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Abstract - Angle trisection is a classical problem of straightedge and compass construction from the ancient Greek 

mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an 

unmarked straightedge and a compass. There are three classical problems in the ancient Greek mathematics which were 

extremely influential in the development of geometry. These problems were those of squaring the circle, doubling the cube 

and trisecting an angle. This Thesis focuses on the problem of trisecting an arbitrary angle. It is possible to trisect certain 

angles, e.g. a right angle. It is difficult to give an accurate date as to when the problem of trisecting an angle first appeared. 

Result of this research paper is an exact solution for the thousand-year challenge “Trisecting the Angle” by a construction 

with only a straightedge and a compass by means of the secondary Geometry.  

 

Keywords - Angle trisection, Divide angle into 3 equally small angle, Divide angle with straightedge and compass, Divide 

angle by secondary geometry, Trisecting the angle.

 

1. Introduction  
Angle trisection is a classical problem of straightedge and compass construction from the ancient Greek mathematics. It 

concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked 

straightedge and a compass. 

 

There are three classical problems in the ancient Greek mathematics which were extremely influential in the 

development of geometry. These problems were those of squaring the circle, doubling the cube and trisecting an angle. This 

Thesis focuses on the problem of trisecting an arbitrary angle. It is possible to trisect certain angles, e.g. a right angle. It is 

difficult to give an accurate date as to when the problem of trisecting an angle first appeared. Result of this research paper is 

an exact solution for the thousand-year challenge “Trisecting the Angle” by a construction wit only a straightedge and a 

compass by means of the secondary Geometry.  

 

However we do know that Hippocrates, who made the first major contribution to the problems of squaring a circle and 

doubling a cube, also studied the problem of trisecting an angle. And also he did use a mark in the straightedge to make the 

ruler no longer an unmarked straightedge. 

 

Around 387 BC, Plato said: “In proceeding in [a mechanical] way, did not one lose irredeemably the best of 

geometry...”. Most historians of Mathematics believe that many of the results given in the Book of Lemmas are indeed due 

to Archimedes and the on spirals result given on trisecting an angle is so much in the spirit of the work. However this 

trisecting is not an exact method and does not use a straightedge. Nicomedes method used the conchoids curve, which is not 

always actually drawn and was more theoretical rather than practical. In practice the conchoid was not always actually drawn.  

Obviously, the ways of trisecting an angle by Hippocrates, Archimedes, or using the conchoid of Nicomedes (around 200 

BC) are correct but do not obey the "rules of the game" i.e. using a straightedge and a compass. Maybe they have thought of 

all the ways but can't do it, so they have to invent their own way to solve this problem. Later, there were many more attempts 

of successive generations of Mathematicians who failed to do so, therefore they devised many different ways, and thus 

Mathematics had a chance to develop. 

 

Pierre Wantzel proved in 1837 that the problem, as stated, is impossible to solve for arbitrary angles. In 1837, 

Wantzel published proofs in Liouville's Journal of “the means of ascertaining whether a geometric problem can be solved 

http://www.internationaljournalssrg.org/
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with ruler and compasses”, and he was the first to prove trisecting an angle could not be solved with a straightedge and a 

compass. 

 

This method uses a straightedge & a compass to construct and prove it is possible to trisect an arbitrary angle simply, 

without the use of any curve. Mathematics tools I used are some geometry theorems in secondary level. The results of my 

method will give a proof which is a counter-proof to Wantzel’s.  

 

At the  end of 2021, after 10 years, I discovered my own solution for trisecting any arbitrary angle. My research results 

for trisecting an angle also opens a simple route to construct a Morley Equilateral Triangle with only a straightedge and a 

compass. 

 
Figure of a Morley triangle ABC, where the lines at each angle of the triangle are the trisectors (named temporarily) of the angle 

 

2. Trisection Ruler for an Arbitrarily given Angle 
This part consists of some simple theoretical mathematics at the secondary geometry level. 

 

2.1. Theorem 1: Given an arbitrary angle  𝑀𝑃�̂� =    < 60,   r, then we can construct, with a compass & a straightedge, 

an angle 𝐴𝑃�̂� =  = 3 ,  < 180, where the two side lines of the unit angle  are placed in  and divide  into 3 equal 

angles . These side lines are optionally defined as “TRISECTORS” (plural) of the angle . 

 
Fig. 1 The two “trisectors” OM & ON  of the angle  𝐀𝐏�̂� =  = 3 ,  is the given angle  𝐌𝐎�̂�. 

A 

 

B 

 
C 
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Proof: Aim to prove it is possible to use a straightedge & a compass to construct the angle APB̂ =  < 180 from the given 

angle  < 60,   r, as follows: 

 

Let P be the vertex of the given angle APB̂ and PD is the bisector of . Choose point O in PD so that OP = r, r is an 

arbitrary length and r  r. Then draw a circle (O, r), which meets 2 sides of  at points M & N, where MPN̂ = . Use a 

compass to mark 2 points A & B on the circle where arcs MN⏜ = AM⏜  = NB⏜ . Because arc AB⏜  is measured equally to 3 times arc 

MN⏜, then the angle APB̂ = 3, say  = 3.  

 

Thus, we obtain the angle APB̂ =  = 3,  = 3 <180, as required. 

  
2.2. Theorem 2: For a given straight-line segment AB, AB = 2r,  r  r, then there only exists a unique regular upside-down 

semi-hexagon ABCD, where AC = CD = DB = r = AM = MB. 

 
Fig. 2 The unique semi-hexagon upside down for a given r 

 

Proof: Let M be the mid-point of a given straight line segment AB, AM = MB = r, r  r. Use a compass to draw a semi-circle 

(M, r) upside-down with diameter AB. Then with the compass, mark points C & D on the semi-circle, where the circle arcs 

AC⏜  = CD⏜  = DB⏜  have their arc chords AC = CD = DB = r, to get an inscribed semi-hexagon ABCD (regular) in the semi-circle. 

Because the given length r is unique, the semi-circle (M, r) is unique. Then the inscribed semi-hexagon ABCD in the semi-

circle is also unique for a given r. 

 

2.3. Definition 1: With an arbitrary length p, p  r, Given an angle  𝐴𝑂�̂� = ,   r and   <180 then the regular semi-

hexagon ABCD inscribed in the angle 𝐴𝑂�̂�, where AB = 2r & CD = r, r  r, are perpendicular to the bisector of the angle, 

described by the following Figure 3, is called the Trisection Ruler of the given angle  𝐴𝑂�̂� = ,   r and  < 180 .   

  
Fig. 3 Trisection Ruler ABCD of a given angle 𝐀𝐎�̂� = ,  < 180  
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Discussion: Use a compass to draw a circle (O, p), p is an arbitrary length and p  r, O is the vertex of the given angle AOB̂ = 

,   r. Then the circle cuts 2 sides of AOB̂ at A & B. Let M be the mid-point of AB and AM = MB = r, r  r, then AB is 

obviously perpendicular to the bisector of the angle AOB̂ at M. Use the compass to draw a semi-circle (M, r) with the 

diameter AB. And then, with the compass, mark points C & D on the semi-circle circumference where the arc chords AC = 

CD = DB = r (AC⏜  = CD⏜  = DB⏜ ) to get an inscribed regular semi-hexagon ABCD (regular) in the semi-circle. Therefore, for any 

given arbitrary p, p  r, in both sides of the given angle AOB̂ = ,  <180, we can get a Trisection Ruler of the angle AOB̂, 

which locates at AB, OA = OB = p. Because there are an infinite number of p  r then we can construct an infinite number 

Trisection Rulers for any given angle AOB̂ = ,  <180.  

 

The above discussion is also a guide to construct the Trisection Ruler of any given angle which is less than 180. 

 

2.4. Corollary 1: Given an angle  𝑈𝑂�̂� = ,  <180 , and its Trisection Ruler ABCD with sides r, r  r, then there 

exist a unique arc chord XO of the arc 𝑋𝑂⏜  of the circle (C, CO), which has properties: 

- XO = r 

- XO is horizontal 

  and 

- the arc chord XO above is unique. 

 

Proof: By the Definition 1 and its Discussion, the given angle  UOV̂ = ,  <180, has a Trisection Ruler ABCD, OA = OP = 

p, p (arbitrary)  r, described in Figure 4 below. Let AC = CD = DB = r and AB = 2r (by Definition 1), r  r. By the 

Definition 1 and its Discussion, CD is perpendicular to the bisector of the angle UOV̂ at the mid-point M of CD and CM = 

MD = r. From C draw a circle (C, CO) and a horizontal straight line from point O to the left to meet the circle circumference 

at X. Then the vertical straight line from C cuts XO at I and CI ⊥ XO. Because CI is prolonged vertically and will be a radius 

of (C, CO), I is the mid-point of XO or XI = IO.  Consider the rectangular shape ICMO with 2 vertical sides IC & OM and 2 

horizontal sides IO and CM to get IO = CM = ½ r = XI. From XI = IO we get the length of the horizontal chord XO equal to 

r. Of course, from O in the circumference of the circle (C, CO) and above AB, only one horizontal chord OX has the proved 

unique length r. In the other words, any other horizontal chord from any other point located in the circumference of (C, CO) 

above AB has its length different from r. 

 

 
 

Fig. 4 Draw for the Proof of Corollary 1. 
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3. Method to Trisect an Angle by Secondary Geometry 
3.1. Trisection Theorem (Core Theorem) 

Assume a given angle UOV̂ = ,   r &  <180, are divided into 3 equal angles ,  < 60,  by 2 trisectors OS & OT, 

then there always exist a Trisection Ruler ABCD: 

 ➢ of which vertices A & B are located in OU & OV so that OA = OB = p, p is an arbitrary length belongs to r, 

  and  

 ➢ the vertices  C & D are located in the 2 trisectors OS & OT.  

  

Proof:                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Drawn shape for the Proof of the Trisection Theorem (Core Theorem) 

 

By the assumption of this Theorem, Figure 5 above describes the given angle UOV̂ = ,  < 180 &   r, has its 

trisectors OS & OV (Angle UOŜ  = Angle SOT̂ = Angle TOV̂ = ,  < 60 & 3 = ).  

 

Let p  r be an arbitrary length to mark OA = OB = p, then draw the horizontal line segment AB. Obviously, this 

straight-line segment cuts the bisector of UOV̂ at the mid-point M of AB. Let AM = r = MB, then circle (A, r) cuts the left 

trisector OS at C to make AC = r. Connect CM and prolong it to M’ so that C is the mid-point of MM’. Let A’A be the 

horizontal radius of the circle (A, r) then connect A’M (the horizontal diameter of the circle).  

 

Consider triangle A’M’M:  

 ➢ Two points A & C are the mid-points of A’M & M’M to  result A’M’ // AC & A’M’ = 2r, because AC = r .    (a)  

 ➢ Let C’ be  the mid-point of A’M’, then C’C // A’ M and C’C = ½A’M = r because A’M is the horizontal diameter 

 of the  circle (A, AC = r) & C is the mid-point of MM’.     (b)  

 

From (a) & (b), and C is located in the circumference of the circle (A, r), we get C’C is an arc chord length which is 

equal to r and parallel to the diameter A’M of (A, AC = r). This result shows that the arc chord MC = CC’ = A’C’ = r and 

ACM is an equilateral triangle with AM = MC = CA = r.  

C
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By symmetry, triangle MBD is equal to the triangle AMC via the symmetric axe OM (bisector of the given angle UOV̂) 

and MBD is also an equilateral triangle with sides r. Then the isosceles triangle CMD has its angle CMD̂ = 60 to be an 

equilateral triangle too.  

 

Thus, these 3 triangles AMC, MDC &MBD are all equilateral then ABDC is an upside down regular semi-hexagon 

(Trisection Ruler) as required.  

 

Alternative Proof 1:   

In the Figure 5 below, let OA = OB = p, arbitrary p  r, locate in the two sides of the given angle  AOB̂ = ,  < 180 and 

  r. Let M be the mid-point of AB, then let AM = MB = r and AB = 2r, r  r. Use a compass to draw the circle (A, AC = r) 

which cuts AB at M and the trisector OS at C, then AC = r = AM. Draw another circle (C, r), which cuts AB at A and M’. 

Then, 

  

 CM’ = r   {radius of (C, CM’ = r)}  (1).  

  

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Drawn shape for this Alternative Proof 1 of the above Core Theorem. 

 

Use a straightedge to draw a horizontal radius from C, which cuts the circle (C, CM’ = r) at D to get:  

 

 CD = r  (2).  

 

The radius CA of (C, CM’ = r) is lengthened to meet its circumference at P to have the diameter AP with the mid-point 

C, then connect PM’ to get AB ⊥ PM’ at M’, because the angle  AM′P̂ is inscribed in the upper semi-circle (C, CM’ = r). 

r 

r 

r 

C 

M 

P 

B 

C

’ 

p 

T S 

D 

A 

O 

U 
V 

B’ 
M’ 



Tran Dinh Son / IJMTT, 69(5), 9-24, 2023 

 

15 

Then use the straightedge to connect PD and lengthen PD to meet AB at B’. Consider the triangle APB’ which has the 

properties as follows: 

 AB // CD    (3) 

 AC = CP    (4),  

By (3) & (4), point D is the mid-point of the other side PB’ of the triangle APB’. Then by (2), AB’ = 2xCD = 2r = AB. In the 

other words B’ is located at B and the triangle APB’ is exactly triangle APB (B’ overlaps B). And also M’ be M {by (1), CM’ 

= CP and ½AM’ = ½CD => AM’ = r = AM}. Then the Figure 6 above should be draw exactly into Figure 6.1 below.  

 

 
 
 

Fig. 6.1 

 

Therefore, PA = 2r = PB  => triangle APB is isosceles. From AB = 2r, we have now an equilateral triangle APB and P 

must be in the bisector of the given angle  AOB̂ =  and D is the symmetrical point of C through the symmetry axis OP 

(bisector of angle AOB̂). 

This proof show us the Trisection Ruler ABCD (upside down semi regular hexagon) of the given angle AOB̂ = , which is 

constructed by a straightedge & a compass, is described as follows: 

 

- 2 vertices of the horizontal large base are located in the 2 sides of the angle AOB. 

- 2 vertices of the small base are located in the 2 trisectors of the angle AOB.  
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Alternative Proof 2 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Drawn shape for this Alternative Proof 2 of the above Core Theorem. 

 

In Figure 7 above, let OA = OB = p, p  r, be an arbitrary length on the two sides of the given angle  UOV̂ = ,   r &  

< 180, which has two trisectors OS & OT. Let M be the mid-point of AB, then let r  r be equal to MA or MB and AB = 2r. 

Use a compass to draw the circle (M, MA = r = MB) which cuts the trisectors OS & OT at C & D, then MC = r = MD.  

 Let E be the mid-point of AM.    (5) 

 

Let M’ be a symmetric point of M by the axe point C, then connect AM’ to get point C’ which is the intersect point of 

AM’ and CD prolonged. The special properties of the triangle AMM’ and (5) give us the following results: 

 

 C’C = ½ AM = ½ r = AE = EM 

 

From A, draw a parallel straight line to MC, which meets the prolonged CD at F then AF = MC = MD = r = AM = FC.    

(6) 

Connect M’F then lengthen it to meet the prolonged MA at A’. And then consider the triangle A’MM’ and (6) to get the 

following results: 

 

- F is the mid-point of A’M’ as C is the mid-point of MM’ and FC // A’M. 

- FC = r = ½ A’M and this make A’M = 2r and A is the mid-point of A’M. 

- A’F = MC = r & A’M’ = 2r, as A’ is symmetric point of M by the point axe A and F is symmetric point of C by the 

axe point C’.  

 

By the 3 results above and MM’ = 2r, triangle A’MM’ is equilateral and  AMĈ = 60 and ABCD is the Trisection Ruler 

of the given angle  UOV̂ at AB, OA = OB = p and AB = 2r, as required. 
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Thus, the above Alternative Proof 2 show us that ABCD is a Trisection Ruler (semi regular hexagon) of the given angle 

UOV̂ = ,   r &  < 180, where OA = OB = p, p  r  & p is an arbitrary length, as required. 

 

3.2. Trisecting Theorem 

Given an angle  UOV̂ = ,  <180 &   r, then  its Trisection Ruler ABCD, which is constructed by a straightedge & a 

compass, identifies the two Trisectors OC & OD of the angle UOV̂.   

UOV̂.   

 
Fig. 8 Drawn for the proof of the Trisection Theorem above 

 

Proof: By Theorem 2 and Definition 1, for a any given angle  UOV̂ =  < 180 &   r, we can always construct the angle’s 

Trisection Ruler ABCD, OA = p = OB, p  r, arbitrarily. This Trisection Ruler is inscribed in the semi-circle (M, r), r = ½ 

AB. 

Aim to prove OC and OD are the 2 trisectors of the given angle UOV̂  = , by contradiction.  

 

Assume OC & OD are NOT the 2 trisectors, then there exists OX & OY which are the two trisectors of the given angle. 

These assumed trisectors OX & OY cut the semicircle at E & F, then by this assumption and Definition 1 and the CORE 

THEOREM, ABEF is a regular semi-hexagon, upside down, which has the large base AB. Because the arc chord AC = CD = 

DB = r, and ABCD is the unique regular semi-hexagon inscribed in the semi-circle (M, r), by Theorem 2, then ABEF must 

NOT be a regular semi-hexagon inscribed in the same semi-circle. Therefore, OX & OY are not the trisectors of the given 

angle  UOV̂.  

 

Thus, the claim of the two trisectors OC & OD is exact, accurate and correct for the given angle  UOV̂ =  < 180.  
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Fig. 9 Draw for Alternative Proof of the Trisection Theorem 

 

Alternative Proof: From point C in the Trisection Ruler ABCD, OA = p = OB, p  r, and AC = CD = DB = BM = MA = r, r 

 r, of the given angle  AOB̂ = ,  < 180 &   r, we draw the circle (C, CO). Then, lengthen DC to the left so that C is the 

mid-point of C’D and draw the circle (C, CA = r) which cuts the side OA of the angle AOB at A’ and meets ABCD at D. 

Obviously, C’ is the symmetric point of D via point C then C’C = CD = r .   
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Connect DA’ and C’A’ to get C’A’ ⊥  DA’, as this angle C′A′D̂ cuts the diameter of the circle (C, r). 

Prolong C’A’ to meet (C, CO) at X then choose point P to satisfy XP = XC’, and then connect CX to get CX = radius of the 

circle (C, CO), CX = CO. Connect CP then draw a horizontal line from X to meet CP at the mid-point of CP, to get XI = ½r 

because X & I are two mid-points in sides PC & PC’ of the triangle PC’C.  (8)  

From the mid-point X of PC’, we consider the triangle PC’D to get the distance from X to the mid-point O’ of PD is equal to 

½C’D or { XO’ = r = C’C = CD and XO’// C’C}. These results give us: 

 

 ➢ From (8), IC is the symmetric axe of the two line segments XC’ & O’D and IO’ = ½ r.      (9) 

 ➢ XO’DC’ is an isosceles trapezoid with two horizontal bases  XO’ & C’D.     (10) 

 ➢ From (10), we get the triangle C’PD is isosceles and PC is the symmetric axe of C’PD.     (11) 

 

From (11) and {C is the centre of circle (C, CO) and X is located in the circumference of circle (C, CO)}, we get: 

 ➢ point O’ must be located in the circumference of the circle (C, CO) with XO’ =  ½C’D = r.      (12) 

By (12) and the Corollary 1 (see the Corollary 1 in page 7 above), O’ must be located at point O, exactly and correctly. This  

derives CO // C’X and CO ⊥ DA’ at the mid-point of DA’ (because C is the mid-point of C’D).  

From the above proof results, we consider triangle A’OD to get OC is a perpendicular bisector from vertex O. In the other 

words, angle  A′OĈ =  COD̂  or  AOĈ = COD̂. By the Definition 1 (page 6),  AOĈ =  DOB̂, therefore: 

 

AOB̂ =  COD̂ =  DOB̂ 

 

Thus, OC and OD are the two trisectors of the given angle AOB as required. 

 

At the end of this alternative proof, we can change Figure 9 above into Figure 10 as follow: 

 
Fig. 10 Draw of the Alternative Proof for the Trisections Theorem 

4. Special Cases 
4.1. Right Angle 

It is very easy to divide a given right angle  UOV̂ into 3 equal angles, 30 each. Choose an arbitrary length p, p  r, in the 

vertical side OU of  UOV̂ to mark a point A, OA = p, p is an arbitrary length. Then take a compass & a straightedge to draw  
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the circle (A, p) and an equilateral triangle AOQ located in the right of the circles (A, p). And then, OQ is one trisector of the 

angle UÔV, by the expression {UOV̂ –  AOQ̂ = 90 - 60 = 30 =  QOV̂}.  At the end, draw the bisector of the 60-degree AOQ̂ 

to get the other Trisector of the given angle  UOV̂ = 90. This method uses only a compass & a straightedge.    

    

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11 Two trisectors of a given right angle 

 

4.2. Flat angle (Straight-line angle/ Angle = 180) 

For an angle  𝑈𝑂�̂�  = 180, with a compass & a straightedge, draw a equilateral triangle OAB, A is located in the left 

side OU of the given  𝑈𝑂�̂� and B is located under the horizon line OA, then OB is one trisector of the given flat angle UÔV. 

The other trisector of  𝑈𝑂�̂�  is just the bisector of angle  𝐵𝑂�̂�, say OC, as the following Figure 12. This method uses only a 

compass & a straightedge.    

 

 

 

 

 

 

 

 

 
Figure 12: Two Trisectors OB & OC of a flat angle. 

 

4.3. 180<Angle < 270 

For a given angle 𝑈𝑂�̂� = , 180 <  < 270,   r, let OA be an extensive line of side OU of 𝑈𝑂�̂� to the right-hand side 

(Figure 13 below). This straight line divides 𝑈𝑂�̂� =  into 2 angles, which are a flat angle  𝑈𝑂�̂� = 180 and an angle  𝑉𝑂�̂� = 

 < 90,   r.  
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Then apply Section 2 above and use a compass & a straightedge to draw the 2 trisectors (2 Trisecting Lines) OM & ON 

of the flat angle 𝑈𝑂�̂� (these two trisectors divide this flat angle into three 60-degree angles). And then apply Part III above to 

draw two trisectors of the angle , using a compass & a straightedge, where these two trisectors divide  into 3 equal angles 

,  < 30,   r. 

 

The remain work is to place consecutively, one angle 60 and  to the left side OU in the given angle 𝑈𝑂�̂� to get one 

trisector OP. And then draw the bisector of the angle  𝑃𝑂�̂� to get the other trisectors OQ of the given angle 𝑈𝑂�̂�. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 13 The two Trisectors of a given angle , 180<  < 270. 

4.4. 270- Angle 
For any angle  UOV̂ = 270 which is equal to 3x90 (3 right angles), we only need to lengthen the angle sides from the 

angle vertex to get its 2 trisectors OA & OB, as the described Figure 14 below:  

 

 

 

                                                O 

 

 

 

 

 

 
Fig. 14 The two Trisectors of a given angle   = 270 

 

4.5. 270<Angle < 360 

For a given angle UOV̂ = ,   r, 270 <  < 360, lengthen the side OU of UOV̂ to the right, then draw a perpendicular 

straight line to OU (Which is MN) through vertex O to get 3 right angles (named 1, 2 & 3 in Figure 15 below), containing in  
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UOV̂. This work only uses a straightedge & a compass. And then, the remaining part of  UOV̂, which is the angle  MOV̂ =  < 

90 &   r. Now, we apply Part III above to draw two trisectors of the angle , using a compass & a straightedge, where 

these two trisectors divide  into 3 equal angles ,  < 30,   r. The remain work is to attach one right angle 90 and  to the 

horizontal side OU in the given angle  UOV̂ to get one trisector OP. And then draw the bisector of the angle  POV̂ to get the 

other trisectors OQ of the given angle UÔV = , 270<  < 360.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15 The two Trisectors of a given angle , 270<   < 360 

 

4.6. 360 - Angle (Full corner / Perigon) 

For a given 360-degree angle UOV̂, from vertex O we can use a straightedge & a compass to construct a regular hexagon 

inscribed in a circle (O, r), r is an arbitrary length, r  r. Then connect the 3 vertices, which are not consecutive, to obtain an 

equilateral triangle inscribed in the circle (O, r). And then connect O to two vertices of the triangle to obtain the 2 trisectors 

OP & OQ of the given 360-degree angle UOV̂ (the other vertex of the triangle is connect to O to make a duplicated side of the 

given 360-degree angle UOV̂).  

 

5. Discussion and Conclusion 
Method: For any arbitrarily given angle we can draw two straight lines from the angle vertex to divide the angle into 3 

equal smaller angles by using a compass & a straightedge, as follows: 

 

Choose arbitrarily 2 equal lengths p, p  r, in 2 sides of the given angle, then draw a semi-hexagon, which is a Trisecting 

Ruler of the angle, at the length p. Two vertices of the longer base of the Ruler are located in 2 sides of the given angle. The 

straight lines connect the angle vertex and the other 2 vertices of the Ruler are the two Trisectors of the given angle.  
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Fig. 16 The two Trisectors OQ and OP of a given 360-degree angle 

 

This result of my research includes properties as follows: 

 

- It is possible to construct two trisectors of any given angle exactly, using a compass & a straightedge with simple 

Geometry (secondary level) only. 

 

- The advantage of this Trisection Method for any given angle is based on the invention of my TRISECTION RULER 

so that we can apply the simple Geometry to solve the “unsolved angle trisection problem”. 

 

- The TRISECTION RULER is actually similar to a geometric parameter which  

 

 ➢ depends on the size of a given angle  

and  

 ➢ an arbitrary parameter p for two lengths located in 2 sides from the vertex of the angle. 

 

- It is a counter proof to the Wantzel’s complicated proof for the impossibility of any solution for the “Trisecting an 

Angle” problem. 

 

This success of the trisectors construction results an easy method to draw a Morley Triangle, that anyone can do. Firstly, 

construct the trisectors of the angles A, B & C of a given Morley Triangle. Secondly, connect three intersect points of 2 

consecutive trisectors of {A & B}, of {B & C} and of {C & A} to construct the Equilateral Triangle of the given triangle as 

the following image. 
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Last but not least, I would like to summarize this contribution into the following THEOREM: 

 

Angle Trisection Theorem: Any given angle can be divided into 3 equal sub-angles by a compass and a straightedge, 

exactly and accurately.  
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