Original Article

Analytical Study of Priority Biserial Queue System

Aarti Saini¹, Deepak Gupta², A. K. Tripathi³

^{1,2,3}Department of Mathematics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India.

Received: 16 February 2023Revised: 20 March 2023Accepted: 03 April 2023Published: 15 April 2023

Abstract - This paper is a study of biserial servers connected in series with the common intermediate server. Queue discipline before the entry-level servers in the system is considered pre-emptive priority discipline. The arrival rate is supposed to follow Poisson distribution, and the service pattern is exponentially distributed. A steady-state analysis of the model is done by using various statistical tools. The methodology used to obtain the Probability distribution function is G.F. and P.G.F. The present model helps reduce congestion and enhance the optimum utilization of servers in such types of real-world problems. A numerical illustration is given to validate the study.

Keywords - Biserial, Numerical illustration, Priority, Poisson Law, Variance.

1. Introduction

Waiting line theory is a part of daily-life. A Danish Mathematician, A.K. Erlang, first introduced the concept of waiting line theory in the 20th century by designing a model on Telephone networks. After that, many researchers and mathematicians contribute their work in the field of queueing theory and priority queues. Stephan [1] discussed two queues under pre-emptive priority with Poisson arrivals and service rates. A preemptive priority queue with a general bulk service rule was studied by Sivasamy R [2]. Singh T.P et al. [4-5] present a stochastic analysis of bi- tandem and semi-bi-serial queue network model with a feedback facility. Sharma S and Gupta Deepak [6] made an analysis of biserial queues with the centrally connected server. Agrawal S.K. and Singh B.K. [7-8] analyzed various queue characteristics of a complex queuing model having three servers connected in tri-cum biserial way. Singh H. [9] discussed the practical situation in hospitals to justify the queuing network model with parallel servers linked in series. After that, Gupta D. & Gupta R. [10] explored the such type of model with batch arrival. Recently, Saini V and Gupta Deepak [11] extended this work by analyzing a complex feedback queue model with the condition of revisiting at most one time by a customer at any of the servers with changed moving probabilities. Selvakumaria K. and Revathi S. [12] made an effort to discuss non-preemptive priority queues in a fuzzy environment with unequal service rates. A hysteresis policy was used by Alexander D. et al. [13] for server reservation in a multi-server queuing model to neglect the effect of interruption of service of low-priority customers. Seokjun L. et al. [14] were invented a flexible priority scheme to enhance the protocol of scheduling servers in many real-world situations by using the Markov chain process, including the problem of a cognitive radio network with channel leasing.

In the present paper, we further expand a model by an Analytical Study of a Priority Biserial Queue System consisting of bi-serial servers connected centrally to a common server. In the study, low and high-priority customers' arrival at entry-level biserial subsystems is assumed because most of the time, we see importance is given to one other than others in our daily-life. Queue behavior is analyzed by using the steady-state solution of the proposed model.

2. Model description

In the proposed model, there are three subsystems C_1 , C_2 and C_3 . The subsystems C_1 and C_2 have biserial service channels C_{11} & C_{12} and C_{21} & C_{22} , respectively. The subsystems C_1 and C_2 are linked to a common subsystem C_3 in series. At first, the customer of Low and high priority with arrival rates λ_{1L} , λ_{1H} & λ_{2L} , λ_{2H} will arrive at service channels C_{11} & C_{12} . After being served at C_{11} , the customer will either move to service channel C_{12} with transition probabilities α_{12} or C_3 with moving probabilities α_{13} such that $\alpha_{12} + \alpha_{13} = 1$. From server C_{12} , the customer either visits C_{11} with moving probabilities α_{21} or direct move to C_3 with probabilities α_{23} with condition $\alpha_{21} + \alpha_{23} = 1$.

After availing of the service of service channel C_3 where the service rate is the same for all customers, the customer may either go C_{21} or C_{22} with transition probabilities $\alpha_{34} \& \alpha_{35}$, $\alpha_{34} + \alpha_{35} = 1$ for receiving the service of the next phase. Moreover, from server C_{21} , the customer either visit C_{22} with α_{45} or leave the system with leaving probability α_4 , where $\alpha_{45+} \alpha_{4=1}$. In the same way, those who arrive at C_{22} to avail of service either visit C_{21} with moving probabilities α_{54} or exit the system with leaving probability α_5 such that $\alpha_{54+} \alpha_{5=1}$ after successful completion of the service.

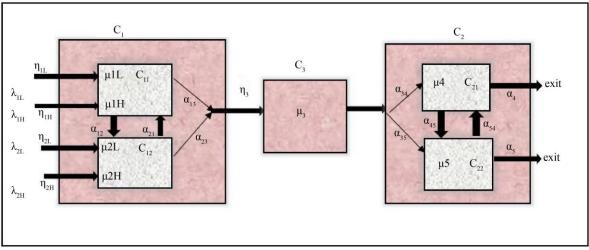


Fig. 1 Proposed Model

		Table 1. Not	tations		
Servers	C11	C12	C21	C22	C3
No. of customers	<u></u> ח1 1 H	<u> </u>	Ŋ4	η5	ηз
Service Rate	μ1L μ1Η	μ2L μ2Η	μ3	μ4	μ5
Probabilities	$C11 \rightarrow C12$ $\alpha 12$ $C11 \rightarrow C3$ $\alpha 13$	$\begin{array}{c} \mu 211\\ \hline C12 \rightarrow C11\\ \alpha 21\\ \hline C12 \rightarrow C3\\ \alpha 23 \end{array}$	$\begin{array}{c} C3 \rightarrow C21 \\ \alpha 34 \\ C3 \rightarrow C22 \\ \alpha 35 \end{array}$	$C22 \rightarrow C21$ $\alpha 54$ $C21 \rightarrow C22$ $\alpha 45$	$\begin{array}{c} C21 \rightarrow \text{exit} \\ \alpha 4 \end{array}$ $C22 \rightarrow \text{exit} \\ \alpha 5 \end{array}$

3. Mathematical Description of The Model

Define Probability function $P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_3, \eta_4, \eta_5(t)$ and $\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_3, \eta_4, \eta_5$ number of customers in queues $Q_{1L}, Q_{1H}, Q_{2L}, Q_{2H}, Q_3, Q_4, Q_5$ in front of servers $S_{11}, S_{12}, S_3, S_{21}, S_{22}$ respectively, where $\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_3, \eta_4, \eta_5 \ge 0$.

In Steady-State, the Differential Difference equation is defined as

 $(\lambda_{1L} + \lambda_{1H} + \lambda_{2L} + \lambda_{2H} + \mu_{1H} + \mu_{2H} + \mu_{3} + \mu_{4} + \mu_{5}) P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5} = \lambda_{1L} P\eta_{1L-1}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5} + \lambda_{1H} P\eta_{1L}, \eta_{1H-1}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5} + \lambda_{2H} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H-1}, \eta_{3}, \eta_{4}, \eta_{5} + \mu_{1H} \alpha_{12} P\eta_{1L}, \eta_{1H+1}, \eta_{2L}, \eta_{2H-1}, \eta_{3}, \eta_{4}, \eta_{5} + \mu_{1H} \alpha_{13} P\eta_{1L}, \eta_{1H+1}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5} + \lambda_{2H} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H+1}, \eta_{3}, \eta_{4}, \eta_{5} + \mu_{2H} \alpha_{23} P\eta_{1L}, \eta_{1H+1}, \eta_{2L}, \eta_{2H+1}, \eta_{3} + \eta_{3}, \eta_{4}, \eta_{5} + \mu_{2H} \alpha_{33} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5} + \mu_{3}\alpha_{34} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H+1}, \eta_{3} + \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{3} \alpha_{35} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3+1}, \eta_{4}, \eta_{5+1} + \mu_{4} \alpha_{45} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4+1}, \eta_{5+1} + \mu_{4} \alpha_{4} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4+1}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{2H}, \eta_{5}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{2}, \eta_{3}, \eta_{4}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{1L}, \eta_{5+1} + \mu_{5} \alpha_{5} P\eta_{5} + \mu_{5} \alpha_{5} P\eta_{5} + \mu_{5} \alpha_{5} P\eta_{5} + \mu_{5} \alpha_{5} + \mu_{5} \alpha_{5} P\eta_{5} + \mu_{5} \alpha_{5} + \mu_{5} \alpha_{5} +$

 $\eta_{1L}, \eta_{1H}, \eta_{2L}, \eta_{2H}, \eta_{3}, \eta_{4}, \eta_{5} > 0$ (A₁)

Taking all possible combinations of η_{1L} , η_{1H} , η_{2L} , η_{2H} , η_3 , η_4 , η_5 , 128 more steady state equations obtained.

To solve the steady state equations (A_1) to (A_{128}) , introduce the generating function as,

$$H(R'_{1}, R'_{2}, R'_{3}, R'_{4}, R'_{5}, R'_{6}, R'_{7}) = \sum_{\eta 1 L=0}^{\infty} \sum_{\eta 2 L=0}^{\infty} \sum_{\eta 2 L=0}^{\infty} \sum_{\eta 2 H=0}^{\infty} \sum_{\eta 3=0}^{\infty} \sum_{\eta 4=0}^{\infty} \sum_{\eta 5=0}^{\infty} P_{\eta 1 L, \eta 1 H, \eta 2 L, \eta 2 H, \eta 3, \eta 4, \eta 5} R'_{1}^{\eta 1 L} R'_{2}^{\eta 1 H} R'_{3}^{\eta 2 L} R'_{4}^{\eta 2 H} R'_{5}^{\eta 3} R'_{6}^{\eta 4} R'_{7}^{\eta 5}$$

Where, $|R'_1|=1$, $|R'_2|=1$, $|R'_3|=1$, $|R'_4|=1$, $|R'_5|=1$, $|R'_6|=1$, $|R'_7|=1$, also partial generating functions are $H_{\eta 1H,\eta 2L,\eta 2H\eta 3,\eta 4,\eta 5}(R'_1) = \sum_{\eta 1L=0}^{\infty} P_{\eta 1L,\eta 1H,\eta 2L,\eta 2H\eta 3,\eta 4,\eta 5}R'_1^{\eta 1L}$

$$H_{\eta 2L,\eta 2H \eta 3,\eta 4,\eta 5}(R'_1,R'_2) = \sum_{\eta 1H=0}^{\infty} H_{\eta 1H,\eta 2L,\eta 2H \eta 3,\eta 4,\eta 5}(R'_1)R'_2^{\eta 1H}$$
(2)

(1)

$$H_{n2H n3, n4, n5}(R'_1, R'_2, R'_3) = \sum_{n2L=0}^{\infty} H_{n2L, n2H n3, n4, n5}(R'_1, R'_2) R'_3^{n2L}$$
(3)

$$H_{\eta3,\eta4,\eta5}(R'_1, R'_2, R'_3, R'_4) = \sum_{\eta2H=0}^{\infty} H_{\eta2H\,\eta3,\eta4,\eta5}(R'_1, R'_2, R'_3) R'^{\eta2H}_4$$
(4)

$$H_{\eta 4,\eta 5}(R'_1, R'_2, R'_3, R'_4, R'_5) = \sum_{\eta 3=0}^{\infty} H_{\eta 3,\eta 4,\eta 5}(R'_1, R'_2, R'_3, R'_4) R'_5^{\eta 3}$$
(5)

$$H_{\eta 5}(R'_1, R'_2, R'_3, R'_4, R'_5, R'_6) = \sum_{\eta 4=0}^{\infty} H_{\eta 4, \eta 5}(R'_1, R'_2, R'_3, R'_4, R'_5) R'^{\eta 4}_6$$
(6)

$$H(R'_{1}, R'_{2}, R'_{3}, R'_{4}, R'_{5}, R'_{6}, R'_{7}) = \sum_{\eta 5=0}^{\infty} H_{\eta 5}(R'_{1}, R'_{2}, R'_{3}, R'_{4}, R'_{5}, R'_{6}) R'^{\eta 5}_{7}$$
(7)

By using equations (1) to (7) and solving steady-state equations, then we get the Probability Distribution function as,

$$\begin{split} H(R_{1}',R_{2}',R_{3}',R_{4}',R_{5}',R_{6}',R_{7}') &= \\ G_{1}\Big[\mu_{1H}\Big(1-\frac{\alpha_{12}R_{4}'}{R_{2}'}-\frac{\alpha_{13}R_{5}'}{R_{2}'}\Big)-\mu_{1L}\Big(1-\frac{\alpha_{12}R_{3}'}{R_{1}'}-\frac{\alpha_{13}R_{5}'}{R_{1}'}\Big)\Big]+\mu_{3}\Big(1-\frac{\alpha_{34}R_{6}'}{R_{5}'}-\frac{\alpha_{35}R_{7}'}{R_{5}'}\Big)G_{3}+ \\ G_{2}\Big[\mu_{2H}\Big(1-\frac{\alpha_{21}R_{2}'}{R_{4}'}-\frac{\alpha_{23}R_{5}'}{R_{4}'}\Big)-\mu_{2L}\Big(1-\frac{\alpha_{21}R_{1}'}{R_{3}'}-\frac{\alpha_{23}R_{5}'}{R_{3}'}\Big)\Big]+\mu_{4}\Big(1-\frac{\alpha_{45}R_{7}'}{R_{6}'}-\frac{\alpha_{4}}{R_{6}'}\Big)G_{4}+\mu_{5}\Big(1-\frac{\alpha_{54}R_{6}'}{R_{7}'}-\frac{\alpha_{5}}{R_{7}'}\Big)G_{5} \\ &+\mu_{1L}\Big(1-\frac{\alpha_{12}R_{3}'}{R_{1}'}-\frac{\alpha_{13}R_{5}'}{R_{1}'}\Big)G_{7}+\mu_{2L}\Big(1-\frac{\alpha_{21}R_{1}'}{R_{3}'}-\frac{\alpha_{23}R_{5}'}{R_{3}'}\Big)G_{6} \\ \hline \lambda_{1L}(1-R_{1}')+\lambda_{1H}(1-R_{2}')+\lambda_{2L}(1-R_{3}')+\lambda_{2H}(1-R_{4}')+\mu_{1H}\Big(1-\frac{\alpha_{12}R_{4}'}{R_{2}'}-\frac{\alpha_{13}R_{5}'}{R_{2}'}\Big)+ \\ \mu_{3}\Big(1-\frac{\alpha_{34}R_{6}'}{R_{5}'}-\frac{\alpha_{35}R_{7}'}{R_{5}'}\Big)+\mu_{2H}\Big(1-\frac{\alpha_{21}R_{2}'}{R_{4}'}-\frac{\alpha_{23}R_{5}'}{R_{4}'}\Big)+\mu_{4}\Big(1-\frac{\alpha_{45}R_{7}'}{R_{6}'}-\frac{\alpha_{4}}{R_{6}'}\Big)+\mu_{5}\Big(1-\frac{\alpha_{54}R_{6}'}{R_{7}'}-\frac{\alpha_{5}}{R_{7}'}\Big) \end{split}$$

Here for convenience, we denote

 $\begin{array}{l} G_1 = H_0(R_1', R_3', R_4', R_5', R_6', R_7'), \ G_2 = H_0(R_1', R_2', R_3', R_5', R_6', R_7'), \ G_3 = H_0(R_1', R_2', R_3', R_4', R_6', R_7'), \\ G_4 = H_0(R_1', R_2', R_3', R_4', R_5', R_7'), \ G_5 = H_0(R_1', R_2', R_3', R_4', R_5', R_6'), \ G_6 = H_{0,0}(R_1', R_2', R_5', R_6', R_7'), \\ G_7 = H_{0,0}(R_3', R_4', R_5', R_6', R_7') \end{array}$

At $|R'_1| = |R'_2| = |R'_3| = |R'_4| = |R'_5| = |R'_6| = |R'_7| = 1$ and $H(R'_1, R'_2, R'_3, R'_4, R'_5, R'_6, R'_7) = 1$, the equation (5) reduces to indeterminate form. Therefore, applying the L'Hospital rule on (5) and differentiating it w.r.t to one -by- one variable, we get the results

$$-\lambda_{1L} = -\mu_{1L}G_1 + \mu_{1L}G_7 + \mu_{2L}\alpha_{21}G_2 - \mu_{2L}\alpha_{21}G_6 \tag{9}$$

$$-\lambda_{1H} + \mu_{1H} - \mu_{2H}\alpha_{21} = \mu_{1H}G_1 - \mu_{2H}\alpha_{21}G_2 \tag{10}$$

$$-\lambda_{2L} = \mu_{1L}\alpha_{12}G_1 - \mu_{1L}\alpha_{12}G_7 - \mu_{2L}G_2 + \mu_{2L}G_6$$
(11)

$$-\lambda_{2H} - \mu_{1H}\alpha_{12} + \mu_{2H} = -\mu_{1H}\alpha_{12}G_1 + \mu_{2H}G_2 \tag{12}$$

$$-\mu_3\alpha_{34} + \mu_4 - \mu_5\alpha_{54} = -\mu_3\alpha_{34}G_3 + \mu_4G_4 - \mu_5\alpha_{54}G_5$$
⁽¹³⁾

$$-\mu_3\alpha_{35} + \mu_5 - \mu_4\alpha_{45} = -\mu_3\alpha_{35}G_3 + \mu_5G_5 - \mu_4\alpha_{45}G_4 \tag{14}$$

$$-\mu_{1H}\alpha_{13} - \mu_{2H}\alpha_{23} + \mu_3 = \mu_3 G_3 - \mu_{1L}\alpha_{13}G_7 - \mu_{2L}\alpha_{23}G_6 - \mu_{1H}\alpha_{13}G_1 + \mu_{1L}\alpha_{13}G_1 -\mu_{2H}\alpha_{23}G_2 + \mu_{2L}\alpha_{23}G_2$$
(15)

Solve equations (9) to (15), we get

$$G_1 = 1 - \frac{\lambda_{1H} + \lambda_{2H} \alpha_{21}}{\mu_{1H} (1 - \alpha_{12} \alpha_{21})} \tag{16}$$

$$G_{2} = 1 - \frac{\lambda_{2H} + \lambda_{1H}\alpha_{12}}{\mu_{2H}(1 - \alpha_{12}\alpha_{21})}$$

$$G_{3} = 1 - \frac{\alpha_{13} \left[(\lambda_{1H} + \lambda_{2H}\alpha_{21}) + (\lambda_{1L} + \lambda_{2L}\alpha_{21}) \right] + \alpha_{23} \left[(\lambda_{2H} + \lambda_{1H}\alpha_{12}) + (\lambda_{2L} + \lambda_{1L}\alpha_{12}) \right]}{\mu_{1} \left(1 - \alpha_{12} - \alpha_{12} \right)}$$
(17)

$$\frac{\mu_3 \left(1 - \alpha_{12} \alpha_{21}\right)}{\mu_3 \left(1 - \alpha_{12} \alpha_{21}\right)}$$

(18)

$$G_4 = 1 - (\alpha_{34} + \alpha_{35}\alpha_{54}) \left[\frac{\alpha_{13} \left[(\lambda_{1H} + \lambda_{2H}\alpha_{21}) + (\lambda_{1L} + \lambda_{2L}\alpha_{21})\right] + \alpha_{23} \left[(\lambda_{2H} + \lambda_{1H}\alpha_{12}) + (\lambda_{2L} + \lambda_{1L}\alpha_{12})\right]}{\mu_4 (1 - \alpha_{12}\alpha_{21})(1 - \alpha_{45}\alpha_{54})}\right]$$

(19)

$$G_{5} = 1 - \alpha_{35} \left[\frac{\alpha_{13} \left[(\lambda_{1H} + \lambda_{2H} \alpha_{21}) + (\lambda_{1L} + \lambda_{2L} \alpha_{21}) \right] + \alpha_{23} \left[(\lambda_{2H} + \lambda_{1H} \alpha_{12}) + (\lambda_{2L} + \lambda_{1L} \alpha_{12}) \right]}{\mu_{5} (1 - \alpha_{12} \alpha_{21}) (1 - \alpha_{45} \alpha_{54})} \right]$$
(20)

$$G_6 = 1 - \frac{\mu_{2L}(\lambda_{2H} + \lambda_{1H}\alpha_{12}) + \mu_{2H}(\lambda_{2L} + \lambda_{1L}\alpha_{12})}{\mu_{2L}\mu_{2H}(1 - \alpha_{12}\alpha_{21})}$$
(21)

$$G_7 = 1 - \frac{\mu_{1L}(\lambda_{1H} + \lambda_{2H}\alpha_{21}) + \mu_{1H}(\lambda_{1L} + \lambda_{2L}\alpha_{21})}{\mu_{1L}\mu_{1H}(1 - \alpha_{12}\alpha_{21})}$$
(22)

In steady-state, the solution of the model is,

$$P_{\eta_{1L},\eta_{1H},\eta_{2L},\eta_{2H}\eta_{3},\eta_{4},\eta_{5}} = (1 - G_{1})^{\eta_{1H}}(1 - G_{2})^{\eta_{2H}}(1 - G_{3})^{\eta_{3}}(1 - G_{4})^{\eta_{4}}(1 - G_{5})^{\eta_{5}}(1 - G_{6})^{\eta_{1L}}$$
$$(1 - G_{7})^{\eta_{2L}}G_{1}G_{2}G_{3}G_{4}G_{5}G_{6}G_{7}$$
$$= \gamma_{1}^{\eta_{1H}}\gamma_{2}^{\eta_{2H}}\gamma_{3}^{\eta_{3}}\gamma_{4}^{\eta_{4}}\gamma_{5}^{\eta_{5}}\gamma_{6}^{\eta_{1L}}\gamma_{7}^{\eta_{2L}}(1 - \gamma_{1})(1 - \gamma_{2})(1 - \gamma_{3})$$
$$(1 - \gamma_{4})(1 - \gamma_{5})(1 - \gamma_{6})(1 - \gamma_{7})$$

And

$$\gamma_1 = \frac{\lambda_{1H} + \lambda_{2H} \alpha_{21}}{\mu_{1H} (1 - \alpha_{12} \alpha_{21})} \tag{23}$$

$$\gamma_2 = \frac{\lambda_{2H} + \lambda_{1H} \alpha_{12}}{\mu_{2H} (1 - \alpha_{12} \alpha_{21})} \tag{24}$$

$$\gamma_{3} = \frac{\alpha_{13} \left[(\lambda_{1H} + \lambda_{2H} \alpha_{21}) + (\lambda_{1L} + \lambda_{2L} \alpha_{21}) \right] + \alpha_{23} \left[(\lambda_{2H} + \lambda_{1H} \alpha_{12}) + (\lambda_{2L} + \lambda_{1L} \alpha_{12}) \right]}{\mu_{3} \left(1 - \alpha_{12} \alpha_{21} \right)}$$
(25)

$$\gamma_4 = (\alpha_{34} + \alpha_{35}\alpha_{54}) \left[\frac{\alpha_{13} \left[(\lambda_{1H} + \lambda_{2H}\alpha_{21}) + (\lambda_{1L} + \lambda_{2L}\alpha_{21}) \right] + \alpha_{23} \left[(\lambda_{2H} + \lambda_{1H}\alpha_{12}) + (\lambda_{2L} + \lambda_{1L}\alpha_{12}) \right]}{\mu_4 (1 - \alpha_{12}\alpha_{21}) (1 - \alpha_{45}\alpha_{54})} \right]$$
(26)

$$\gamma_5 = \alpha_{35} \left[\frac{\alpha_{13} \left[(\lambda_{1H} + \lambda_{2H} \alpha_{21}) + (\lambda_{1L} + \lambda_{2L} \alpha_{21}) \right] + \alpha_{23} \left[(\lambda_{2H} + \lambda_{1H} \alpha_{12}) + (\lambda_{2L} + \lambda_{1L} \alpha_{12}) \right]}{\mu_5 (1 - \alpha_{12} \alpha_{21}) (1 - \alpha_{45} \alpha_{54})} \right]$$
(27)

$$\gamma_{6} = \frac{\mu_{2L}(\lambda_{2H} + \lambda_{1H}\alpha_{12}) + \mu_{2H}(\lambda_{2L} + \lambda_{1L}\alpha_{12})}{\mu_{2L}\mu_{2H}(1 - \alpha_{12}\alpha_{21})}$$
(28)
$$\gamma_{7} = \frac{\mu_{1L}(\lambda_{1H} + \lambda_{2H}\alpha_{21}) + \mu_{1H}(\lambda_{1L} + \lambda_{2L}\alpha_{21})}{\mu_{1L}\mu_{1H}(1 - \alpha_{12}\alpha_{21})}$$
(29)

The solution of the model exists if $\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_7 \leq 1$

4. Queuing Model Characteristics

a) Expected Queue Length of the entire system

$$\begin{split} L &= L_{q1L} + L_{q1H} + L_{q2L} + L_{q2H} + L_{q3} + L_{q4} + L_{q5} \\ Where \quad L_{q1L} &= \frac{\gamma_7}{(1 - \gamma_7)}, L_{q1H} = \frac{\gamma_1}{(1 - \gamma_1)}, L_{q2L} = \frac{\gamma_6}{(1 - \gamma_6)}, L_{q2H} = \frac{\gamma_2}{(1 - \gamma_2)}, \\ L_{q3} &= \frac{\gamma_3}{(1 - \gamma_3)}, L_{q4} = \frac{\gamma_4}{(1 - \gamma_4)}, L_{q5} = \frac{\gamma_5}{(1 - \gamma_5)} \end{split}$$

b) Variance in queue length

$$\begin{aligned} Var = V_{n1L} + V_{n1H} + V_{n2L} + V_{n2H} + V_3 + V_4 + V_5 \\ Where \quad V_{n1L} = \frac{\gamma_7}{(1 - \gamma_7)^2}, V_{n1H} = \frac{\gamma_1}{(1 - \gamma_1)^2}, V_{n2L} = \frac{\gamma_6}{(1 - \gamma_6)^2}, V_{n2H} = \frac{\gamma_2}{(1 - \gamma_2)^2}, \\ V_3 = \frac{\gamma_3}{(1 - \gamma_3)^2}, V_4 = \frac{\gamma_4}{(1 - \gamma_4)^2}, V_5 = \frac{\gamma_5}{(1 - \gamma_5)^2} \end{aligned}$$

c) Expected time spent by the customer in the system

$$\mathbf{E} = \frac{L}{\lambda} , \quad \lambda = \lambda_{1L} + \lambda_{1H} + \lambda_{2L} + \lambda_{2H}$$

5. Behavior Analysis

Table 1. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. the different Arrival rates of High Priority Customers at S11

	$\begin{split} \lambda_{1H} &= 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \\ \mu_5 &= 46, \alpha_{12} = 4, \alpha_{21} = .7, \alpha_{13} = .6, \alpha_{23} = .3, \alpha_{35} = .5, \alpha_{34} = .5, \alpha_{45} = .6, \alpha_4 = .4, \alpha_{54} = .8, \\ \alpha_5 &= .2, \Pi 1L = 2, \Pi 1H = 4, \Pi 2L = 3, \Pi 2H = 6, \Pi 3 = 15, \Pi 4 = 8, \Pi 5 = 7 \end{split}$												
λ_{1H}	γ1	γ_2	γ ₃	γ4	γ_5	γ ₆	γ ₇	Var	L	E(W)			
4	.2847	.3518	.5000	.5979	.3971	.7685	.7180	31.5937	9.9548	.5239			
5	.3194	.3703	.5263	.6293	.4180	.7870	.7527	39.4799	11.3263	.5663			
6	.3541	.3888	.5526	.6608	.4389	.8055	.7875	50.5629	13.0001	.6190			
7	.3888	.4074	.5789	.6923	.4598	.8240	.8222	67.0482	15.1118	.6869			
8	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
9	.4583	.4444	.6315	.7552	.5016	.8611	.8916	143.3373	21.8894	.9120			
10	.4930	.4629	.6578	.7867	.5225	.8796	.9263	1805.2205	28.4388	1.1375			
11	.5277	.4814	.6842	.8181	.5434	.8981	.9611	6532.9465	43.4937	1.6728			
12	.5625	.5000	.7105	.8496	.5643	.9166	.9958	587147.1066	2512.1923	93.0441			

	$\begin{split} \lambda_{1H} &= 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \\ \mu_5 &= 46, \alpha_{12} = 4, \alpha_{21} = 7, \alpha_{13} = 6, \alpha_{23} = 3, \alpha_{35} = 5, \alpha_{34} = 5, \alpha_{45} = 6, \alpha_4 = 4, \alpha_{54} = 8, \\ \alpha_5 &= 2, \eta_{1L} = 2, \eta_{1H} = 4, \eta_{2L} = 3, \eta_{2H} = 6, \eta_3 = 15, \eta_4 = 8, \eta_5 = 7 \end{split}$												
λ_{2H}	γ ₁	γ ₂	γ ₃	γ4	γ_5	γ ₆	γ ₇	Var	L	E(W)			
2	.3263	.2407	.5000	.5979	.3971	.6574	.7597	26.6998	9.0295	.4752			
3	.3506	.2870	.5263	.6293	.4180	.7037	.7840	34.4083	10.4769	.5238			
4	.3750	.3333	.5526	.6608	.4389	.7500	.8083	45.6367	12.2849	.5849			
5	.3993	.3796	.5789	.6923	.4598	.7962	.8326	63.2218	14.6388	.6654			
6	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
7	.4479	.4722	.6315	.7552	.5016	.8888	.8812	157.2032	22.9368	.9557			
8	.4729	.5185	.6578	.7867	.5225	.9351	.9055	3273.01943	32.7015	1.3080			
9	.4965	.5648	.6842	.8181	.5434	.9814	.9298	30801.4606	76.4542	2.9405			

 Table 2. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. the different Arrival rates of

 High Priority Customers at S12

Table 3. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. the different Arrival rates of Low Priority Customers at S₁₁

	$\lambda_{1H} = 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55,$												
										,			
	$\mu_5 = 46, \alpha_{12} = 4, \alpha_{21} = 7, \alpha_{13} = 6, \alpha_{23} = 3, \alpha_{35} = 5, \alpha_{34} = 5, \alpha_{45} = 6, \alpha_4 = 4, \alpha_{54} = 8,$												
	$\alpha_5 = 2, \eta 1L = 2, \eta 1H = 4, \eta 2L = 3, \eta 2H = 6, \eta 3 = 15, \eta 4 = 8, \eta 5 = 7$												
λ_{1L}	γ1	γ ₂	γ ₃	γ4	γ ₅	γ ₆	γ ₇	Var	L	E(W)			
2	.4236	.4259	.5263	.6293	.4180	.7592	.6902	31.0409	10.3871	.5193			
2.5	.4236	.4259	.5394	.6451	.4285	.7731	.7180	35.6318	11.1172	.5449			
3	.4236	.4259	.5526	.6608	.4389	.7870	.7458	41.3876	12.0747	.5749			
3.5	.4236	.4259	.5657	.6765	.4494	.8009	.7736	48.8526	13.1308	.6189			
4	.4236	.4259	.5789	.6923	.4598	.8148	.8013	58.8908	14.3904	.6541			
4.5	.4236	.4259	.5921	.7080	.4703	.8287	.8291	72.8890	15.9369	.7083			
5	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
5.5	.4236	.4259	.6184	.7395	.4918	.8564	.8847	128.4180	20.5506	.8744			
6	.4236	.4259	.6315	.7552	.5016	.8703	.9125	1274.3102	24.4275	1.0178			
6.5	.4236	.4259	.6447	.7709	.5121	.8842	.9402	2777.3064	31.0988	1.2693			
7	.4236	.4259	.6578	.7867	.5225	.8981	.9680	9794.9998	47.3504	1.8940			

 Table 4. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. the different Arrival rates of

 Low Priority Customers at S12

	$\lambda_{1H} = 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \mu_5 = 46, \alpha_{12} = 4, \alpha_{21} = .7, \alpha_{13} = .6, \alpha_{23} = .3, \alpha_{35} = .5, \alpha_{34} = .5, \alpha_{45} = .6, \alpha_4 = .4, \alpha_{54} = .8, \alpha_{14} = .2, \mu_{14} $													
121	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
2	.4236	.4259	.5526	.6608	.4389	.7037	.7791	34.7735	11.3474	.5403				
2.5	.4236	.4259	.5657	.6765	.4494	.7384	.7986	44.0324	12.4787	.5804				
3	.4236	.4259	.5789	.6923	.4598	.7731	.8180	54.4825	13.6578	.6208				
3.5	.4236	.4259	.5921	.7080	.4703	.8078	.8375	69.7293	15.6011	.6933				
4	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783				
4.5	.4236	.4259	.6184	.7395	.4912	.8773	.8763	135.7576	21.1486	.8999				
5	.4236	.4259	.6315	.7552	.5016	.9120	.8958	1289.2088	26.2643	1.0943				
5.5	.4236	.4259	.6447	.7709	.5121	.9467	.9152	4694.6249	36.3082	1.4819				
6	.4236	.4259	.6578	.7867	.5225	.9814	.9347	31117.9924	75.5684	3.0227				

	$\lambda_{1H} = 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \mu_5 = 46, \alpha_{12} = .4, \alpha_{21} = .7, \alpha_{13} = .6, \alpha_{23} = .3, \alpha_{35} = .5, \alpha_{34} = .5, \alpha_{45} = .6, \alpha_4 = .4, \alpha_{54} = .8,$												
	$\alpha_5 = 2, \eta 1L = 2, \eta 1H = 4, \eta 2L = 3, \eta 2H = 6, \eta 3 = 15, \eta 4 = 8, \eta 5 = 7$												
μ_{1H}	γ1	γ2	γ ₃	γ4	γ ₅	γ ₆	γ7	Var	L	E(W)			
30	.5648	.4259	.6052	.7237	.4807	.8425	.9981	2935641.785	5557.4718	241.6295			
35	.4841	.4259	.6052	.7237	.4807	.8425	.9174	1401.5033	23.2323	1.0101			
40	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
45	.3765	.4259	.6052	.7237	.4807	.8425	.8098	73.9674	16.0375	.6972			
50	.3388	.4259	.6052	.7237	.4807	.8425	.7722	66.2490	15.0775	.6555			
55	.3080	.4259	.6052	.7237	.4807	.8425	.7414	62.3087	14.4869	.6298			
60	.2824	.4259	.6052	.7237	.4807	.8425	.7157	59.9725	14.0855	.6124			
65	.2606	.4259	.6052	.7237	.4807	.8425	.6940	58.4578	13.7949	.5997			
70	.2420	.4259	.6052	.7237	.4807	.8425	.6753	57.4009	13.5735	.5901			

Table 5. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. different Service rate of High Priority Customers at Su

Table 6. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. different Service rate of High Priority Customers at S12

	$\begin{aligned} \lambda_{1H} &= 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \\ \mu_5 &= 46, \alpha_{12} = 4, \alpha_{21} = .7, \alpha_{13} = .6, \alpha_{23} = .3, \alpha_{35} = .5, \alpha_{34} = .5, \alpha_{45} = .6, \alpha_4 = .4, \alpha_{54} = .8, \\ \alpha_5 &= .2, \eta_{1L} = 2, \eta_{1H} = 4, \eta_{2L} = 3, \eta_{2H} = 6, \eta_3 = 15, \eta_4 = 8, \eta_5 = 7 \end{aligned}$												
μ_{2H}	γ1	γ ₂	γ ₃	γ4	γ ₅	γ ₆	γ ₇	Var	L	E(W)			
25	.4236	.5111	.6052	.7237	.4807	.9277	.8569	1844.6215	25.7012	1.1174			
30	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
35	.4236	.3650	.6052	.7237	.4807	.7817	.8569	75.7723	15.9638	.6940			
40	.4236	.3194	.6052	.7237	.4807	.7361	.8569	69.7104	15.0662	.6550			
45	.4236	.2839	.6052	.7237	.4807	.7006	.8569	66.8175	14.5438	.6323			
50	.4236	.2555	.6052	.7237	.4807	.6722	.8569	65.1646	14.2010	.6174			
55	.4236	.2323	.6052	.7237	.4807	.6489	.8569	64.1058	13.9579	.6068			
60	.4236	.2129	.6052	.7237	.4807	.6296	.8569	63.3806	13.7773	.5990			
65	.4236	.1965	.6052	.7237	.4807	.6132	.8569	62.8507	13.6368	.5929			

 Table 7. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. different Service rate of Low

 Priority Customers at S11

	$\lambda_{1H} = 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \mu_5 = 46, \alpha_{12} = .4, \alpha_{21} = .7, \alpha_{13} = .6, \alpha_{23} = .3, \alpha_{35} = .5, \alpha_{34} = .5, \alpha_{45} = .6, \alpha_4 = .4, \alpha_{54} = .8, \alpha_5 = .2, \eta_{1L} = 2, \eta_{1H} = 4, \eta_{2L} = 3, \eta_{2H} = 6, \eta_3 = 15, \eta_4 = 8, \eta_5 = 7$												
μ_{1L}	γ1	γ2	γ ₃	γ4	γ ₅	γ ₆	γ ₇	Var	L	E(W)			
20	.4236	.4259	.6052	.7237	.4807	.8425	.9652	8095.1749	39.7243	1.7271			
25	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
30	.4236	.4259	.6052	.7237	.4807	.8425	.7847	68.7897	15.5551	.6763			
35	.4236	.4259	.6052	.7237	.4807	.8425	.7331	62.1379	14.6565	.6372			
40	.4236	.4259	.6052	.7237	.4807	.8425	.6944	59.2842	14.1817	.6165			
45	.4236	.4259	.6052	.7237	.4807	.8425	.6643	57.7412	13.8882	.6038			
50	.4236	.4259	.6052	.7237	.4807	.8425	.6402	56.7890	13.6886	.5951			
55	.4236	.4259	.6052	.7237	.4807	.8425	.6205	56.1536	13.5442	.5888			
60	.4236	.4259	.6052	.7237	.4807	.8425	.6041	55.6991	13.4350	.5841			

	$\lambda_{1H} = 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \mu_5 = 46, \alpha_{12} = 4, \alpha_{21} = 7, \alpha_{13} = 6, \alpha_{23} = 3, \alpha_{35} = 5, \alpha_{34} = 5, \alpha_{45} = 6, \alpha_4 = 4, \alpha_{54} = 8, \alpha_5 = -2, \eta_{1L} = 2, \eta_{1H} = 4, \eta_{2L} = 3, \eta_{2H} = 6, \eta_3 = -15, \eta_4 = 8, \eta_5 = 7$												
μ_{2L}	γ1	γ2	γ ₃	γ4	γ ₅	γ ₆	γ ₇	Var	L	E(W)			
15	.4236	.4259	.6052	.7237	.4807	.9814	.8569	28924.4430	65.5971	2.8520			
20	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
25	.4236	.4259	.6052	.7237	.4807	.7592	.8569	72.8494	15.7026	.6827			
30	.4236	.4259	.6052	.7237	.4807	.7037	.8569	67.7611	14.9242	.6488			
35	.4236	.4259	.6052	.7237	.4807	.6640	.8569	65.6237	14.5252	.6315			
40	.4236	.4259	.6052	.7237	.4807	.6342	.8569	64.4806	14.2827	.6209			
45	.4236	.4259	.6052	.7237	.4807	.6111	.8569	63.7788	14.1202	.6139			
50	.4236	.4259	.6052	.7237	.4807	.5925	.8569	63.3086	14.0028	.6088			
55	.4236	.4259	.6052	.7237	.4807	.5774	.8569	62.9719	13.9151	.6050			

Table 8. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. different Service rate of Low Priority Customers at S12

Table 9. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w.r.t. different Service rate at S₃

 $\lambda_{1H} = 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55, \mu_5 = 46, \alpha_{12} = .4, \alpha_{21} = .7, \alpha_{13} = .6, \alpha_{23} = .3, \alpha_{35} = .5, \alpha_{34} = .5, \alpha_{45} = .6, \alpha_4 = .4, \alpha_{54} = .8, \alpha_5 = .2, \Pi L = 2, \Pi L = 4, \Pi L = 3, \Pi L = 3, \Pi L = 6, \Pi 3 = 15, \Pi 4 = 8, \Pi 5 = 7$

								**	-	
μ_3	γ1	γ_2	γ ₃	γ4	γ_5	γ ₆	γ ₇	Var	L	E(W)
30	.4236	.4259	.7666	.7237	.4807	.8425	.8569	104.0540	19.6536	.8545
34	.4236	.4259	.6764	.7237	.4807	.8425	.8569	96.4286	18.4586	.8025
38	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783
42	.4236	.4259	.5476	.7237	.4807	.8425	.8569	92.6385	17.5785	.7642
46	.4236	.4259	.5000	.7237	.4807	.8425	.8569	91.9621	17.3678	.7551
50	.4236	.4259	.4600	.7237	.4807	.8425	.8569	91.5396	17.2196	.7486
54	.4236	.4259	.4259	.7237	.4807	.8425	.8569	91.2546	17.1097	.7439
58	.4236	.4259	.3965	.7237	.4807	.8425	.8569	91.0510	17.0249	.7402
62	.4236	.4259	.3709	.7237	.4807	.8425	.8569	90.8996	16.9574	.7372

Table 10. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. different Service rate at S_{21} $\lambda_{1H} = 8, \lambda_{1I} = 5, \lambda_{2I} = 4, \lambda_{2H} = 6, \mu_{1I} = 25, \mu_{1H} = 40, \mu_{2I} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55,$

	$\lambda_{1H} = 8, \lambda_{1L} = 5, \lambda_{2L} = 4, \lambda_{2H} = 6, \mu_{1L} = 25, \mu_{1H} = 40, \mu_{2L} = 20, \mu_{2H} = 30, \mu_3 = 38, \mu_4 = 55,$										
	$\mu_{5} = 4$	46 , $\alpha_{12} = .$	4, $\alpha_{21} = .^{1}$	7, $\alpha_{13} = .6$	$6, \alpha_{23} = 3$	$\alpha_{35} = .5,$	$\alpha_{34} = .5, 0$	$\alpha_{45} = .6, \alpha_4 = .4$	$\alpha_{54} = .8,$		
	- 5							$, \eta 4 = 8, \eta 5 = 2$			
		•••5 ••=	,-1== =,		,-1== 0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-1- 0,-10	-		
μ_4	γ1	γ_2	γ ₃	γ_4	γ_5	γ ₆	γ_7	Var	L	E(W)	
45	.4236	.4259	.6052	.8846	.4807	.8425	.8569	150.8604	22.9530	.9979	
50	.4236	.4259	.6052	.7961	.4807	.8425	.8569	103.5323	19.1871	.8342	
55	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783	
60	.4236	.4259	.6052	.6634	.4807	.8425	.8569	90.2096	17.2523	.7501	
65	.4236	.4259	.6052	.6124	.4807	.8425	.8569	88.4264	16.8612	.7330	
70	.4236	.4259	.6052	.5686	.4807	.8425	.8569	87.4061	16.5992	.7217	
75	.4236	.4259	.6052	.5307	.4807	.8425	.8569	86.7603	16.4112	.7135	
80	.4236	.4259	.6052	.4975	.4807	.8425	.8569	86.3202	16.2711	.7074	
85	.4236	.4259	.6052	.4683	.4807	.8425	.8569	86.0063	16.1618	.7026	

λ_1								$\mu_{2H}=30$, $\mu_{3}=$					
	$\mu_{5} = 46$	$\alpha_{12} = .4$	$\alpha_{21} = .7$	$\alpha_{13} = .6$	$\alpha_{23} = .3$, α ₃₅ =. 5,	$\alpha_{34} = .5,$	$\alpha_{45} = .6, \alpha_4 = .$	4, $\alpha_{54} = .8$,			
	$\alpha_5 = 2, $												
μ_5	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7	Var	L	E(W)			
28	.4236	.4259	.6052	.7237	.7898	.8425	.8569	109.9727	20.7344	.9014			
34	.4236	.4259	.6052	.7237	.6504	.8425	.8569	97.3902	18.8362	.8189			
40	.4236	.4259	.6052	.7237	.5528	.8425	.8569	94.8288	18.2117	.7918			
46	.4236	.4259	.6052	.7237	.4807	.8425	.8569	93.8465	17.9011	.7783			
52	.4236	.4259	.6052	.7237	.4252	.8425	.8569	93.3512	17.7151	.7702			
58	.4236	.4259	.6052	.7237	.3812	.8425	.8569	93.0595	17.5914	.7648			
64	.4236	.4259	.6052	.7237	.3455	.8425	.8569	92.8701	17.5032	.7610			
70	.4236	.4259	.6052	.7237	.3159	.8425	.8569	92.7386	17.4371	.7581			
76	.4236	.4259	.6052	.7237	.2909	.8425	.8569	92.6422	17.3855	.7558			

Table 11. Utilization of Server, Variance of the queue, Mean Queue length, Average Waiting time for customer w. r. t. different Service rate at S22

6. Results

In the present study, two servers C₁ and C₂, are in series, and both comprise two biserial subsystems connected to a common server C₃. A detailed model description has been done with pictorial representation in section 3. In section 4, the mathematical modelling of the presented model is done, and derive governing equations which have been used to find out various queue characteristics. From Table1and Table 2, it is clear that while changing the arrival pattern of high-priority customers at subsystems C₁₁ & C₁₂ mean queue length and variance increase with high speed when $\lambda_{1H} = 9 \& \lambda_{2H} = 8$. Average time spent by the customer in the system increases higher than before when $\lambda_{1H} = 12$. Table 3 and 4 results in practical conclusion increased number of arrivals of customers at any server increase queue length and waiting time. Also, the arrivals of low-priority customers do not affect the utilization of servers by high-priority customers. Table5 shows the change in traffic intensity, variance and queue lengths with a change in service rate for high-priority customers at C₁₁ and from the results, it is clear that an increase in service rate for high-priority customers decreases traffic intensity $\gamma_1 \& \gamma_7$ at C₁₁ and traffic intensities $\gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6$ remains unaffected at other servers. Queue lengths, fluctuation in queues and time spent by a customer in the system decrease. Thus, practically and mathematically, it is true that while increasing service rates, the customers are served rapidly, and as a result, the length of queues and average Waiting time decreases. The same outcome is shown in Table 6-11.

7. Conclusion

The present study is the analytical study of priority bi-serial queues at both subsystems centrally connected to a common subsystem. The present model is developed to find various queue behaviors such as server utilization, queue lengths and variance, and we can check the numerical behavior of the model with variations in various input parameters. This analytical study has various daily life applications in networking systems, supermarkets, administrations, industries etc. The validity of the study can be checked by considering the particular case, if we take parallel service channels instead of biserial channels at exit level subsystem results given by Saini A. and Gupta Deepak [15] and if we remove priority on entry biserial subsystems, then the results coincide with Gupta Deepak [3]. Thus, this model is useful to increase customer satisfaction and optimum utilization of the server.

References

- Frederick F. Stephan, "Two Queues under Preemptive Priority with Poisson Arrival Band Service Rates," *Operations Research*, vol. 6, no. 3, pp. 399-418, 1958. [CrossRef] [Google Scholar] [Publisher Link]
- R. Sivasamy, "A Preemptive Priority Queue with a General Bulk Service Rule," *Bulletin of the Australian Mathematical Society*, vol. 33, no. 2, pp. 237-243, 1986. [CrossRef] [Google Scholar] [Publisher Link]
- [3] D. Gupta, "A Complex System of Queue Model Comprised of Two Subsystems Each Centrally Linked with a Common Channel," Ph.D. Thesis, C.C.S. University, Meerut, 2006.
- [4] T.P. Singh, Kusum, and D. Gupta, "On Network Queue Model Centrally Linked with a Common Feedback Channel," *Journal of Mathematics and System Sciences*, vol. 6, no. 2, pp. 18-31, 2010.
- [5] A. Tyagi, T.P. Singh, and M.S. Saroa, "Stochastic Analysis of Semi Bi-Tendem Feedback Queue Network Centrally Linked with Common Channel," *IJREAS*, vol.2, no. 11, 2012.

- [6] Seema Sharma, Deepak Gupta, and Sameer Sharma, "Analysis of Network of Biserial Queues Linked with a Common Server," *International Journal of Computing Science and Mathematics*, vol. 5, no. 3, pp. 293-324, 2014. [Google Scholar] [Publisher Link]
- [7] Sachin Kumar Agrawal, and B.K. Singh, "A Comprehensive Study of Various Queue Characteristics Using Tri-Cum Biserial Queuing Model," *International Journal of Scientific Research in Mathematical and Statistical Sciences*, vol. 5, no. 2, pp. 46-56, 2018. [CrossRef]
 [Google Scholar] [Publisher Link]
- [8] Sachin Kumar Agrawa, and B.K. Singh, "An Investigation of Tri-Cum Biserial Queuing Model Connected with Three Servers," *Journal of Emerging Technologies and Innovative Research (JETIR)*, vol. 5, no. 9, pp. 493-509, 2018. [CrossRef] [Google Scholar] [Publisher Link]
- [9] Harminder Singh, Dr. Deepak Gupta, and Raminder kaur, "Analysis of a Network Queue Model Comprised of Parallel Channels Centrally Linked with a Common Server," *Think India Journal*, vol. 22, no. 14, pp.10089-10109, 2019. [Google Scholar] [Publisher Link]
- [10] Renu Gupta, and Deepak Gupta, "A Steady-State Analysis of Network Queue Model with Batch Arrival Considering of Biserial and Parallel Queuing System Each Allied to Common Server," *International Journal of Advanced Science and Technology*, vol. 29, no. 4, pp. 6291-6299, 2020. [Publisher Link]
- [11] Vandana Saini, and Dr. Deepak Gupta, "Analysis of a Complex Feedback Queue Network," *Turkish Online Journal of Qualitative Inquiry* (*TOJQI*), vol. 12, no. 7, pp. 2377-2383, 2021. [Google Scholar] [Publisher Link]
- [12] K. Selvakumaria et al., "Analysis of Fuzzy Non-Preemptive Priority Queuing Model with Unequal Service Rate," *Turkish Journal of Computer and Mathematics Education*, vol. 12, no. 5, pp. 1457-1460, 2021. [CrossRef] [Google Scholar] [Publisher Link]
- [13] Alexander Dudinet al., "Analysis of Multi-Server Priority Queueing System with Hysteresis Strategy of Server Reservation and Retrials," *Mathematics*, vol. 10, no. 20, 2022. [CrossRef] [Google Scholar] [Publisher Link]
- [14] L. Seokjun et al., "Analysis of a Priority Queueing System with the Enhanced Fairness of Servers Scheduling," Journal of Ambient Intelligence and Humanized Computing, 2022. [CrossRef] [Google Scholar] [Publisher Link]
- [15] AartiSaini, Dr. DeepakGupta, and Dr. A.K. Tripathi, "Analysis of Priority Bi-Series Bulk Queue Network Model Linked with Common Server and Parallel Server," *Neuroquantology*, vol. 20, no. 6, pp. 1424-142, 2022. [CrossRef] [Google Scholar] [Publisher Link]
- [16] AartiSaini, Dr. DeepakGupta, and Dr. A.K. Tripathi, "Mathematical Analysis of Priority Bi-Serial Queue Network Model," *Mathematics and Statistics*, vol. 10, no. 5, pp. 981-987, 2022. [CrossRef] [Publisher Link]
- [17] Vandana Saini, and Deepak Gupta, "A Steady State Analysis of Tri-Cum Bi-Series Feedback Queue Model," *IEEE International Conference on Technology, Research, and Innovation for Betterment of Society*, pp. 1-6, 2021. [CrossRef] [Google Scholar] [Publisher Link]
- [18] M.Mittal, and R.Gupta, "Modelling of Biserial Bulk Queue Network Linked with Common Server," International Journal of Mathematics Trends and Technology, vol. 56, no. 6, pp. 430-436, 2018. [CrossRef] [Google Scholar] [Publisher Link]
- [19] V. Saini, D. Gupta, and A.K. Tripathi, "Analysis of a Feedback Bi-Tandem Queue Network in Fuzzy Environment," *International Journal of Mathematics Trends and Technology*, vol. 68, no. 5, pp. 68-77, 2022. [CrossRef] [Publisher Link]
- [20] Valentina Klimenok et al., "Priority Multi-Server Queueing System with Heterogeneous Customers," *Mathematics*, vol. 8, no. 9, pp. 1-16, 2020. [CrossRef] [Google Scholar] [Publisher Link]
- [21] Israel Cidon, and Moshe Sidi, "Recursive Computation of Steady- State Probabilities in Priority Queues," *Operation Research Letters*, vol. 9, pp. 249-256, 1990. [CrossRef] [Google Scholar] [Publisher Link]
- [22] J. Devaraj, and D. Jayalakshmi, "A Fuzzy Approach to Priority Queues," *International Journal of Fuzzy Mathematics and Systems*, vol. 2, no. 4, pp. 479-488, 2012. [Google Scholar] [Publisher Link]
- [23] Faouzi Kamoun, "Performance Analysis of Two Priority Queuing Systems in Tandem," *American Journal of Operations Research*, vol. 2, no. 4, pp. 509-518, 2012. [CrossRef] [Google Scholar] [Publisher Link]
- [24] M. Mittal, and R. Gupta, "Biserial Queuing Model with Probabilistic Batch Arrival Under Geometrical Distribution for Two Parameters," International Journal of Research and Analytical Reviews, vol. 5, no. 4, pp. 263-269, 2018. [Google Scholar]
- [25] M Thangaraj, and P Rajendran, "Analysis of Bulk Queueing System with Single Service and Single Vacation," *IOP Conference Series Materials Science and Engineering*, vol. 263, no. 4, 2017. [CrossRef] [Google Scholar] [Publisher Link]