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Abstract - In this paper, we generalize metrically equivalent operators to the class of posimetrically equivalent 

operators. Some basic properties of this class are covered. We also relate this equivalence relation to the class of 

quasi-p-normal operators. We also relate this class to other equivalence relations such as n-metric equivalence. 
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1. Introduction 
H symbolizes the complex Hilbert space unless stated otherwise while B (H) is the Banach algebra of bounded 

linear operators. The study of operators on the usual Hilbert H space has been intensified over the years. For instance 

the class of normal operators has been generalized further and diversified into the classes of ; almost normal operators 

as covered in [5] , n-normal , (n, m) - normal , mutually normal , quasi -normal , quasi -p-normal , skew-normal , 

skew quasi-p-normal and perinormal among others . Jibril [6] covered the class of n-power normal operators. Results 

linking the class of 3-normal and the 2-normal operators were struck in [6]. The class of (n, m)-normal operators were 

covered by Eiman H. and Mustafa [3]. Jibril [4] introduced the class of (Q) operators in 2010. Jibril [4] studied 

interesting basic properties that this class gets to enjoy.  Paramesh [13] later expanded the class (Q) operator to n-

power class (Q) operators. Basic properties of this class were covered and a result given to show that this class is not 

generally a normal operator. Manikandan [7] later echoed this class by introducing the class of (n+k) power class (Q) 

for n which is positive definite and 0 ≤ k. New theorems were characterized for this class,  in particular,  it was shown 

that if a bounded operator G is (n+k)-normal, then it’s (n+k)-power class (Q) . Manikandan [8] furthered results on 

(n+k) power class (Q). In [8], Manikandan characterized class (Q) operators in terms of complex symmetric operators. 

Revathi [14] took the class of class (Q) operators to Quasi-class (Q). Basic properties of this class were investigated 

and interesting results linking this class with self-adjoint operators were struck. Later on Revathi [15] extended the 

class of quasi class(Q) Operators into the class of M-quasi class (Q) where M is a bounded operator on the Hilbert 

space H. Similarly basic properties of this class were investigated. Wanjala Victor and Nyongesa [18] took the study 

of class (Q) operators to (α, β)-class (Q) for 0 ≤ α ≤1 ≤β. They investigated some nice algebraic properties of this 

class,  for instance,  it was shown that if G is (α, β)-class (Q),  then G* is also (α, β)-class (Q). By relaxing the conditions 

for (Q) , Wanjala Victor and Beatrice Adhiambo [17] noted that this class coincides with the class of (M, n) operators 

( almost class (Q) ) whenever n is equivalent to two (see [17] under introduction). K∗ Quasi-n-class (Q) operators were 

covered by Wanjala Victor and Peter Kiptoo Rutto in [19] where they covered some basic properties of this class.  

Wanjala Victor and Beatrice Adhiambo also introduced the class of (BQ) operators in [23]. G is said to be in (BQ) 

whenever G*2 G2 commutes with (G∗G) .Wanjala Victor and A.M. Nyongesa introduced the class of (Q∗) in [20] , 

recently Wanjala Victor et al. extended class (Q) to skew quasi-p-class (Q) in [22] . The class of metrically equivalent 

operators was covered by Nzimbi in [10]. This was expanded to n-metric equivalence and (n, m)-metric equivalence by 

Wanjala in [26] and [25] respectively. This was later taken to metric equivalence of order n in [24]. This was later 

analyzed by Wanjala in semi-Hilbert space in [16].  Mahmoud introduced Quasi equivalent operators in [9], this was 

enhanced by Nzimbi [1] to Unitary quasi equivalence which was later generalized by Wanjala in [21].Nearly equivalent 

operators was covered by Sadoon in [12]. In this paper we extend metrically equivalent operators to the class of 

posimetrically equivalent operators. 

 

Definition 1. [3] An operator G ∈ B (H) is (n, m)-normal if G*m Gn = Gn G*m . 

Definition 2. [2] An operator G ∈ B (H) is: 

(i) (n,p)-quasinormal operator if Gn(G∗G)p = (G∗G)p Gn 

(ii) Self-adjoint when G∗ = G. 

Definition 3. [26] An operator G ∈B (H) is: 

(i) An orthogonal projection when G*=G (idempotent) and G2 = I. 

(ii)  Unitary if G*G = GG* = I. 
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(iii) Polar decomposition if G = US, where U is partial isometry and S is a positive operator.         

 

Definition 4. [2] An operator G ∈ B (H) is: 
(i) Quasi-p-normal if G∗G (G + G∗) = (G + G∗) GG∗.  
 
(ii) Quasi-Isometry G∗2G2 = G∗G = I. 
 
(iii) 2-self-adjoint if G∗2 = G2. 
 

Definition 5. ([10]) Two bounded linear operators S and G are said to be metrically equivalent if S∗S = G∗G. 

Definition 6. ([25]) Two bounded linear operators S and G are said to be (n, m)-metrically equivalent if  

S∗mSn = G∗mGn for positive integers n and m. 

Definition 7. ([26]) Two bounded linear operators S and G are said to be n-metrically equivalent if S∗Sn = G∗Gn for  

a positive integer n.  

Definition 8. ([11]) Two bounded linear operators S and G are said to be almost similarly equivalent if there  

exists an invertible operator say N such that; S∗S = N−1 (G∗G) N and S∗ + S = N−1 (G∗ + G) N. 
       

2. Main Results 

Definition 9. Two operators S ∈ B(H) and T ∈ B(H) are said to be Posimetrically  equivalent denoted by S  

 
 

∼p T if (S∗S) (S + S∗) = (T ∗T ) (T + T ∗). 
 

Theorem 10. If G is quasi-p-normal and S ∈ B (H) is unitarily equivalent to G, then S is quasi-p-normal.                                                     

Proof. Suppose S = U
∗

GU where U is unitary and S is quasi-p-normal, then 

(S
∗
S)(S + S

∗
) = ((U

∗
G
∗
U) (U

∗
GU)) (U

∗
GU + U

∗
G
∗

U) 

= ((U
∗

G
∗

UU
∗

GU) (  U
∗
GU + U

∗
G
∗

U) 

= (U
∗

G
∗

GU) (U
∗
GU + U

∗
G
∗

U) 

= (U
∗

GU + U
∗

G
∗

U)     (  U
∗
G
∗
GU) 

= (SU
∗

U + S
∗

U
∗

U)   (  S
∗

U
∗

US) 

= (S + S
∗

) (S
∗

S). 

hence the proof. 

Corollary 11. An operator S ∈ B (H) is quasi-p-normal if and only if S and S * are posimetricaly 

equivalent.                                                

Proof. The proof follows from Theorem 10 

Lemma 12. Let S, G ∈ B (H) be bounded linear operators with S ∼p G, then; 

1. S is isometric whenever G is isometric 

2. S is a contraction whenever G is a contraction 

3. λS and λG are p-metrically equivalent for any λ ∈ R 

4. The restriction S⧸M of S and G⧸M of G to any closed subspace M of H that reduces S 

Proof. The proof for 1 and 2 is trivial, for 3 and 4, we have; 3). Since S and G 
are Posimetrically equivalent we have; 

     (S*S)(S + S*) = (G*G) (G + G*) 

                             = ((⅄S)*(⅄S)) (⅄S + ⅄S*) = ((⅄G)*(⅄G)) (⅄G + ⅄G*) 

                             = │⅄│2 (S*S) ⅄(S + S*) = │⅄│2 (G*G) ⅄ (G + G*) 

                             = │⅄│3 (S*S) (S + S*) = │⅄│3 (G*G) (G + G*) 

 

Hence ⅄S and ⅄G are posimetrically equivalent. 

For (4) we have;   ((S⧸M) ∗ (S⧸M))((S⧸M) + (S⧸M) ∗) = ((G⧸M) ∗ (G⧸M)) ((G⧸M) + (G⧸M) ∗) 
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(S
∗
S⧸M)(S⧸M + S

∗
⧸M) = (G

∗
G⧸M) (G⧸M + G

∗
⧸M) 

 ((S
∗

S) (S + S
∗

))⧸M = ((G
∗

G) (G + G
∗

)) ⧸M 

(S
∗

S)⧸M(S + S
∗

) ⧸M = (G
∗
G) ⧸M (G + G

∗
) ⧸M 

((S
∗
) ⧸M(S) ⧸M)((S⧸M) + (S

∗
⧸M))  = ((G

∗
⧸M) (G) ⧸M)) ((G⧸M) + (G

∗
⧸M)) 

 

Theorem 13. Let S, G ∈ B (H) be posimetrically equivalent. If S and G complex symmetric operators, then (S∗S) (S + 

S∗) = (G∗G) (G + G∗) holds. 

Proof. If S and G are complex symmetric operators, then; S
∗ 

= CSC, S = CS
∗

C and 

G
∗ 

= CGC, G = CG
∗

C with C
2 

= I. It then implies that 

(S
∗

S)(S + S
∗

) = (CSCCS
∗

C) (CS
∗

C + CSC) (0.16) 

= (CSS
∗

C) (CS
∗ 

+ SC) (0.17) 

= (CS
∗
SC) (CS + S

∗
C) (0.18) 

           = (C (S
∗
S)) ((S + S

∗
) C)            (0.19) 

           = C
2

 (S
∗
S) (S + S

∗
)           (0.20) 

Similarly;  

(G
∗
G)(G + G

∗
) = (CGCCG

∗
C) (CG

∗
C + CGC)  (0.21) 

= (CGG
∗
C) (CG

∗ 
+ GC) (0.22) 

= (CG
∗
GC) (CG + G

∗
C) (0.23) 

           = (C (G
∗

G)) ((G + G
∗
) C)             (0.24)       

                                     C
2

 (S
∗

S) (S + S
∗

) = C
2

 (G
∗

G) (G + G
∗

)             (0.25) 

                               (S
∗
S)(S + S

∗
) = (G

∗
G) (G + G

∗
)            (0.26) 

As required. 

Theorem 14. If S and G are Posimetrically equivalent with polar decompositions S = U|S| and G = U| G|, then |S|3 = 

|G|3 if and only if U|S| = |S|U and U|G| = |G|U. 

 

Proof. Since S and G are Posimetrically equivalent;   

(S
∗
S) (S + S

∗
) = (G

∗
G) (G + G

∗
)             (0.28) 

(U
∗ 

| S | U | S |) (U | S | +U
∗ 

| S |) = (U
∗ 

| G | U | G |) (U | G | + U
∗ 

| G |) (0.29) 

 (| S | U
∗

U | S |) (U | S | + U
∗ 

| S |) = (| G | U
∗

U | G |) (U | G | + U
∗ 

| G |) (0.30) 

 (| S |
2

) (U | S | + U
∗ 

| S |) = (| G |
2

) (U | G | +U
∗ 

| G |) (0.31) 

U | S |
3 

+ U
∗ 

| S |
3 

= U | G |
3 

+ U
∗ 

| G |
3 

(0.32) 

U | S |
3 

+ | S |
3 

U
∗  

= U | G |
3 

+ | G |
3 

U
∗  

(0.33) 

Pre-multiplying both the left and right hand side of 0.33 by U
∗ 

and post-multiplying the same by U; 

U
∗

U | S |
3 

+ | S |
3 

U
∗

U = U
∗

U | G |
3 

+ | G |
3 

U
∗

U (0.34) 

 2 | S |
3 

= 2 | G |
3 

(0.35) 

 

| S |3 =| G |3            (0.36) 

hence the proof. 
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2.1. Relationship between Posimetric Equivalence and Other Equivalence Relations 

Remark 15. The following result establishes the relationship between Posimetric equivalence and 2-metrically equivalent 

operators, a subclass of n-metrically equivalent operators. That two Posimetrically equivalent operators are 2-metrically 

provided they are self-adjoint. 

Theorem 16. If S, G ∈ B (H) are Posimetrically, then they are 2-metrically equivalent provided   S and G are  

self-adjoint. 

Proof. By assumption; 

(S
∗
S)(S + S

∗
) = (G

∗
G) (G + G

∗
) (0.37) 

Since S and G are self-adjoint;  

    (S
∗
S)(S + S) = (G

∗
G)(G + G) (0.38) 

 2(S
∗
S)S = 2(G

∗
G)G (0.39) 

S
∗

S
2 

= G
∗

G
2 

(0.40) 

 

 

Remark 17. The following result establishes the relationship between the class of Posimetrically equivalent operators and 

the class of metrically equivalent operators. That two Posimetrically equivalent operators are metrically equivalent 

provided they are idempotent. 

Theorem 18. Let S, G ∈ B (H)   be Posimetrically equivalent, then they metrically equivalent provided they are 

idempotent. 

Proof. Since S and G are Posimetrically equivalent, we have; 

(S
∗
S)(S + S

∗
) = (G

∗
G) (G + G

∗
) (0.41) 

(S
∗

SS) + (S
∗

SS
∗

) = (G
∗

GG) + (G
∗

GG
∗

) (0.42) 

(S
∗

S
2

) + (S
∗2

S) = (G
∗
G

2
) + (G

∗2
G) (0.43) 

Since S and G are idempotent;  S = SS, S
∗ 

= S
∗

S
∗ 

and G = GG, G
∗ 

= G
∗

G
∗,

 hence; 

 (S
∗

S) + (S
∗

S) = (G
∗
G) + (G

∗
G)  (0.44)  

 2(S
∗
S) = 2(G

∗
G) (0.45) 

 S
∗

S = G
∗

G.                                                            (0.46) 

hence the proof. 

Remark 19. The result below establishes the relationship between posimetrically equivalent operators and almost 

similarly equivalent operators. 

Theorem 20. Let S, G ∈ B(H) be two similar Posimetrically equivalent operators , then they are almost similarly  

equivalent provided they are isometries and S + S∗ = S∗ + S and G + G∗ = G∗ + G. 

Proof. Since S and G are similar Posimetrically equivalent, then there exists an invertible operator N such that;  

(S
∗
S)(S + S

∗
) = N−1 ((G

∗
G) (G + G

∗
)) N (0.47) 

S
∗

SS + S
∗

SS
∗ 

= N
−1

 (G
∗

GG + G
∗

GG
∗
) N (0.48) 

Pre-multiplying and post-multiplying both the left hand side of 0.48 by S
∗ 

and S and right hand side by G
∗ 

and G respectively we get;  

S
∗

S
∗

SS + S
∗

SS
∗

S = N
−1

 (G
∗

G
∗

GG + G
∗

GG
∗

G) N  (0.49)  

S
∗2

S
2 

+ S
∗2

S
2 

= N
−1

 (G
∗2

G
2 

+ T 
∗2

G
2

) N (0.50)  
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(S
∗

S) (S
∗
S + S

∗
S) = N

−1
 ((G

∗
G)(G

∗
G + G

∗
G))N  (0.51) 

Since S and G are isometries;  

From 0.53 and 0.57,  S and G are almost similarly equivalent 

3. Conclusion 

It has been shown that the class of posimetrically equivalent operators is related to the classes of almost similar operators 

and metrically equivalent operators from the result. This study will be useful in telecommunication industry through solving 

the pick and novenlinna problem which is useful in code processing through analyzation of signals by using properties of 

posimetrically equivalent operators. 
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