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Abstract - This paper is on the study of continuous acceptance sampling plans established primarily for the acceptance or 

rejection of bulk finished products. Several methods can be used for quality control. Some methods are commonly used for 

destructive testing where 100% verification is not possible, such as in the production of cookies, marbles, batteries, light bulbs, 

etc. In this paper, we optimize the CASP-CUSUM scheme under the assumption that the continuous variable under 

consideration follows a truncated Half-Logistic Distribution. The Half-Logistic Distribution is a continuous distribution and it 

is extending well-known distributions as well as provides great flexibility to model specific real data and it is very easy in 

mathematical properties. We propose an optimization of the CASP-CUSUM scheme based on the numerical results obtained 

by varying the parameter values of the Half-Logistic Distribution. 

 

Keywords - CASP – CUSUM Schemes, Optimal Truncated Point, optimal lower and upper truncated Point, Truncated Half-

Logistic Distribution. 

 

1. Introduction 
Quality relates to one or more desirable characteristics that a product or service should possess. Quality has become one of 

the most important consumer decision factors in the selection of competing products and services. Quality improvement 

methods can be applied to any area within a company or organization, including the manufacturing process, development, 

engineering design, finance and accounting, marketing, distribution and logistics, customer service, and field service of 

products. In order to tackle the development of advanced technologies, the reliability of products has become a significant 

matter of concern. It factors with respect to failure avoidance rather than the probability of failure. Product failure occurs when 

the product is not able to perform its objective function and does not meet its requirements. Thus truncation of a product is the 

capability to fulfill intended tasks for a specified performance period. 

 

One of the most commonly used functions of inspection tools is the acceptance sampling plan. The acceptance sampling 

plan uses statistical principles to determine the "sample size" and criteria for accepting or rejecting a product. Industrial uses 

different kinds of technology and is mainly used in the manufacture of bullets, firecrackers, bulbs and batteries, etc., where 

100% inspection is not possible. Sampling provides a reasonable way to ensure that a product meets specified requirements. 

100% annual checking is also too expensive in terms of time and profit and cannot ensure 100% obedience. Instead of 

evaluating every item or product, a specific sample is taken and inspected or tested before making an acceptance or rejection 

for an entire lot of products.  

 

Acceptance sampling is a statistical measure used in quality control. It allows a company to determine the quality of a 

batch of products by selecting a specified number for testing. The quality of this designated sample will be viewed as the 

quality level for the entire group of products. It is a technique which deals with the acceptance or rejection of a lot or process 

based on the results obtained from a random sample or samples taken randomly from the lot. A point to remember is that the 

main purpose of acceptance sampling is to decide whether or not the lot is likely to be accepted, not to estimate the quality of 

the lot. "An individual sampling plan has much the effect of a lone sniper, while the sampling plan scheme can provide a 

fusillade in the battle for quality improvement", as noted by Ed Schilling. 
 

 Akhtar and Sarma1 studied Continuous acceptance sampling plans based on the truncated negative exponential distribution 

for Optimizing CASP-CUSUM schemes by solving the integral equation using the Gauss-Chebyshev integration method with 

the help of a computer program. Lastly, the obtained results were compared at different values of the parameters. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Dhanunjaya et al. / IJMTT, 69(4), 29-35, 2023 

 

30 

 

 Balakrishna3 introduced Half-Logistic distribution if a random variable having a half-logistic distribution is obtained by 

folding the logistic distribution. For this distribution, some recurrence relations are established for the moments and product 

moments of order statistics. Starting with the first k moments of X, it is noted that one can calculate the first k moments of all 

order statistics.  
 

 C. R. Dias4 presents some special models of the new class and investigates the shapes and derives explicit expressions for 

the ordinary and incomplete moments, quantile and generating functions and probability-weighted moments. 
 

 Dhanunjaya.S6 has studied the lifetime of the units by using the Truncated Lindley failure model and to optimize CASP – 

CUSUM Schemes through Truncated Lindley distribution by solving integral equations by the Method of Gauss – Chebyshev 

integration determines the probability of acceptance at various hypothetical values of the parameters. 

 

 El-Gohary7 proposed Generalized Gompertz distribution; it has an increasing or constant, or decreasing bathtub curve 

failure rate depending upon the shape parameter. This property makes GGD very useful in survival analysis. Some statistical 

properties such as moments, mode, and quantiles, Failure rate function are derived. 
 

 Venkatesulu.G13 considered life tests experiments are carried out to determine an optimal truncated point. Truncated 

distributions are employed in many practical situations where there is a constraint on the lower and upper limits of the variable 

under study.  
 

 

2. Half-Logistic Distribution 
Definition: If X belongs to Half-Logistic with parameter λ > 0 cumulative distribution function (c.d.f.) of HL distribution 

can be obtained as  

F(x; a, b, λ) = 
2λe−λx

(1+𝑒−λx)2
        (2.1) 

 

The Half-Logistic distribution is formed by using the absolute transformation of the logistic distribution, therefore, having 

much importance in statistics, physics, hydrology and logistic regression. The Probability models are frequently used for the 

prediction of lifetime products in various fields of applied sciences. These models are also used to explain the failure rate and 

survival rate of a certain product. Therefore, many generalizations are formed by adding additional shape parameters to 

increase the flexibility of these probabilistic models. 

 

2.1. Truncated Half-Logistic Distribution 

It is the ratio of the probability density function of the Half-Logistic distribution to their corresponding cumulative 

distribution function at point B. The random variable X is said to follow Truncated Half-Logistic distribution as 

  𝑓𝐵(𝑋)   =

2λe−λx

(1+𝑒−λx)2

 
1−𝑒−λB

1+𝑒−λB

          (2.2) 

Where a > 0, b > 0, λ > 0 are the shape parameters. 
 

3. Description of CASP- CUSUM  Schemes 
Beattie has suggested the method for constructing the continuous acceptance sampling plans. The scheme suggested by 

him consists of chosen decision interval, namely, the "Return interval" with the length h' above the decision line is taken. We 

plot on the chart the sum 𝑆𝑚 = ∑(𝑋𝑖 − 𝑘 )𝑋𝑖′𝑠(𝑖 = 1,2,3. . . . . . . . ) is distributed independently, and k is the reference value. If 

the sum lies in the area of the normal chart, the product is accepted, and if it lies on the return chart, then the product is 

rejected, subject to the following assumptions.  

1. When the recently plotted point on the chart touches the decision line, then the subsequent point is to be plotted at the 

highest, i.e., h+h.' 

2. When the decision line is reached or crossed from above, the next point on the chart is to be plotted from the baseline. 

When the CUSUM falls in the return chart, a network or a change of specification may be engaged rather than outright 

rejected. 

The procedure, in brief, is given underneath. 

A. Start plotting the CUSUM at 0. 

B. The product is accepted𝑆𝑚 = ∑(𝑋𝑖 − 𝑘) < ℎ; when Sm< 0, return cumulative to 0. 

C. When h <Sm< h+h', the product is rejected: when Sm crosses h, i.e., when Sm>h+h' and continues rejecting the product 

until Sm>h+h' returns cumulative to h+h.' 
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       The type-C OC function, which is defined as the probability of acceptance of an item as a function of incoming 

quality when the sampling rate is the same in acceptance and rejection regions. Then the probability of acceptance P 

(A) is given by   

                                𝑃(𝐴) =
𝐿(0)

𝐿(0)+𝐿′(0)
                                                       (3.1) 

Where L (0) = Average Run Length in acceptance zone and  

           L' (0) = Average Run Length in rejection zone. 

Page E.S.11 has introduced the formulae for L (0) and L' (0) as  

 

                                        

𝐿(0) =
𝑁(0)

1−𝑃(0)

                                                                     

 (3.2) 

 

                                         

𝐿′(0) =
𝑁′(0)

1−𝑃′(0)

                                                                 

 (3.3) 

 

Where P (0) =Probability for the test starting from zero on the normal chart, 

            N (0) = ASN for the test starting from zero on the normal chart, 

           P' (0) = probability for the test on the return chart and 

           N' (0) = ASN for the test on the return chart  

 

He further obtained integral equations for the quantities 

P (0), N (0), and P' (0), N' (0) as follows: 

𝑃(𝑧) = 𝐹(𝑘 − 𝑧) + ∫ 𝑃(𝑦)𝑓(𝑦 + 𝑘 − 𝑧)𝑑𝑦
ℎ

0 ,                                                                                      (3.4) 

𝑁(𝑧) = 1 + ∫ 𝑁(𝑦)𝑓(𝑦 + 𝑘 − 𝑧)𝑑𝑦
ℎ

0
,                                                                                (3.5) 

𝑃′(𝑧) = ∫ 𝑓(𝑦)𝑑𝑦 + ∫ 𝑃′(𝑦)𝑓(−𝑦 + 𝑘 + 𝑧)𝑑𝑦
ℎ

0

𝐵

𝑘1+𝑧                                                                     
    (3.6) 

𝑁′(𝑧) = 1 + ∫ 𝑁′(𝑦)
ℎ

0
𝑓(−𝑦 + 𝑘 + 𝑧)𝑑𝑦,                                                                           (3.7) 

𝐹(𝑥) = 1 + ∫ 𝑓(𝑥)𝑑𝑥:
ℎ

𝐴
 

𝐹(𝑘 − 𝑧) = 1 + ∫ 𝑓(𝑦)
𝑘1−𝑧

𝐴

𝑑𝑦 

 and z is the distance of the preliminary test in the normal chart from zero. 
 

4. Computation of ARL's AND P (A) 
       We expanded computer programs to solve the equations (3.4), (3.5), (3.6) & (3.7), and we got the following results given 

in Tables (4.1) to (4.30). 
 
Table 4.1 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k = 

1, h = 0.01, h'= 0.01 
B L(0) L’(0) P(A) 

0.5 1.9736 1.0303342 0.6570063 

0.4 2.0246 1.0379221 0.6610914 

0.3 2.1369 1.0509106 0.6703327 

0.2 2.5074 1.0780401 0.6993308 

0.1 17.5613 1.1689932 0.9375881 

 
Table 4.2 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k = 

1, h = 0.02, h'= 0.02 

B L(0) L’(0) P(A) 

0.6 2.0397 1.0520990 0.6597171 

0.5 2.1022 1.0625944 0.6642460 

0.4 2.2205 1.0788779 0.6730031 

0.3 2.5062 1.1073642 0.6935530 

0.2 3.8027 1.1694901 0.7647915 
 

Table 4.3  Values of ARL's AND TYPE-C OC CURVES when   λ = 1, k 

= 1, h = 0.03, h'= 0.03 

B L(0) L’(0) P(A) 

0.6 2.1431 1.0802691 0.6648598 

0.5 2.2477 1.0969690 0.6720266 

0.4 2.4559 1.1232454 0.6861715 

0.3 3.0214 1.1703144 0.7208005 

0.2 7.6781 1.2781163 0.8572921 
 

 

Table 4.4 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k = 

1, h = 0.04, h'= 0.04 

B L(0) L’(0) P(A) 

0.6 2.2568 1.1100100 0.6703123 

0.5 2.4137 1.1336727 0.6804223 

0.4 2.7444 1.1714677 0.7008370 

0.3 3.7901 1.2409474   0.7533438 

0.2 1991.9415 1.4092407   0.9992930 
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Table 4.5 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k = 

1, h = 0.05, h'= 0.05 

B L(0) L’(0) P(A) 

0.7 2.2600 1.1201972 0.6685966 

0.6 2.3827 1.1414566 0.6761091 

0.5 2.6049 1.1729493 0.6895215 

0.4 3.1059 1.2240682 0.7173049 

0.3 5.0610 1.3207558 0.7930434 
 

Table 4.6 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k = 

1, h = 0.01, h'= 0.01 

B L(0) L’(0) P(A) 

0.6 4.5035 1.0232244 0.8148596 

0.5 4.6071 1.0270911 0.8177032 

0.4 4.8065 1.0331422 0.8230814 

0.3 5.2884 1.0436623 0.8351781 

0.2 7.3116 1.0657955 0.8727778 
 

Table 4.7 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k = 

1, h = 0.02, h'= 0.02 

B L(0) L’(0) P(A) 

0.6 4.8554 1.0475421 0.8225390 

0.5 5.0988 1.0556760 0.8284696 

0.4 5.6039 1.0685331 0.8398592 

0.3 7.0703 1.0912676 0.8662918 

0.2 24.7612 1.1407456 0.9559590 

 

Table 4.8 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k = 

1, h = 0.03, h'= 0.03 

B L(0) L’(0) P(A) 

0.7 5.0239 1.0643786 0.8251749 

0.6 5.2597 1.0730314 0.8305591 

0.5 5.6948 1.0858793 0.8398565 

0.4 6.6860 1.1064055 0.8580143 

0.3 10.4855 1.1433663 0.9016787 
 

Table 4.9 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k = 

1, h = 0.04, h'= 0.04 

B L(0) L’(0) P(A) 

0.7 5.3679 1.0876999 0.8315108 

0.6 5.7292 1.0997773 0.8389552 

0.5 6.4322 1.1178406 0.8519422 

0.4 8.2379 1.1470257 0.8777796 

0.3 19.6740 1.2006149 0.9424844 
 

Table 4.10 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k 

= 1, h = 0.05, h'= 0.05 

B L(0) L’(0) P(A) 

0.7 5.7567 1.1120536 0.8381005 

0.6 6.2810 1.1278740 0.8477668 

0.5 7.3680 1.1517154 0.8648178 

0.4 10.6501 1.1906991 0.8994414 

0.3 128.9552 1.2638034 0.9902948 
 

Table 4.11 Values of ARL's AND TYPE-C OC CURVES when λ = 3, k 

= 1, h = 0.01, h'= 0.01 

B L(0) L’(0) P(A) 

0.6 12.4236 1.0240337 0.9238505 

0.5 13.0197 1.0271856 0.9268744 

0.4 14.2863 1.0323073 0.9326107 

0.3 18.0609 1.0414805 0.9454790 

0.2 70.1609 1.0611800 0.9851004 

 

Table 4.12 Values of ARL's AND TYPE-C OC CURVES when λ = 3, k 

= 1, h = 0.02, h'= 0.02 

B L(0) L’(0) P(A) 

0.7 14.1307 1.0449135 0.9311452 

0.6 15.0467 1.0492175 0.9348148 

0.5 16.8832 1.0558468 0.9411424 

0.4 21.7796 1.0667089 0.9533094 

0.3 57.2689 1.0864439 0.9813823 
 

Table 4.13 Values of ARL's AND TYPE-C OC CURVES when λ = 3, k 

= 1, h = 0.03, h'= 0.03 

B L(0) L’(0) P(A) 

0.8 15.8395 1.0643218 0.9370368 

0.7 16.9209 1.0688728 0.9405844 

0.6 18.9587 1.0756340 0.9463103 

0.5 23.7480 1.0861049 0.9562655 

0.4 44.2959 1.1034113 0.9756954 

 

Table 4.14 Values of ARL's AND TYPE-C OC CURVES when λ = 3, k 

= 1, h = 0.04, h'= 0.04 

B L(0) L’(0) P(A) 

0.9 17.7062 1.0832105 0.9423499 

0.8 18.8805 1.0875857 0.9455339 

0.7 20.9778 1.0939236 0.9504377 

0.6 25.4172 1.1033747 0.9583955 

0.5 39.3267 1.1180949 0.9723550 
 

Table 4.15 Values of ARL's AND TYPE-C OC CURVES when λ = 3, k 

= 1, h = 0.05, h'= 0.05 

B L(0) L’(0) P(A) 

0.9 21.1340 1.1061561 0.9502632 

0.8 23.2610 1.1118585 0.9543812 

0.7 27.4162 1.1201409 0.9607469 

0.6 38.1057 1.1325399 0.9711368 

0.5 108.9889 1.1519670 0.9895409 

 

Table 4.16 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 2, h = 0.01, h'= 0.01 

B L(0) L’(0) P(A) 

0.6 4.5279 1.0253789 0.8153561 

0.5 4.6571 1.0303342 0.8188416 

0.4 4.9075 1.0379221 0.8254240 

0.3 5.5289 1.0509106 0.8402826 

0.2 8.4861 1.0780401 0.8872837 
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Table 4.17  Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 2, h = 0.02, h'= 0.02 

B L(0) L’(0) P(A) 

0.6 4.9157 1.0520990 0.8237038 

0.5 5.2284 1.0625944 0.8310927 

0.4 5.8975 1.0788779 0.8453530 

0.3 8.0431 1.1073642 0.8789825 

0.2 1632.3413 1.1694901 0.9992841 
 

Table 4.18 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 2, h = 0.03, h'= 0.03 

B L(0) L’(0) P(A) 

0.7 5.0661 1.0687660 0.8257878 

0.6 5.3724 1.0802691 0.8325863 

0.5 5.9517 1.0969690 0.8443712 

0.4 7.3652 1.1232454 0.8676738 

0.3 14.5413 1.1703144 0.9255128 
 

Table 4.19 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 2, h = 0.04, h'= 0.04 

B L(0) L’(0) P(A) 

0.7 5.4382 1.0938698 0.8325388 

0.6 5.9183 1.1100100 0.8420653 

0.5 6.8969 1.1336727 0.8588309 

0.4 9.7661 1.1714677 0.8928955 

0.3 70.6144 1.2409474 0.9827300 
 

Table 4.20 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 2, h = 0.05, h'= 0.05 

B L(0) L’(0) P(A) 

0.8 5.4693 1.1049460 0.8319272 

0.7 5.8666 1.1201972 0.8396683 

0.6 6.5822 1.1414566 0.8522124 

0.5 8.1850 1.1729493 0.8746574 

0.4 14.4053 1.2240682 0.9216818 
 

Table 4.21 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k 

= 2, h = 0.01, h'= 0.01 

B L(0) L’(0) P(A) 

0.8 36.6673 1.0187007 0.9729687 

0.7 39.1720 1.0205847 0.9746076 

0.6 43.7962 1.0232244 0.9771701 

0.5 54.4532 1.0270911 0.9814873 

0.4 98.3399 1.0331422 0.9896034 
 

Table 4.22 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k 

= 2, h = 0.02, h'= 0.02 

B L(0) L’(0) P(A) 

0.9 47.4780 1.0352302 0.9786609 

0.8 53.4272 1.0381074 0.9809400 

0.7 65.4605 1.0420263 0.9843311 

0.6 100.3337 1.0475421 0.9896674 

0.5 844.7839 1.0556760 0.9987519 
 

 

 

 

 

Table 4.23 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k 

= 2, h = 0.03, h'= 0.03 

B L(0) L’(0) P(A) 

1.1 55.4392 1.0478579 0.9814495 

1.0 61.5715 1.0504247 0.9832259 

0.9 72.5755 1.0537832 0.9856880 

0.8 97.0487 1.0582601 0.9892132 

0.7 191.8455 1.0643786 0.9944825 
 

Table-4.24 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k 

= 2, h = 0.04, h'= 0.04 

B L(0) L’(0) P(A) 

1.2 71.4737 1.0620973 0.9853576 

1.1 81.8197 1.0648344 0.9871528 

1.0 101.4961 1.0683703 0.9895835 

0.9 151.3566 1.0730062 0.9929606 

0.8 492.3849 1.0792021 0.9978130 
 

Table 4.25 Values of ARL's AND TYPE-C OC CURVES when λ = 2, k 

= 2, h = 0.05, h'= 0.05 

B L(0) L’(0) P(A) 

1.4 86.0475 1.0738931 0.9876736 

1.3 96.7284 1.0760716 0.9889977 

1.2 115.2862 1.0788326 0.9907289 

1.1 154.1920 1.0823637 0.9930294 

1.0 281.2453 1.0869329 0.9961501 
 

Table 4.26 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 3, h = 0.01, h'= 0.01 

B L(0) L’(0) P(A) 

0.7 11.9447 1.0219035 0.9211897 

0.6 12.4491 1.0253789 0.9239022 

0.5 13.3739 1.0303342 0.9284701 

0.4 15.4587 1.0379221 0.9370825 

0.3 23.1243 1.0509106 0.9565294 
 

Table 4.27  Values of ARL's AND TYPE-C OC CURVES when  λ = 1, k 

= 3, h = 0.02, h'= 0.02 

B L(0) L’(0) P(A) 

0.8 12.9699 1.0394588 0.9258025 

0.7 13.7600 1.0448024 0.9294280 

0.6 15.1656 1.0520990 0.9351265 

0.5 18.2072 1.0625944 0.9448571 

0.4 28.5993 1.0788779 0.9636474 
 

Table 4.28 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 3, h = 0.03, h'= 0.03 

B L(0) L’(0) P(A) 

0.8 14.6375 1.0603966 0.9324498 

0.7 16.2028 1.0687660 0.9381201 

0.6 19.3479 1.0802691 0.9471187 

0.5 28.3280 1.0969690 0.9627198 

0.4 176.1987 1.1232454 0.9936655 
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Table 4.29 Values of ARL's AND TYPE-C OC CURVES when  λ = 1, k 

= 3, h = 0.04, h'= 0.04 

B L(0) L’(0) P(A) 

0.9 15.2283 1.0734247 0.9341527 

0.8 16.7803 1.0822072 0.9394147 

0.7 19.6668 1.0938698 0.9473106 

0.6 26.6208 1.1100100 0.9599719 

0.5 62.8863 1.1336727 0.9822919 
 

Table 4.30 Values of ARL's AND TYPE-C OC CURVES when λ = 1, k 

= 3, h = 0.05, h'= 0.05 

B L(0) L’(0) P(A) 

1.0 15.6382 1.0846835 0.9351377 

0.9 17.0998 1.0935217 0.9398943 

0.8 19.6352 1.1049460 0.9467244 

0.7 24.9614 1.1201972 0.9570502 

0.6 42.4169 1.1414566 0.9737948 

  

5. Numerical Results And Conclusion 
At the hypothetical values of the parameters λ, k, h and h' are given at the top of each Table, we determine optimum 

truncated point B at which P (A) the probability of accepting an item is greatest and also obtained ARL's values which 

represent the acceptance zone L(0) and rejection zone L'(0) values. The values of truncated point B of random variable X, L(0), 

L'(0) and the values for Type-C OC Curve, i.e. P (A), are given in columns I, II, III, and IV, respectively. 

 
Table 5.1 Consolidated Table from the Tables (4.1) to (4.30) 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
From the above Tables 4.1 to 4.30, we made the subsequent conclusions. 

1 From Table 4.1 to 4.30, it is observed that the values of P (A) are increased as the value of the truncated point decreases; 

thus, the truncated point of the random variable and the various parameters for CASP-CUSUM are correlated. 

2 From Table 4.1 to 4.30, we observe that it is possible to maximize the truncated point B by increasing the value of k. 

3 From Table 4.1 to 4.30, it is observed that at the maximum level of probability of acceptance. 

B λ k h h' P(A) 

0.1 1 1 0.01 0.01 0.9375881 

0.2 1 1 0.02 0.02 0.7647915 

0.2 1 1 0.03 0.03 0.8572921 

0.2 1 1 0.04 0.04 0.9992930 

0.3 1 1 0.05 0.05 0.7930434 

0.2 2 1 0.01 0.01 0.8727778 

0.2 2 1 0.02 0.02 0.9559590 

0.3 2 1 0.03 0.03 0.9016787 

0.3 2 1 0.04 0.04 0.9424844 

0.3 2 1 0.05 0.05 0.9902948 

0.2 3 1 0.01 0.01 0.9851004 

0.3 3 1 0.02 0.02 0.9813823 

0.4 3 1 0.03 0.03 0.9756954 

0.5 3 1 0.04 0.04 0.9723550 

0.5 3 1 0.05 0.05 0.9895409 

0.2 1 2 0.01 0.01 0.8872837 

0.2 1 2 0.02 0.02 0.9992841 

0.3 1 2 0.03 0.03 0.9255128 

0.3 1 2 0.04 0.04 0.9827300 

0.4 1 2 0.05 0.05 0.9216818 

0.4 2 2 0.01 0.01 0.9896034 

0.5 2 2 0.02 0.02 0.9987519 

0.7 2 2 0.03 0.03 0.9944825 

0.8 2 2 0.04 0.04 0.9978130 

1.0 2 2 0.05 0.05 0.9961501 

0.3 1 3 0.01 0.01 0.9565294 

0.4 1 3 0.02 0.02 0.9636474 

0.4 1 3 0.03 0.03 0.9936655 

0.5 1 3 0.04 0.04 0.9822919 

0.6 1 3 0.05 0.05 0.9737948 
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P (A) the truncated point 'B' from 5.0 to 0.2 as the value of h changes from 0.01 to 0.05. 

4. From Table 4.1 to 4.30, it can be observed that the value of L(0) and P(A) is increased as the value of the Truncated point 

decreases; thus, the Truncated point of the random variable and the various parameters for CASP-CUSUM are related. 

5. From Table 4.1 to 4.30, it was observed that the truncated point 'B' changes from 5.0 to 0.2, and P (A) are asℎ → 0.04 

maximum, i.e. 0.9992930. Thus truncated point B and k are inversely related, and hand P(A) are positively related. 

6. From Table 4.1 to 4.30, it is observed that the optimal truncated point changes from 0.1 to 0.2 asℎ → 0.04 

7. From Table 4.1 to 4.30, it is observed that the values of Maximum Probabilities increased as the increased values of 'λ' at 

constant values of the constraint. 

8. The various relations exhibited among the ARL's and Type-C OC Curves with the parameters of the CASP-CUSUM based 

on the above Table 4.1 to 4.30 are observed in the next Table.   
 

By observing Table- 5.1, we can conclude that the optimum CASP-CUSUM Schemes, which have the values of ARL 

and P(A), reach their maximum, i.e., 0.04, 0.9992930 correspondingly, is 

 

[
 
 
 
 
𝐵 = 0.2
𝜆 = 1
𝑘 = 1
ℎ = 0.04
ℎ′ = 0.04]
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