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Abstract
In this paper, we consider a mathematical model for a prey-predator system with
a simplified Holling type-IV functional response. Sufficient conditions are derived
for the stability of the system around equilibrium points. By numerical simulation,
it shows that the system exhibits rich dynamics under different sets of conditions
and by taking the different parameter values of α.
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1 Introduction
In the study of population dynamics, a functional response is the center of attention
in many prey-predator mathematical models. Already, many authors proposed prey-
predator models with different types of functional responses and studied global stability,
limit cycle, Hopf bifurcation and chaotic behavior of their systems see [2, 3, 4, 5, 6, 7, 8,
9, 10, 12, 14, 15, 16, 17, 19, 22, 23, 24, 25]. Holling [11] describes predator-prey model
with Holling type-I functional response. Tripathi et al. [21] discussed the dynamics of
prey-predator model with Beddington–DeAngelis type function response. Huang and
Xiao [13] examined the prey-predator model with Holling type-IV function of the form

R(x) =
mx

a+ bx+ x2
. (R1)

Already, the functional response (R1) is proposed by Andrews in [1]. Sokol and Howell
proposed the experiment by consideration of simplified Holling type-IV function of the
form

R(x) =
mx

a+ x2
, (R2)
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2 Ashok Munde

Table 1: Definition of parameters in the model.

Parameter Definition

r The maximum growth rate of the prey species.
α The coefficient of intra-specific competition in

the prey species
a1 The maximum predation rate of the predator

species.
a2 The interaction rate of the predator species.
k The half-saturation constant.
d The death rate of the predator species.

and found best kinetics parameters by non-linear least squares techniques see [20]. Ruan
and Xiao [18] investigated the predator-prey model with simplified Holling type-IV
functional response (R2). They studied the the saddle-node bifurcation, the supercritical
and subcritical Hopf bifurcation, and the homoclinic bifurcation of the system.

In this paper, we consider the model equations of a prey-predator system with
Holling type-IV functional response as follows:

dN1

dt
=

(
r − αN1 −

a1N2

k +N2
1

)
N1

dN2

dt
=

(
a2N1

k +N2
1

− d

)
N2

(1)

where Ni, i = 1, 2 represent the population densities of prey and predator respectively
and r, α, ai(i = 1, 2), k and d are assumed to be nonnegative constants defined in Table
1.

The main purpose of this paper is to study the dynamical behaviour of prey-predator
system with simplified Holling type-IV functional response. In Section 2, we identified
all possible equilibrium points of the model and discussed stability of the system under
sufficient conditions. In Section 3, numerical simulations are performed and shows that
the system exhibits rich dynamics under different sets of conditions and by taking the
different parameter values of α. Section 4 is the concluding section where results are
discussed.

2 Equilibria and their stability
In this section, the existence of the equilibrium points of system (1) and their stability of
each one are investigated. The system (1) always has trivial equilibrium point E0(0, 0)
and axial equilibrium point E1(

r
α
, 0). The co-existence equilibrium point of the system
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(1) is the intersection of the nullclines f1(N1, N2) = 0 and f2(N1, N2) = 0, where

f1(N1, N2) = r − αN1 −
a1N2

k +N2
1

(2)

f2(N1, N2) =
a2N1

k +N2
1

− d. (3)

From (3), we have

N1 =
a2 ±

√
a22 − 4kd2

2d
. (4)

From (2) and (4), it is easy to see that if a22 − 4kd2 < 0, the system (1) does not have
co-existing interior equilibrium point and if a22−4kd2 = 0, the system (1) has an interior
equilibrium point E2(N̂1, N̂2), where

N̂1 =
a2
2d

, N̂2 =
(r − αN̂1)(k + N̂1

2
)

a1

exist if r
α
> N̂1 and if a22 − 4kd2 > 0, the system (1) has two interior equilibrium points

i.e. E3(N1, N2), where

N1 =
a2 −

√
a22 − 4kd2

2d
, N2 =

(r − αN1)(k +N1
2
)

a1

exist if r
α
> N1 and E4(N

∗
1 , N

∗
2 ), where

N∗
1 =

a2 +
√

a22 − 4kd2

2d
, N∗

2 =
(r − αN∗

1 )(k +N∗
1
2)

a1

exists if r
α
> N∗

1 .

For sake of simplicity, we denote Ñ3 =
2a2−

√
a22−4kd2

2d
and Ñ4 =

2a2+
√

a22−4kd2

2d
.

The dynamical behavior of the system (1) at the equilibrium points can be studied by
computing of the variational matrix J of the form

J =

[
r − 2αN1 − a1(k−N2

1 )N2

(k+N2
1 )

2 − a1N1

k+N2
1

a2(k−N2
1 )N2

(k+N2
1 )

2
a2N1

k+N2
1
− d

]
(5)

Theorem 1. The following statements hold for the system (1):

(i) The trivial equilibrium point E0 is always a saddle point.

(ii) The axial equilibrium point E1 is a stable node if d > a2rα
kα2+r2

and a saddle point
if d < a2rα

kα2+r2
.
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4 Ashok Munde

Proof. (i) From some calculation, eigenvalues of the variational matrix (5) about the
equilibrium point E0 is λ1 = −d and λ2 = r. Hence, the equilibrium point E0 is
always a saddle point.

(ii) The variational matrix (5) about the equilibrium point E1 is given by

J(E1) =

[
−r − a1rα

kα2+r2

0 a2rα
kα2+r2

− d

]
(6)

The eigenvalues of the variational matrix (6) are λ1 = −r and λ2 = a2rα
kα2+r2

− d.
Hence, the equilibrium point E1 is a stable node if d > a2rα

kα2+r2
and E1 becomes a

saddle point for d < a2rα
kα2+r2

.

We have used the results proved in [18] to explore the dynamical behavior of the
system (1) about the interior equilibrium points and stated in the following theorems.

Theorem 2. The following statements hold for the system (1):

(i) If 4kd2 < a22 ≤ 16
3
kd2 and r

N∗
1
< α < r

N1
, then system (1) has three equilib-

ria: two saddle points E0(0, 0) and E1(
r
α
, 0) and a globally asymptotically stable

equilibrium E3(N1, N2) in the interior of the first quadrant.

(ii) If 4kd2 < a22 ≤ 16
3
kd2 and r

Ñ3
≤ α < r

N∗
1
, then system (1) has four equilibria:

two saddle points E0(0, 0) and E4(N
∗
1 , N

∗
2 ), a stable node E1(

r
α
, 0) and a stable

equilibrium point E3(N1, N2), and system (1) has no closed orbit.

(iii) If 4kd2 < a22 ≤ 16
3
kd2 and rd

a2
< α < r

Ñ3
then system (1) has four equilibria: two

saddle points E0(0, 0) and E4(N
∗
1 , N

∗
2 ), a stable equilibrium point E1(

r
α
, 0) and

a unstable equilibrium point E3(N1, N2), and system (1) has unique limit cycle
exists in the interior of the first quadrant.

(iv) If 4kd2 < a22 ≤ 16
3
kd2 and r

Ñ4
≤ α ≤ rd

a2
(or α < r

Ñ4
) then system (1) has

four equilibria: three saddle points E0(0, 0), E3(N1, N2) and E4(N
∗
1 , N

∗
2 ) and

E1(
r
α
, 0) a stable equilibrium and system (1) has no limit cycle exists (or has no

closed orbit).

Theorem 3. The following statements hold for the system (1):

(i) If 16
3
kd2 < a22 and r

Ñ3
< α < r

N1
then system (1) has three equilibria: two saddle

points E0(0, 0) and E1(
r
α
, 0) and E3(N1, N2) is a stable focus.

(ii) If 16
3
kd2 < a22 and r

N∗
1
≤ α ≤ r

Ñ3
then system (1) has three equilibria: two saddle

points E0(0, 0) and E1(
r
α
, 0) and E3(N1, N2) is a unstable focus and system (1)

has unique limit cycle which is stable.
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Stability of equilibria for parameter values r = 0.6, a1 = 1, a2 = 1.1,
k = 0.5, d = 0.7 and different values of α.

Different
values
of α

E0 E1 E2 E3 E4 Remark

0.75 Saddle Saddle - Stable -
E3 is globally asymptotically

stable.
0.50 Saddle Stable - Stable Saddle No closed orbit exists.

0.44 Saddle Stable - Unstable Saddle
A stable limit cycle around

E3.
0.35 Saddle Stable - Unstable Saddle

No limit cycle and closed orbit.
0.24 Saddle Stable - Unstable Saddle

Table 2: Dynamical Behaviour of the equilibria shown in Figure 1 to 4.

(iii) If 16
3
kd2 < a22 and rd

a2
< α < r

N∗
1

then system (1) has four equilibria: two
saddle points E0(0, 0),E4(N

∗
1 , N

∗
2 ) and stable equilibrium point E1(

r
α
, 0) and

E3(N1, N2) is unstable focus.

(iv) If 16
3
kd2 < a22 and r

Ñ4
≤ α ≤ rd

a2
(or α < r

Ñ4
) then system (1) has four equilibria:

two saddle points E0(0, 0),E4(N
∗
1 , N

∗
2 ) and stable equilibrium point E1(

r
α
, 0) and

E3(N1, N2) is unstable focus and system (1) has no limit cycle exists (or no closed
orbits).

In the next section, we have carried out numerical simulations to prove and verify
the statements shown in Theorem 2 and 3.

3 Numerical Simulations
We take two sets of parameter values, in the first set we fix r = 0.6, a1 = 1, a2 =
1.1, k = 0.5 and d = 0.7 for numerical simulations with initial condition N1(0) = 0.5
and N2(0) = 0.5 and different values of α. For α = 0.75, the interior equilibrium
point E3 is globally asymptotically stable is shown in the Figure-1. Figure-2 represents
the interior equilibrium point E3 is stable focus and system (1) has no closed orbit for
α = 0.50. If we take α = 0.44, then the interior equilibrium point E3 is unstable and
system (1) has unique limit cycle exists as shown in Figure-3. For α = 0.35 and 0.24,
the interior equilibrium point E3 is unstable and system (1) has no limit cycle and no
closed orbit exists as shown in Figure-4. From the above first set, we have proved the
statements in Theorem 2 numerically and the stability of equilibrium points is shown in
Table 2.
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Stability of equilibria for parameter values r = 0.6, a1 = 1, a2 = 1.1,
k = 0.5, d = 0.5 and different values of α.

Different
values
of α

E0 E1 E2 E3 E4 Remark

0.50 Saddle Saddle - Stable - No closed orbit exists.

0.44 Saddle saddle - Unstable -
A stable limit cycle around

E3.
0.30 Saddle Stable - Unstable Saddle -
0.24 Saddle Stable - Unstable Saddle

No limit cycle and closed orbit.
0.17 Saddle Stable - Unstable Saddle

Table 3: Dynamical Behaviour of the equilibria shown in Figure 5 to 8.
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Figure 1: (1a) time series and (1b) a phase portrait of system (1) for α = 0.75.

Now, we fix d = 0.5 in the second set and remaining parameter values are same as in
the first set with initial condition N1(0) = 0.5 and N2(0) = 0.5 and different values of α
for the numerical simulations. For α = 0.50, the interior equilibrium point E3 is stable
focus and system (1) has no closed orbit as shown in Figure-5. Figure-6 represents the
interior equilibrium point E3 is unstable and system (1) has unique limit cycle exists for
α = 0.44. If we take α = 0.30, then the interior equilibrium point E3 is unstable as
shown in Figure-7. For α = 0.24 and 0.17, the interior equilibrium point E3 is unstable
and system (1) has no limit cycle and no closed orbit exists as shown in Figure-8. Based
on the parameter values in the second set, we have verified the conditions in Theorem 3
and the stability of equilibrium points is shown in Table 3.

If we take k = 1.21, α = 0.5 and the rest of the parameter values are same as in
the second set, then we have a22 − 4kd2 = 0. Therefore, the system (1) exhibits three
equilibrium points: E0 is a saddle point, E1 and E2 are stable, and dynamical behaviour
of the system is shown in Figure-9.
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Figure 2: (2a) time series and (2b) a phase portrait of system (1) for α = 0.50.
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Figure 3: (3a) time series and (3b) a phase portrait of system (1) for α = 0.44.
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Figure 4: (4a) time series and (4b) a phase portrait for α = 0.35 and (4c) time series
and (4d) a phase portrait of system (1) for α = 0.24.
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Figure 5: (5a) time series and (5b) a phase portrait of system (1) for α = 0.50.
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Figure 6: (6a) time series and (6b) a phase portrait of system (1) for α = 0.44.
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Figure 7: (7a) time series and (7b) a phase portrait of system (1) for α = 0.30.
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Figure 8: (8a) time series and (8b) a phase portrait for α = 0.24 and (8c) time series
and (8d) a phase portrait of system (1) for α = 0.17.

4 Conclusion

In this paper, the dynamical behaviour of the prey-predator system have been stud-
ied. The interaction between prey and predator is assumed to be governed by simpli-
fied Holling type-IV functional response. By using the results of Ruan and Xiao [18],
we carried out the numerical simulations and exhibits the dynamical behaviour of the
system (1). We consider two sets of parameter values and shows that the dynamical
behaviour is rich and very sensitive for different values of α (see Figures 1 to 9).
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Figure 9: (9a) time series and (9b) a phase portrait of system (1) for r = 0.6, α =
0.5, a1 = 1, a2 = 1.1, k = 1.21 and d = 0.5.
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