2𝑟(𝑡) = 𝑏0 + (𝐴𝑏0
3 + 𝐵𝑏0

2 + 𝐸𝑏0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
.

 (4.6) 

 For 𝑖 = 2, the second approximations are:  

 
𝑔2,1𝑟(𝑡) = 𝑎0 + (𝐴𝑎0

3 + 𝐵𝑎0
2 + 𝐸𝑎0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
,

𝑔2,2𝑟(𝑡) = 𝑏0 + (𝐴𝑏0
3 + 𝐵𝑏0

2 + 𝐸𝑏0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
.

 (4.7) 

 

 The residual functions, 𝑅𝑒𝑠2,1𝑟(𝑡) and 𝑅𝑒𝑠2,2𝑟(𝑡) of (4.4) such that   

 𝑅𝑒𝑠2,1𝑟(𝑡) = 𝐷𝛼𝑔2,1𝑟(𝑡) − 𝐴𝑔2,1𝑟
3 (𝑡) − 𝐵𝑔2,1𝑟

2 (𝑡) − 𝐸𝑔2,1𝑟(𝑡) − 𝐹, 

 = 𝐷𝛼 (𝑎0 + (𝐴𝑎0
3 + 𝐵𝑎0

2 + 𝐸𝑎0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
) 

 −𝐴 (𝑎0 + (𝐴𝑎0
3 + 𝐵𝑎0

2 + 𝐸𝑎0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
)
3

 

 −𝐵 (𝑎0 + (𝐴𝑎0
3 + 𝐵𝑎0

2 + 𝐸𝑎0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
)
2
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 −𝐸 (𝑎0 + (𝐴𝑎0
3 + 𝐵𝑎0

2 + 𝐸𝑎0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
) − 𝐹, 

 𝑅𝑒𝑠2,2𝑟(𝑡) = 𝐷𝛼𝑔2,2𝑟(𝑡) − 𝐴𝑔2,2𝑟
3 (𝑡) − 𝐵𝑔2,2𝑟

2 (𝑡) − 𝐸𝑔2,2𝑟(𝑡) − 𝐹, 

 = 𝐷𝛼 (𝑏0 + (𝐴𝑏0
3 + 𝐵𝑏0

2 + 𝐸𝑏0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
) 

 −𝐴 (𝑏0 + (𝐴𝑏0
3 + 𝐵𝑏0

2 + 𝐸𝑏0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
)
3

 

 −𝐵 (𝑏0 + (𝐴𝑏0
3 + 𝐵𝑏0

2 + 𝐸𝑏0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
)
2

 

 −𝐸 (𝑏0 + (𝐴𝑏0
3 + 𝐵𝑏0

2 + 𝐸𝑏0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
) − 𝐹. 

 

 Now, differentiable both sides of 𝑅𝑒𝑠2,1𝑟(𝑡) and 𝑅𝑒𝑠2,2𝑟(𝑡) such that   

 
𝑑

𝑑𝑡
𝑅𝑒𝑠2,1𝑟(𝑡) =

𝑑

𝑑𝑡
[𝐷𝛼𝑔2,1𝑟(𝑡) − 𝐴𝑔2,1𝑟

3 (𝑡) − 𝐵𝑔2,1𝑟
2 (𝑡) − 𝐸𝑔2,1𝑟(𝑡) − 𝐹], 

 =
𝑑

𝑑𝑡
[𝐷𝛼 (𝑎0 + (𝐴𝑎0

3 + 𝐵𝑎0
2 + 𝐸𝑎0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
)] 

 −
𝑑

𝑑𝑡
[𝐴 (𝑎0 + (𝐴𝑎0

3 + 𝐵𝑎0
2 + 𝐸𝑎0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
)
3

] 

 −
𝑑

𝑑𝑡
[𝐵 (𝑎0 + (𝐴𝑎0

3 + 𝐵𝑎0
2 + 𝐸𝑎0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
)
2

] 

 −
𝑑

𝑑𝑡
[𝐸 (𝑎0 + (𝐴𝑎0

3 + 𝐵𝑎0
2 + 𝐸𝑎0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
)] −

𝑑

𝑑𝑡
[𝐹], 

 

 
𝑑

𝑑𝑡
𝑅𝑒𝑠2,2𝑟(𝑡) =

𝑑

𝑑𝑡
[𝐷𝛼𝑔2,2𝑟(𝑡) − 𝐴𝑔2,2𝑟

3 (𝑡) − 𝐵𝑔2,2𝑟
2 (𝑡) − 𝐸𝑔2,2𝑟(𝑡) − 𝐹], 

 =
𝑑

𝑑𝑡
[𝐷𝛼 (𝑏0 + (𝐴𝑏0

3 + 𝐵𝑏0
2 + 𝐸𝑏0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
)] 

 −
𝑑

𝑑𝑡
[𝐴 (𝑏0 + (𝐴𝑏0

3 + 𝐵𝑏0
2 + 𝐸𝑏0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
)
3

] 

 −
𝑑

𝑑𝑡
[𝐵 (𝑏0 + (𝐴𝑏0

3 + 𝐵𝑏0
2 + 𝐸𝑏0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
)
2

] 

 −
𝑑

𝑑𝑡
[𝐸 (𝑏0 + (𝐴𝑏0

3 + 𝐵𝑏0
2 + 𝐸𝑏0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
)] −

𝑑

𝑑𝑡
[𝐹], 

 

 by using residual power series facts 𝛼 = 1, 
𝑑

𝑑𝑡
𝑅𝑒𝑠2,1𝑟(0) = 0 and 

𝑑

𝑑𝑡
𝑅𝑒𝑠2,2𝑟(0) = 0, it can be deduced that the residual 

functions  

 
𝑎2 =

3

2
𝐴𝑎0

2𝑎1 + 𝐵𝑎0𝑎1 +
1

2
𝐸𝑎1,

𝑏2 =
3

2
𝐴𝑏0

2𝑏1 + 𝐵𝑏0𝑏1 +
1

2
𝐸𝑏1.

 (4.8) 

 

 Then the second approximations are:  

 
𝑔2,1𝑟(𝑡) = 𝑎0 + (𝐴𝑎0

3 + 𝐵𝑎0
2 + 𝐸𝑎0 + 𝐹)

𝑡𝛼

Γ(1+𝛼)
+ (

3

2
𝐴𝑎0

2𝑎1 + 𝐵𝑎0𝑎1 +
1

2
𝐸𝑎1)

𝑡2𝛼

Γ(1+2𝛼)
,

𝑔2,2𝑟(𝑡) = 𝑏0 + (𝐴𝑏0
3 + 𝐵𝑏0

2 + 𝐸𝑏0 + 𝐹)
𝑡𝛼

Γ(1+𝛼)
+ (

3

2
𝐴𝑏0

2𝑏1 + 𝐵𝑏0𝑏1 +
1

2
𝐸𝑏1)

𝑡2𝛼

Γ(1+2𝛼)
.

 (4.9) 

 

For 𝑖 = 3, the third approximations are 𝑔3,1𝑟(𝑡) and 𝑔3,2𝑟(𝑡) into the residual functions, 𝑅𝑒𝑠3,1𝑟(𝑡) and 𝑅𝑒𝑠3,2𝑟(𝑡) of (4.4) 

utilized the residual power series facts 𝛼 = 1, 
𝑑2

𝑑𝑡2
𝑅𝑒𝑠3,1𝑟(0) = 0 and 

𝑑2

𝑑𝑡2
𝑅𝑒𝑠3,2𝑟(0) = 0. Then we get the third coefficients are 

given by  

 
𝑎3 = 𝐴(𝑎2𝑎0

2 + 𝑎1
2𝑎0) +

1

3
𝐵(2𝑎0𝑎2 + 𝑎1

2) +
1

3
𝐸𝑎2,

𝑏3 = 𝐴(𝑏2𝑏0
2 + 𝑏1

2𝑏0) +
1

3
𝐵(2𝑏0𝑏2 + 𝑏1

2) +
1

3
𝐸𝑏2.

 (4.10) 

 

For 𝑖 = 4, the fourth approximations are 𝑔4,1𝑟(𝑡) and 𝑔4,2𝑟(𝑡) into the residual functions, 𝑅𝑒𝑠4,1𝑟(𝑡) and 𝑅𝑒𝑠4,2𝑟(𝑡) of 

(4.4) utilized the residual power series facts 𝛼 = 1, 
𝑑3

𝑑𝑡3
𝑅𝑒𝑠4,1𝑟(0) = 0 and 

𝑑3

𝑑𝑡3
𝑅𝑒𝑠4,2𝑟(0) = 0. Then we get the third 

coefficients are given by  
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𝑎4 =

1

4
𝐴(𝑎1

3 + 6𝑎0𝑎1𝑎2 + 3𝑎0
2𝑎3) +

1

2
𝐵(𝑎1𝑎2 + 𝑎0𝑎3) +

1

4
𝐸𝑎3,

𝑏4 =
1

4
𝐴(𝑏1

3 + 6𝑏0𝑏1𝑏2 + 3𝑏0
2𝑏3) +

1

2
𝐵(𝑏1𝑏2 + 𝑏0𝑏3) +

1

4
𝐸𝑏3.

 (4.11) 

 

By continuing the same procedures upto arbitrary coefficients order 𝒊 = 𝒏 using residual power series facts 
𝒅(𝒏−𝟏)

𝒅𝒕(𝒏−𝟏)
𝑹𝒆𝒔𝒏,𝟏𝒓(𝟎) = 𝟎 and 

𝒅(𝒏−𝟏)

𝒅𝒕(𝒏−𝟏)
𝑹𝒆𝒔𝒏,𝟐𝒓(𝟎) = 𝟎, it can be deduced that the residual functions 𝒂𝒏 and 𝒃𝒏 can be obtained.  

Similarly, �̃�(𝒕) is (𝟐) − solution for the (𝟐) − differentiable fuzzy fractional Abel differential equation (𝟑. 𝟑) and (𝟑. 𝟒) can 

 be obtained. 
 

5. Experimental Study 
Example 5.1 Consider the following fractional Abel initial value problem,  
 

 𝐷𝛼�̃�(𝑡) − 3�̃�(𝑡)3 + �̃�(𝑡) = 0, 𝑡 > 0, (5.1) 
 

 with the fuzzy initial condition  
 

 [�̃�(0)]𝑟 = [
7

24
+

1

24
𝑢,

101

300
−

1

300
𝑢], 𝑢 ∈ [0,1]. (5.2) 

 

 In particular for 𝑢 = 1 and 𝛼 = 1 the solution of (5.1) with crisp initial condition �̃�(0) =
1

3
 as follows:  

 �̃�(𝑡) =
1

√6𝑒2𝑡+3
. (5.3) 

 

 we represent the parametric forms of (5.1) as follows:  
 

 
𝐷𝛼𝑔1𝑟(𝑡) = 3𝑔1𝑟(𝑡)

3 − 𝑔1𝑟(𝑡),

𝐷𝛼𝑔2𝑟(𝑡) = 3𝑔2𝑟(𝑡)
3 − 𝑔2𝑟(𝑡),

 (5.4) 

 

 with the fuzzy initial condition  

 
𝑔1𝑟(0) =

7

24
+

1

24
𝑢,

𝑔2𝑟(0) =
101

300
−

1

300
𝑢.

 (5.5) 

 

 By using the initial conditions 𝑔1𝑟(0) = 𝑔0,1𝑟 = 𝑎0 and 𝑔2𝑟(0) = 𝑔0,2𝑟 = 𝑏0 as initial approximations, the expression of (5.5) 

can be written as 𝑔1𝑟(0) =
7

24
+

1

24
𝑢 and 𝑔2𝑟(0) =

101

300
−

1

300
𝑢, the residual power series solutions 𝐷𝛼𝑔1𝑟(𝑡) and 𝐷𝛼𝑔2𝑟(𝑡) of 

system (5.4) can be written as:  

 
𝑔1𝑟(𝑡) =

7

24
+

1

24
𝑢 + 𝑎1

𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
+⋯+ 𝑎𝑖

𝑡𝑖𝛼

Γ(1+𝑖𝛼)
+⋯ ,

𝑔2𝑟(𝑡) =
101

300
−

1

300
𝑟 + 𝑏1

𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
+⋯+ 𝑏𝑖

𝑡𝑖𝛼

Γ(1+𝑖𝛼)
+⋯ .

 (5.6) 

 

 By utilizing the residual power series 
𝑑(𝑖−1)

𝑑𝑡(𝑖−1)
𝑅𝑒𝑠𝑖,1𝑟(0) = 0 and 

𝑑(𝑖−1)

𝑑𝑡(𝑖−1)
𝑅𝑒𝑠𝑖,2𝑟(0) = 0, for 𝑖 = 1,2…, the terms of 𝑎𝑖 and 𝑏𝑖 

are: 

𝑎0 =
7

24
+

1

24
𝑢, 

𝑎1 =
1

4608
(𝑢 + 7)(𝑢2 + 14𝑢 − 143), 

𝑎2 =
1

589824
(𝑢 − 1)(𝑢 + 15)(𝑢 + 7)(𝑢2 + 14𝑢 − 143),  

𝑎3 =
1

339738624
(5𝑢4 + 140𝑢3 + 702𝑢2 − 3892𝑢 − 13339)(𝑢 + 7)(𝑢2 + 14𝑢 − 143),  

and  

𝑏0 =
101

300
−

1

300
𝑢, 

𝑏1 =
1

9000000
(101 − 𝑢)(𝑢2 − 202𝑢 − 19799), 

𝑏2 =
1

180000000000
(101 − 𝑢)(𝑢2 − 202𝑢 − 19799)(1 − 𝑢)(201 − 𝑢),  

𝑏3 =
1

3240000000000000
(101 − 𝑢)(𝑢2 − 202𝑢 − 19799)(𝑢4 − 404𝑢3 + 37206𝑢2 + 726796𝑢 − 80763599), and so 

on. 
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If 𝑢 = 1, then the residual power series solution becomes  

 𝑔(𝑡) =
1

3
−

2

9

𝑡𝛼

Γ(1+𝛼)
+

4

81

𝑡3𝛼

Γ(1+3𝛼)
−

2

243

𝑡4𝛼

Γ(1+4𝛼)
+⋯… (5.7) 

 

 The numerical results of Example 1 for various 𝑡 in [0,1] is shown in Table 1, Table 2 and Fig 1.  
 

Table 1. Value of g(t) 

 𝜶 = 𝟎. 𝟐  𝜶 = 𝟎. 𝟒  

t Exact solution RPSM solution Exact solution RPSM solution 

0 0.333333333333333  0.333333333333333  0.333333333333333  0.333333333333333  

0.1 0.193471007156861  0.201381245662826  0.237563672647012  0.241882871969703  

0.2 0.176519388144558  0.184715229698909  0.210321281312679  0.215958907891209  

0.3 0.166105051148641  0.174111175460565  0.191911496037013  0.197998426415079  

0.4 0.158527534841319  0.166165375323268  0.177828824029250  0.183874656100862  

0.5 0.152558461080159  0.159740970196098  0.166395195450085  0.172075077162908  

0.6 0.147631044092847  0.154310348890382  0.156774182849010  0.161853823923007  

0.7 0.143435215689562  0.149583289081796  0.148480659421844  0.152781573923248  

0.8 0.139782263095155  0.145382236233200  0.141205233022639  0.144586015862536  

0.9 0.136548548404761  0.141590285096808  0.134737216623282  0.137082431575621  

1.0 0.133648555869576  0.138126192142471  0.128926056443408  0.130139175738835  
 

Table 2. Value of g(t) 

 𝜶 = 𝟎. 𝟖  𝜶 = 𝟏  

t Exact solution RPSM solution Exact solution RPSM solution 

0 0.333333333333333 0.333333333333333 0.333333333333333 0.333333333333333  

0.1 0.295753483812600 0.296385790774987 0.311159544858791 0.311357990397805  

0.2 0.268689364116527 0.270118516859413 0.289266951196178 0.289875994513032  

0.3 0.245311385555235 0.247276980269422 0.267905825643850 0.268886111111111  

0.4 0.224535908022159 0.226618045743047 0.247285140856786 0.248386282578875  

0.5 0.205865356048560 0.207576575382591 0.227568600277633 0.228373628257888  

0.6 0.188992508866941 0.189825838487919 0.208874799971873 0.208844444444444  

0.7 0.173694594369442 0.173150976821573 0.191280479364827 0.189794204389575  

0.8 0.159794571311227 0.157398565824515 0.174825723730926 0.171217558299040  

0.9 0.147144243984156 0.142452511017569 0.159520099726950 0.153108333333333  

1.0 0.135615881953843 0.128221075728880 0.145348934559835 0.135459533607682  
 

 
Fig. 1 Value of f(x) 
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Example 5.2  

Consider the following fractional Abel initial value problem,  

 

 𝐷𝛼�̃�(𝑡) + �̃�(𝑡)3 − �̃�(𝑡) = 0, 𝑡 > 0, (5.8) 

 

 with the fuzzy initial condition  

 [�̃�(0)]𝑟 = [
7

24
+

1

24
𝑢,

101

300
−

1

300
𝑢], 𝑢 ∈ [0,1]. (5.9) 

 

 In particular for 𝑢 = 1and 𝛼 = 1 the solution of (5.8) with crisp initial condition  

�̃�(0) =
1

3
 can be found as:  

 �̃�(𝑡) =
𝑒𝑡

√𝑒2𝑡+8
. (5.10) 

 

 we represent the parametric forms of (5.8) as follows:  

 

 
𝐷𝛼𝑔1𝑟(𝑡) = 𝑔1𝑟(𝑡) − 𝑔1𝑟(𝑡)

3,

𝐷𝛼𝑔2𝑟(𝑡) = 𝑔1𝑟(𝑡) − 𝑔2𝑟(𝑡)
3.

 (5.11) 

 

 with the fuzzy initial condition  

 
𝑔1𝑟(0) =

7

24
+

1

24
𝑢,

𝑔2𝑟(0) =
101

300
−

1

300
𝑢.

 (5.12) 

 

 By using the initial conditions 𝑔1𝑟(0) = 𝑔0,1𝑟 = 𝑎0 and 𝑔2𝑟(0) = 𝑔0,2𝑟 = 𝑏0 as initial approximations. Then, the expression 

of (5.9) can be written as 𝑔1𝑟(0) =
7

24
+

1

24
𝑢 and 𝑔2𝑟(0) =

101

300
−

1

300
𝑢, the residual power series solutions 𝐷𝛼𝑔1𝑟(𝑡) and 

𝐷𝛼𝑔2𝑟(𝑡) of system (5.11) can be written as:  

 

 
𝑔1𝑟(𝑡) =

7

24
+

1

24
𝑢 + 𝑎1

𝑡𝛼

Γ(1+𝛼)
+ 𝑎2

𝑡2𝛼

Γ(1+2𝛼)
+⋯+ 𝑎𝑖

𝑡𝑖𝛼

Γ(1+𝑖𝛼)
+⋯ ,

𝑔2𝑟(𝑡) =
101

300
−

1

300
𝑢 + 𝑏1

𝑡𝛼

Γ(1+𝛼)
+ 𝑏2

𝑡2𝛼

Γ(1+2𝛼)
+⋯+ 𝑏𝑖

𝑡𝑖𝛼

Γ(1+𝑖𝛼)
+⋯ .

 (5.13) 

 

 By utilizing the residual power series 
𝑑(𝑖−1)

𝑑𝑡(𝑖−1)
𝑅𝑒𝑠𝑖,1𝑟(0) = 0 and 

𝑑(𝑖−1)

𝑑𝑡(𝑖−1)
𝑅𝑒𝑠𝑖,2𝑟(0) = 0, for 𝑖 = 1,2…, the terms of 𝑎𝑖 and 𝑏𝑖 

are: 

 

𝑎0 =
7

24
+

1

24
𝑢, 

𝑎1 =
1

13824
(𝑢 + 7)(17 − 𝑢)(𝑢 + 31), 

𝑎2 =
1

5308416
(𝑢 + 7)(𝑢 − 17)(𝑢 + 31)(𝑢2 + 14𝑢 − 143),  

𝑎3 =
1

9172942848
(5𝑢4 + 140𝑢3 − 834𝑢2 − 25396𝑢 + 9701)(𝑢 + 7)(17 − 𝑢)(𝑢 + 31),  

and  

𝑏0 =
101

300
−

1

300
𝑢, 

𝑏1 =
1

27000000
(𝑢 − 101)(𝑢 + 199)(𝑢 − 401), 

𝑏2 =
1

1620000000000
(401 − 𝑢)(𝑢 − 101)(𝑢 + 199)(𝑢2 − 202𝑢 − 19799),  

𝑏3 =
1

87480000000000000
(𝑢 − 101)(𝑢 + 199)(𝑢 − 401)(𝑢4 − 404𝑢3 − 10794𝑢2 + 10422796𝑢 − 90411599), and 

so on. 

If 𝑢 = 1, then the residual power series solution  

 𝑔(𝑡) =
1

3
+

8

27

𝑡𝛼

Γ(1+𝛼)
+

8

81

𝑡2𝛼

Γ(1+2𝛼)
−

16

2187

𝑡3𝛼

Γ(1+3𝛼)
−

440

19683

𝑡4𝛼

Γ(1+4𝛼)
+⋯… (5.14) 

 

 The numerical results of Example 2 for various 𝑡 in [0,1] is shown in Table 3 and Fig 3. 
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Table 3. Value of g(t) 

 𝜶 = 𝟎. 𝟐  𝜶 = 𝟎. 𝟒  𝜶 = 𝟎. 𝟖  𝜶 = 𝟏  

t Exact RPSM Exact RPSM Exact RPSM Exact RPSM 

0 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

0.1 0.5750 0.5792 0.4844 0.4826 0.3865 0.3854 0.3639 0.3634 

0.2 0.6143 0.6225 0.5385 0.5370 0.4294 0.4263 0.3964 0.3945 

0.3 0.6396 0.6517 0.5785 0.5785 0.4701 0.4646 0.4307 0.4266 

0.4 0.6587 0.6744 0.6111 0.6135 0.5095 0.5018 0.4665 0.4596 

0.5 0.6740 0.6932 0.6389 0.6444 0.5479 0.5383 0.5035 0.4936 

0.6 0.6869 0.7094 0.6631 0.6724 0.5851 0.5745 0.5415 0.5286 

0.7 0.6980 0.7237 0.6846 0.6982 0.6210 0.6104 0.5799 0.5645 

0.8 0.7077 0.7365 0.7039 0.7223 0.6554 0.6463 0.6183 0.6013 

0.9 0.7164 0.7483 0.7213 0.7451 0.6881 0.6822 0.6561 0.6391 

1.0 0.7243 0.7591 0.7372 0.7666 0.7190 0.7180 0.6929 0.6777 

 

 
Fig. 2 Value of f(x) 

6. Conclusion 
 In this paper, under strongly generalized differentiability, the RPS application to study the exact solutions for fuzzy FADE. 

When selecting a suitable fuzzy rule base from becoming extracted and submitted under an obstruction, the approach used 

explicitly. Mathematical research has demonstrated the stability and efficiency of the novel process. The results show these for 

nonlinear fuzzy fractional differential equations with fewer simulations reduce time RPS process is effective and successful. 

About through a saw that, it must be established also that RPS results are effective calculated by other approaches.  
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