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1. Introduction
This paper is dedicated to considering the viscous two-phase flow model in 3R , i.e,

div( ) 0,

div( ) 0,

(( ) ) div(( ) ) ( ) div ( , ) 0.

ut
m mut

m u m u u u u P mt

 
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           

(1)

Here, ( , ) (0, ]x t T ,  is a domain in 3 , , 0m  , ),,,( N21 uuuu  and ( , ) ( , 0, , 1)P m a bm a b        are the
unknown two-fluids densities, velocity and pressure, respectively. And  is the shear viscosity coefficient,  is the bulk
viscosity coefficient. ,  also satisfy the following physical relationship:

0,2 3 0.     (2)
We consider the model (1) under the following initial date:

0 0 0 0 0( ,0) ( ), ( ,0) ( ), ( ) ( ,0) ( ) ( ), ,x x m x m x m u x m u x x         (3)
and consider the (Navier-type) slip boundary condition

0,curlu n u n Au     , x , (4)
where ( )B B x is 3 3 symmetric positive matrix on  .

It is very important for hydrodynamics to select appropriate boundary conditions. For these equations, the first thought
idea will consider the non-slip (Dirichlet) boundary condition

0u  , x . (5)
This condition was proposed by G. Stokes in 1845. As early as 1823, Navier proposed another condition, impermeability

boundary condition, i.e,
0u n  , x . (6)

This article investigates the Navier-type boundary conditions introduced from reference [2] and the boundary conditions
derived from gas dynamics theory by Maxwell, which indicate that the tangential slip velocity is directly proportional to the
tangential stress, rather than zero, namely:

tan0, ( ( ) ) 0u n D u n u    , x , (7)
where ( ) ( ( ) ) / 2trD u u u    is the shear stress, the scalar friction function  measures the tendency to slip on the
boundary of the fluid, and tanv represents the tangent projection of the vector v .

Navier initially introduced the slip boundary condition (4) in 1823. Afterwards, this (Navier-type) slip boundary condition
has been used in many analysis of various fluid mechanics problems, applications and numerical studies. For details, refer to
[3 – 5] and its references.
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There are many researches about this model. For the large initial value, Vasseur et al [6] had the existence of global weak
solutions to the model (1) with the pressure ( , ) ( , 0, , 1)P m a bm a b        and the domination. Later, Novotný et al [7]
developed the domination condition to the condition where  and all can come into contact 9 5 , taking into account the
more normal pressure law that ( , ) ( , 0, , 1)P m a bm a b        were considered. Wen [8] studied the existence of global
weak solutions of three-dimensional compressible two-phase flow model without control conditions. For the global existence
of classical solutions, Li, Liu and Ye [9] first studied the viscous two-phase flow model in a general two-dimensional
bounded smooth domain with vacuum, and had the asymptotic behavior of the global classical solutions. In addition, Zhao
[10] obtained the long time of the viscous liquid-gas (drift-flux type) two-phase flow in 3D with Cauchy problem. For more
relevant studies, refer to references [11-20] please and the references in it.

The results obtained for the CNS (compressible Navier Stokes) equations with isentropic are quite rich. Ding, Wen, and
Zhu [21] obtained the global well-posedness of the classical solutions for the initial boundary value problem of CNS in one-
dimensional. Specifically, in the case of vacuum, Jiu, Li, and Ye [22] provided the existence of global classical solutions for
one-dimensional CNS with large initial values. For the strong solutions, Vaigant and Kazhikhov [23] first considered the
global existence for CNS in two-dimension. Later, Jiu, Wang, and Xin discussed the existence of global classical solutions
for the two-dimensional compressible Navier Stokes equation system in the periodic region

2T and the whole space
2

under conditions of large initial values and possible vacuum in references [24,25], respectively. In the case of the entire space
2 , space weighted energy estimation was introduced. Last for the non-isentropic Navier Stokes system, Huang and Li

obtained the existence of global classical solutions in three-dimension in [26], allowing for large oscillations in the initial
value and possible vacuum.

Notations: In the following, we give some necessary definitions which will be used later.
We first introduce notation and function spaces which will be employed throughout this paper.
For the integer of 0 r   and 0k  , we describe the marks we shall use in this paper. The specific symbol

definitions are as below:

 
,

2

, 1

1 6 ,2 , ,

( ), , { ( ) },

, , .
k r r r

r r k k r k
locD L L

k k k r r k r
L

L L u u D u L u

D u L u H W W L D

       


      





‖‖ ‖ ‖ ∣‖ ‖

∣‖ ‖

Next, we set

, ,    ( )1 .tf dx f dx dx f f u ff f
 




      (8)

We utilize vorticity  and effective viscous flux F are defined as the below form:
( 2 )div .,  ( )u F u P P      

Eventually, the initial total energy of equation (1) is expressed as
2

0 0 0 0 0 0
1 ( ) ( , ) ,
2

C m u G m dx 


   
  (9)

with

2 2

( , ) ( , ) ( , ) ( , )( , ) .
m

m

P s m P m P s P mG m ds m ds
s s





     
  (10)

Similar to the proof of the result in [1, Theorem 1.1], we will give the following existence of global classical solutions of
(1)-(4) in general smooth bounded domain in order to investigate the long-time behavior.
Proposition 1.1. Suppose a simply connected bounded domain 3  , its smooth boundary  has a finite number of 2-
dimensional connected components. The positive constants, M , ˆ ˆ,m , suppose that the 3 3 positive semi-definite
symmetric matrix B in (1.4) is enough smooth, and for some (3,6)q and (1/ 2,1]s , the initial value  0 0 0, ,m u satisfy

    2, 2
0 0 0 0 0, , , , : 0, curl  on ,qm P m W u f H f n f n Bf          

0 0 0ˆ ˆ0 , 0 , ,sH
m m u M     

and
  1/2

0 0 0 0 0 0( ) div , ( ) ,u u P m m g           

for some 2g L which called the compatibility condition. Then there exists a positive constant  depending only on
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, , , , ,a b    , ˆ ˆ, , , ,m s M  , and the matrix A such that the initial-boundary-value problem (1)-(4) has a unique classical
solution ( , , )m u in (0, )  satisfying

ˆ ˆ0 ( , ) 2 , 0 ( , ) 2 , ( , ) [0, ),x t m x t m x t      
and for any 0 T    ,

 
   
   

 

2,

2, 1

1 1 2

2

( , , ) [0, ]; ,

, ; [0, ]; ,

, ; 0, ; ,

, 0, ; ,

q

q

t loc

t t

m P C T W

u L T W C T H

u H T H L T H

u mu L L















 

  


 


 

(11)

provided 0C  .
We aim to prove that the long-time behavior of the global classical solution to viscous two-phase flow model. More

accurately, we can obtain the below main results.
Theorem 1.2. Satisfying the condition of Proposition 1.1, the below long-time behavior holds

1
22lim | | ( ) | | | | 0,q

t
P P m u u dx



 
      

 
 (12)

for any 2 4  and 2 q   .
Our second result is long-time behavior of the gradient pressure.

Theorem 1.3. Satisfying the assumption of Theorem 1.2, assumed that there are some points 1x  and satisfies

0 1( ) 0P x  . Then as t   in the sense, the global classical solution ( , , )m u to the problem (1)-(4) obtained in Theorem 1.2
has to blow up, i.e., for any 3 j   ,

lim ( , ) .jLt
P t


   ‖ ‖ (13)

2. Proofs of Theorems 1.2 and 1.3
By setting

 2
2 2

1 00
( ) sup ( ) |  | ,

T

L
t T

T u m u dxdtD   
 

     ‖ ‖ (14)

3 2 3 2
2 00
( ) sup ( ) | | | | ,

T

t T
D T m u dx u dxdt  

 
      (15)

3
3

0
( ) sup ( ) | | ,

t T
D T m u dx

 


where ( ) min{1, }t t  and we define u in (8).
The following Lemma is very useful to the second section which means the global existence of the classical solution of

(1)-(4).

Lemma 2.1. Satisfying the conditions of Proposition 1.1, for 0
2 1 10,

4 4
s
s

     
 , there exists a positive constant 

depending on  ,  , a , b ,  ,  , ̂ , m̂ , s ,  , M and the matrix B such that if ( , , )m u is a classical solution of (1)-
(4) on (0, ]T satisfying

0

1
3

1 2 0 3 0
[0, ] [0, ]

ˆ ˆsup 2 , sup 2 , ( ) ( ) 2 , ( ( )) 2 ,
T T

m m D T D T C D T C   
 

    

then the below estimates hold

0

1
3

1 2 0 3 0
[0, ] [0, ]

ˆ ˆ7 7sup , sup , ( ) ( ) , ( ( )) ,
4 4T T

mm D T D T C D T C  
 

     (16)

provided 0C  .
Proceeding as in the proof in [1, Lemma 2.3], we have the below lemma will be used throughout this paper. The proof of

this Lemma is too complicated to be given here.
Lemma 2.2. Assume ( , , )m u is the corresponding solution of (1)-(4) on (0, ]T . Then, pL

u‖ ‖ obeys the below
estimate:
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   2 2 2 2 2

(6 )/(2 )(3 6)/(2 )( ) .p

p pp p
L L L L L L

u C m u P P u C P P u
       ‖ ‖ ‖ ‖ ‖ ‖ +‖ ‖ ‖ ‖ ‖ ‖ (17)

where the positive constant C depending only on ,  and  .
Next, we introduce the below two lemmas which are in [27, Theorem 3.2] and in [28, Propositions 2.6-2.9].

Lemma 2.3. Let h be a non-zero positive integer, 1 g , assume that 3  is a simply connected region and satisfy
1,1hC  on the boundary  . Then for 1,h gf W  with 0f n  on  , there exists a constant ( , , )C C g h  such that

 1, , ,div curl .h g h g h gW W W
v C v v  ‖‖ ‖ ‖ ‖ ‖

Especially, for the case of 0k  , then

 div curl .g g gL L L
v C v v  ‖ ‖ ‖ ‖ ‖ ‖

Lemma 2.4. Let h be a non-zero positive integer, 1 g , assume a simply connected region 3  satisfies 1,1hC  on
the boundary  which only has a finite connected components in 2-dimension. For 1,h gv W  with 0f n  on  , then
there exists a constant ( , , )C C h g  such that

 1, , ,div curl .h g h g h ggW W W L
v C v v v   ‖‖ ‖ ‖ ‖ ‖ ‖‖

Especially, as for the case of  is a simply connected region, we have
 1, , ,div curl .h g h g h gW W W

v C v v  ‖‖ ‖ ‖ ‖ ‖

Next, we will introduce the following inequalities and provide some given facts that will be often applied later on.
We consider the following equation system

div , ,
0, .
f v x

f x
 

  
(18)

Lemma 2.5. [Theorem III.3.1] The operator  1 2 3, ,B B B B satisfying the following properties:
(1)

  1, 3
0: ( ) : 0 ( ( ))p pv L v W   B

is bounded linear, i.e., for any (1, )p  ,
1,
0 ( )( )

[ ] ( )p pLW
v C p v


‖ ‖ ‖‖B .

(2) The function [ ]f v B solve the problem (18).
(3) If v can be written in the form divv j for a certain ( )rj L  , 0j n


  , then

( ) ( )
[ ] ( ) ,r rL L
v C r j

 
‖ ‖ ‖‖B

for any (1, )r  .
In the following, we begin with the standard estimate for ( , , )m u .

Lemma 2.6. Let ( , , )m u be a smooth solution of (1)-(4) on (0, ]T . Then there is a positive constant C depending only
on ,  and  such that

  2
2 2

000
sup ( ) | | ( , ) .

T

L
t T

m u G m dx u dt CC 
 

     ‖ ‖ (19)

Proof. First of all, integrating 1,2(1) over (0, )T and by using of (4), we can have

0
1 1( , ) ( ) ,

| | | |
x t dx x dx   

  

0 (1 1( , ) .
| |

)
| |

m m x t dx m dxx 
  

Next, we can rewrite 3(1) as the following form:
( ) ( 2 ) div curl 0,m u u u P           (20)

Where we have used the fact that div curlu u u    .
Multiplying (20) by u and integrating the equality which take two successive operations over  , we can get
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 2 2 21 ( ) | | ( 2 ) (div ) |curl | ( )div ,
2 t

m u dx u dx u dx u B uds P P udx    


             (21)

due to the boundary condition (4).

Multiplying 1(1) by 2

( , ) ( , ) ( , ) ( , )( )P s m P m P m P mds
s





  


 
 , we can arrive at

2

( , ) ( , ) div ( ( , ) ( , )) 0.
t

P s m P m dsdx u P m P m dx
s





       
    (22)

Using the same method mentioned above, we can obtain

2

( , ) ( , ) div ( ( , ) ( , )) 0.
m

m
t

P s P mm dsdx u P m P m dx
s

        
    (23)

Combining (22) and (23) together yields that

 ( , ) ( )div 0,
t

G m dx P P udx     (24)

which together with the definition of B , (21) and (24) gives

  2
2 2

000
sup ( ) | | ( , ) .

T

L
t T

m u G m dx u dt CC 
 

     ‖ ‖ (25)

The proof is completed.
Lemma 2.7. Assume ( , , )m u is a classical solution of (1)-(4) on (0, ]T . Then we have

2 2

1
2 2 2

000
sup ,

T

L L
t T

P P P P dt CC
 

   ‖ ‖ ‖ ‖ (26)

where )( , , , , , ˆ ˆ, ,,C a mb     .
Proof. By 1,2(1) , one can obtain that

div( ) ( ( 1) ( 1) )div 0,tP Pu a b m u        
or

( )div 0,tP u P a b m u      
which together with Lemma 2.5 shows that

 
 

2 2 2 2

2 2 2 2

[ ] [ div div ] [ div div ] [div( )]

div div div div .

t t L L L L

L L L L

P P C a u a u bm u bm u Pu

C a u a u bm u bm u Pu C u

   

   

 

 

    

     

‖ ‖ ‖ ‖ ‖ ‖ ‖+

+

‖

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

B B B B

Multiplying the equality 3(1) by [ ]P PB and then integrating over  , one can show that

 

   2 2 4 2 2 2

2

2

( ) ( ) [ ]

( ) [ ] ( ) [ ] ( ) div ( )

: [ ] ( ) [ ]

( ) [ ] [ ] [ ]

( ) [

t tt

t t L L L L L Lt

P P dx P P P P dx

m u P P dx m u P P dx u P P dx

u P P dx m u P P udx

m u P P dx C P P u u P P u P P

m u P P

   

 





      

          

        

           

   

 
  
 



‖ ‖‖‖ ‖‖‖ ‖ ‖ ‖‖ ‖

B

B B

B B

B B B

B   
 

2 2 2 4 2

2 2

2 2 2

2 2

] [ ]

( ) [ ] .

t tL L L L Lt

L Lt

dx P P C P P u u u

m u P P dx P P C u



 

      

      

‖ ‖ ‖ ‖‖‖ ‖‖ ‖ ‖

‖ ‖ ‖ ‖

B

B

Choosing  small enough and using 1(1) and the inequality (19) several times, we can obtain
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2

2

2 2 2 2

2

0

2
0 0 0 0 0 0

1 1
2 2

0 0 0 0 0 0

1
2
0

( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ]

.

T

L

T

L

L L L L

P P dt

m u P P dx m u P P dx C u dt

C m u P P m u P P CC

CC

 

 



         

 
       

 




  

‖ ‖

‖ ‖

‖ ‖‖ ‖ ‖ ‖‖ ‖

B B

B B
(27)

Furthermore, due to 1,2(1) , we arrive at

     div (( 1) ( 1) )div= .
t

P P a b m u u P P a b m u                 (28)

Multiplying (28) with 2 ( )P P  , and integrating this result over  , we immediately get the below estimate

  2 ' 2 2( ) ( ) | | ,
t

P P dx C P P dx C u dx          
which along with (19) and (28) haves

2

1
2 2

0
0
sup .

L
t T

P P CC
 

 ‖ ‖

The proof is completed.

Proof of Theorem 1.2. To obtain the result (12), multiplying (28) by 2( )P P and integrating the result over  by parts
imply

 2 2 2
2 2 2div ,
L L Lt

P P C u C P P   ‖ ‖ ‖ ‖ ‖ ‖

Then combining with (19) and (26), it leads to

 2
2

1
,

L t
P P dt C


  ‖ ‖ (29)

making use of (29), we derive
lim 0,qLt

P P


 ‖ ‖ 2 ,q   (30)

which together with (19) gives

 2( 1) 2

11
1 2 122( ) | | ( ) | | .

L L
m u dx u m u dx C u

   
      ‖‖ ‖ ‖ (31)

Using the same arguments as (3.24) of Lemma 3.4 in [1], we can easily get

 
  2 2 2 3

2 2 2

1 2 2 4 3

( 2 ) (div ) | curl | ( ) | |

2 div ( ) .

k k k k

t

k k k k
L L L Lt

u u dx u B uds m u dx

u P P dx Ck P P C u C u C u

       

    



 

      

         

  





‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
(32)

Let 0k  in (32), integrating this in time from 1 to  and making use of (16), (17), (19) and (26), we derive the fact

2 2 3

2 2 2 3 2

2 2 4 3

1 1

2 4 3 3 3

1

| ( ) | ( )

( ( ) )

,

L L L

L L L L L

t dt C u u u dt

C u u u P P m u dt

C





 



      

         



 
 

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ (33)

which 2 2
2 2( ) ( 2 ) div curl
L L

t u u     ‖ ‖ ‖ ‖ . By (19), we obtain that

2 2
2 2

1 0
,

L L
u dt u dt C

 
    ‖ ‖ ‖ ‖

which together with (33) and Lemma 2.2-2.3 implies
2lim 0,
Lt

u


 ‖ ‖ (34)

therefore, the proof of (12) is proved.
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Proof of Theorem 1.3. If the result of the Theorem 1.2 is not true, then there is a constant 1 0C  and a subsequence

 
1jn j

t



, such that 1( , ) rjn L

P t C  ‖ ‖ , when
jn
t  . By Gagliardo-Nirenberg's inequality, for

 3 / 3 2( 3) (0,1)r r r     , there exists some positive constant C independent of
jn
t such that

2 2

2 2
1

( )

1
1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ,

rj j j j

j j

n n n nC L L L

n nL L

P x t P C P x t P x t P P x t P

CC P x t P P x t P

 

 






     

   

‖ ‖ ‖ ‖‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

which along with (12) yields

( )( , ) 0 .
j jn nCP x t P as t


  ‖ ‖ (35)

In addition, for all 0t  , there exists a unique particle path 0 ( )x t satisfying 0 0( )x t x such that

0( ( ), ) 0.P x t t 
Consequently, we can have

0 ( )0 | ( ( ), ) | ( , ) ,
j j jn n n CP P x t t P P x t P     ‖ ‖

which contradicts (35). Then we can get the result of (13), which completes the proof of Theorem 1.3.
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