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Abstract - In this paper, we have defined radial functions and mentioned their importance and uses in various applications that 

fall under different fields.In particular, we talked about the use of radial functions in data interpolation in various dimensions, 

and several methods were discussed in this regard, and the advantages and disadvantages of using radial functions in 

interpolation. The use of radial functions in solving partial differential equations was also discussed, focusing on their distinctive 

properties in the solution, as they are considered mesh-free techniques. Several methods of solving partial differential equations 

depending on their radial functions have been mentioned; such as, Kansa method, LRBFCM, RBF-DQ, and RBF-PUM. 
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1. Introduction 
Partial differential equations PDEs can be employed for the representation of a wide variety of science problems, such as 

mechanical, electrical, biological, chemical. Currently, researchers are investing numerical methods for solving various types of 

PDEs since obtaining the analytical solution for PDEs is cumbersome[1]. When applying numerical methods, all data that related 

to the problem must be in a certain format (predetermined pattern), and included in a region.Moreover, in the current time 

numerical methods are frequently used for solving various types of PDEs since finding their precise solution is cumbersome 

analytically. Some problems with regard to employing numerical techniques cannot be solved in a traditional manner due their 

complexity. Therefore, in such cases and for overcoming these difficulties mesh free approaches are invested, and RBF alignment 

technique is one of mesh free methods which is used in this regard[2]. 

Hardy 1971 was the first who introduced the RBF methodology. As, he used it with a topological application regarding 

quadratic surfaces. Multicultural (MQ) approximation scheme was presented by Hardy. In 1982, Richard Frank, evaluated 

blending methods of rectangles, the methods of inverse distance weighted, finite elements methods, Foley's methods, and other 

methods on the interpolation of scattered data. Frankeassessedthe techniquesrelying on diverse parameters such as accuracy, 

storage and the method’s processing. It wasfound that the multiquadric method (belongs to RBF) is among the best 

ones[3].Furthermore, in 1990, Kansausedthe Multiquadraic method[4]for solving a PDE (globally supported interpolant), and 

that’s known as the method of Kansa, and it was used for addressing different applications. However, Kansa method possesses 

a number of drawbacks; such as the nature of the interpolation matrix as it is unsymmetrical, and that leads to problems in case 

of considerable number of nodes.Subsequently, Fasshauer in 1996[5], proposed an approach based on the modifications of Kansa 

method namely “Hermite approach”.On one hand, the resulted matrices from Hermite technique are naturally symmetric and 

have got a smaller number of conditions. One the other hand, Hermite method has certain shortcomings. Since, its implementation 

is more difficult than the unsymmetrical approach. 

However, applied to various applications, Kansa method has some disadvantage like unsymmetrical nature of interpolation 

matrix which leads to ill conditioned matrix for large number of nodes. In 1996, Fasshauer proposed a hermite based approach 

as modification of Kansa method. The collocation matrices from this approach are symmetric in nature and generally have smaller 

condition number[6]. However, the symmetric RBF collocation approach has its own limitations. Symmetric Collocation 

approach is difficult to implement as compared to unsymmetrical approach.In 2004, Chantasiriwan[7]solved the diffusion 

problem by employing the local RBF. Continuing this approach, several researchers used localized RBF methods for solving 

various PDEs.  As a rule,there is a parameter that decides the RBF shape known as the parameter of shape, and it will be discussed 

later in this paper. When choosing small shape parameter in some RBFs, that leads to improved accuracy, but result sinthe matrix 

ill conditioning.In 2003, Shu[8] proposed a method to integrate RBFs’ feature of meshfree with the method of Differential 
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Quadrature DQ that is characterized by its elevated accuracy and simplicity by introducing a hybrid technique called RBF-DQ. 

This method has been invested by researchers to address PDEs in fluids problems (for example as Shallow water problems, 

Navier-stokes). In addition, in 2003, Tolstykh [9] utilized local group of nodes to produce the method of radial basis finite 

difference, namely RBF-FD.Furthermore, RBF-PUM is a promising technique. It is used for solving PDEs, and it involves unity 

method segmentation along with RBF. The RBF-PUM method mainly revolves around portioning the domain into interfering 

subdomains. It was found that, RBF-PUM decreases the computational cost while preserving high accuracy.  This paper 

introduces a review of the RBF approaches. The basic concepts and definition of RBFs are discussed in the second section. In 

the third section, a review of the development of the methods is presented. Last section represents the concluding part of the 

paper. We tried to give the mathematical formulation of the methods wherever possible. In authors’ knowledge, there is no such 

survey available in which all the methods related to RBF are presented. A chronological scheme of various RBF methods in 

association with their related researcher is demonstrate din Table 1. Also, a summary of the development of RBF approaches is 

shown in Figure 1. 

2. Radial Basis Functions (RBFs) 
A function Φ:𝑅𝑡 ⟶ 𝑅can be radial if there is a single function 𝜑: [0.∞) ⟶ 𝑅 such that Φ(𝑥) = 𝜑(‖. ‖) where ‖𝑥‖ is the 

Euclidean factor. A radial basis function 𝜑(𝑟) is a uni variate continuous real valued function which relies on the distance from 

the origin (or any other fixed center point).  

In math, the function smoothness can be defined as a property characterized by the continuous derivatives number that the 

function has along some domain[10]. RBFs are generally identified based on the smoothens. Some functions are infinitely 

smooth and other are piece-wise smooth. The infinitely smooth RBFs are associated with a parameter called the shape 

parameter as it can be defined as follows 𝜖 > 0. As, this parameter controls the shape of the RBF; for example, the RBF shape 

becomes flat if 𝜖 ⟶ 0. Some commonly used RBFs are shown in table 2. 

Table 1. Commonly used RBFs 

Equation (𝑟 = ‖𝑥‖) 

 
Name of the RBF 

𝜑(𝑟) = 𝑒−(er)2 Gaussian Function (GS) 

𝜑(𝑟) = 𝑟 

 
Linear radial function (LR) 

φ(r) = √1 + (𝑒𝑟)2 

 
Multiquadric (MQ) 

φ(r) =
1

1 + (𝑒𝑟)2
 

 

Inverse quadric (IQ) 

φ(r) = {
𝑟2𝑘−1;  𝑘∈𝑁

𝑟2𝑘𝐼𝑛(𝑟); 𝑘 ∈ 𝑁
 

 

Polyharmonic Spline (PHS) 

φ(r) = 𝑟2𝐼𝑛(𝑟) 

 
Thin Plate Spline (TPS) 

𝜑(𝑟) =
1

√1 + (er)2
 

 

Inverse Multiquadric (IMQ) 

 

2.1. Using of RBFs for the Interpolation and Approximation of Scattered Data 

For the interpolation of the multi-dimensional data, RBFs is one of the adequate methods used for that objective. Where, 

RBFs produce smooth and less fluctuating interpolation compared to the inverse distance weighting. The interpolation of multi-

dimensional scattered data involves several applications regarding the Computer Graphics.For instance, reconstruction of 

surfaces[11], animation blending [12], facial expression re targeting,color calibration [13], and etc. Accordingly, the utilization 

of efficient methods in this regard is highly demanded. 

 
Fig. 1 The representation of scattered data 

http://shihchinw.github.io/2018/10/data-interpolation-with-radial-basis-functions-rbfs.html#ref.3
http://shihchinw.github.io/2018/10/data-interpolation-with-radial-basis-functions-rbfs.html#ref.1
http://shihchinw.github.io/2018/10/data-interpolation-with-radial-basis-functions-rbfs.html#ref.4
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The scattered data points have no specified structure, as they are simply scattered in p-dimensional space. Piece-wise 

linear interpolation can be used in 1D space. However, for 2D space the given data spatial domain is tessellated into triangular 

mesh. While, in 3D a tetrahedral mesh is needed to be constructed for interpolation. 

 
Fig. 2 2D surface interpolation of data with triangular mesh 

 Mostly, the interpolation results rely on the intermediate structure (e.g., the mesh type). In addition to this, as dimension 

becomes greater, the interpolation cost gets excessively higher. Hence, researchers always pursue a methodology for which the 

interpolation of data points is isolated from the manifest tessellation in the spatial domain. 

To find the smooth function based on the interpolation problem, it is expressed as follows: 

𝑠(𝑥1𝑖
) = 𝑓1(𝑖) 𝑓𝑜𝑟 𝑖 = 1,2,3… ,𝑁…(1) 

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑑𝑎𝑡𝑎 (𝑥𝑖 , 𝑓𝑖) 𝑤𝑖𝑡ℎ 𝑥𝑖 = 1,2,3… ,𝑁, 𝑥𝑖 ∈ 𝑅𝑡  𝑎𝑛𝑑 𝑓𝑖 ∈ 𝑅 
𝐴 𝑅𝐵𝐹 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚: 

 

𝑆(𝑥) = ∑𝛼𝑖𝜑(‖𝑥 − 𝑥𝑖‖

𝑛

𝑖=1

)                              (1) 

𝛼𝑖 can be obtained by requiring the condition presented in equation 1. As, a result:  

𝐴α = f                             (2) 
Where: 

𝐴𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖  𝑖, 𝑗 = 1,2,3… . , 𝑁                            (3) 

 

𝑓 = [𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3) … , 𝑓(𝑥𝑁)]𝑇                             (4) 
 

𝛼 = [𝛼(𝑥1), 𝛼(𝑥2), 𝛼(𝑥3), … . , 𝛼(𝑥𝑁)]𝑇                             (5) 

The matrix A is defined as the interpolation matrix. 

 RBF methods possess several appealing features, and one of these features regarding interpolation problems is that a 

unique interpolate is usually ensured under rather the centers mild conditions. 

 When getting closer to a particular data point 𝑥𝑖within multi-dimensional space, an inticipatintion of the value getting 

closer to 𝑓𝑖 occurs. Typically, it might be blending weight assignment in accordance with the reciprocal of the difference 

between a query location x and 𝑥𝑖 (the data point): 

𝑓(𝑥) = ∑
𝑤𝑖(𝑥)

∑ 𝑤𝑗(𝑥)𝑗

𝑓𝑖 ,

𝑛

𝑖=1

  𝑤𝑖(𝑥) =
1

‖𝑥 − 𝑥𝑖‖
                             (6) 

 This interpolation cannot be considered as smooth for the data points. For boosting the smoothies of interpolation, 

blending weights can be increased as follows: 

‖𝑥 − 𝑥𝑖‖
−𝑝, 𝑝 > 0                            (7) 
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This technique is known as Shepard method[12]. 

 When 𝑝 > 1, 𝑓 becomes smooth at the points of interpolation. However, that also generates flat spots near the data points 

due to the approaching of the first derivative of 𝑓 to zero around the entire data points[14]. Such flat spots arouse unnecessary 

fluctuation regarding interpolation, as shown in the following figure. Therefore, that urges the need of a less oscilitaing and 

smooth interpolant. 

 
Fig. 3 Shepard interpolation ata number of p values. 

 In order to make the concept of inverse distance weighting as a rule, one can invest a uni variate function Φ: [0,∞] → ℝ to 

define weights in accordance with distances. However, investing those weights alone would not help the composed function 

passing through the entire data points, and that because of the effects’ overlapping ranges among the data points. 

 

Fig. 4 The summation of Gaussian kernels alone is not able to pass through all data points 

 

Consequently, it is necessary to add a scale factor 𝑤𝑖to guarantee the value 𝑓𝑖 at 𝑥𝑖: 

𝑓(𝑥) = ∑ 𝑤𝑖Φ(‖𝑥 − 𝑥𝑖‖

𝑛

𝑖=1

), 𝑓(𝑥𝑖) = 𝑓𝑖 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛                          (8) 

 The function Φ (Kernel function) is considered a radial function, as it only relies on distances ‖𝑥 − 𝑥𝑖‖, thus the same 

value is assigned to the entire regions on the hyper sphere. Letting Φ𝑖,𝑗 = Φ(‖𝑥𝑖 − 𝑥𝑗‖), the system of linear equations is as 

follows: 

[
 
 
 
 Φ1,1  Φ1,2 ⋯  Φ1,n

 Φ1,2  Φ2,2 …  Φ2,n

⋮ ⋮ ⋱
 Φn,1 …  Φn,n]

 
 
 

 [

𝓌1

𝓌2

⋮
𝓌n

] = [

f1
f2
⋮
fn

] ⟹ Φ𝑤=f 
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The matrix Φ is similar to the previous  

[
 
 
 
 Φ1,1  Φ1,2 ⋯  Φ1,n

 Φ1,2  Φ2,2 …  Φ2,n

⋮ ⋮ ⋱
 Φn,1 …  Φn,n]

 
 
 

[

𝓌1,1 𝓌1,2

𝓌2,1 𝓌2,2

⋮
𝓌n,1 𝓌n,2

] =

[
 
 
 
f1,1 f1,2

f2,1 f2,2

⋮
fn,1 fn,2]

 
 
 

 

case when f is multi-dimensional, but solving the weights is done for each dimension. 

 

 For the computation of 𝑓, a distance metric along with kernel function must be selected. In 1D interpolation, the effects of 

kernel selections are shown in the following figure[5]: 

 
Fig. 5 Different RBF kernels for Interpolation 

 Number of kernels cannot be considered as inversely proportional to the distances, and sometimes they become zero at the 

data point.For example, taking tri-harmonic in consideration, there is a proportional relation between its value and the distance 

between the data point and the query position. It is shown in Figure (6) that it performs well due to the occurrence of extra 

weights 𝑤1, . . , 𝑤𝑛 to correspond to the variations.  

 

Fig. 6 RBF composition with various kernels: given data points shown in red, extra weights w_iwi could reconcile the differences and make the 

interpolant pass through all the data points. 
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 To calculate the weights 𝑤1, 𝑤2, … . , 𝑤𝑛, a system of n equations with n unknowns. If the rows in Φ are not similar, the 

solution of the system is unique. Conversely, the system gets ill-conditioned. To cope address the numerical problem a 

regularize 𝑤𝑇𝑤 is added for the diffuse weights’ preferences to the objective function instead of solving Φ𝑤 = 𝑓 in direct 

manner. Furthermore, 𝑓 becomes an approximation rather than data points interpolation as demonstrated in Figure (7). 

 
Fig. 7 Thin-plate RBF interpolation with regularization weights: (\lambda =) 1e-6, 1e-4 and 1e-2. 
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𝐸(𝑤) = ‖Φ𝑤 − 𝑓‖2 + 𝜆‖𝑤‖2                                   (9) 

For the determination of wights which essentially reduces the objective function 𝐸(𝑥), its derivative with regard to should be 

zero: 

𝜕𝐸

𝜕𝑤
= 2Φ𝑇(Φ𝑤 − 𝑓) + 2𝜆𝑤 = 0                                (10) 

 

(Φ𝑇Φ + 𝜆𝐼)𝑤 = Φ𝑇𝑓                                (11) 
 

𝑤 = (Φ𝑇Φ + 𝜆𝐼)−1Φ𝑇𝑓                                 (12) 

 Based on the Figure (8), 𝑓 becomes less fitted according to the data points when an increase in regularization weight 𝜆 

occurs. In addition, regularization can help avoiding the noise of data over fitting, and thus would improve the system stability. 

 

3. Polynomials Reproducing 
The interpolation of data points 𝑥1, 𝑥2, … , 𝑥𝑛 relying RBFs is possible. However, the formulated function 𝑓 may be unable 

to express a polynomial function assigned at different locations. The following figure demonstrates the data interpolation 

produced from different types of functions (constant, linear, and quadratic) using thin-plate kernel 𝑟2: 

 In order to make the interpolant capable of representing the polynomial function, monomials is appended 𝑔(𝑥) = 𝑏(𝑥)𝑇𝑐 to 

the interpolant. Assuming Π𝑚
𝑝

is the polynomials set with 𝑝 variables of total degree of m. Hence, a number of unknown 

coefficients 𝑐𝑗 is generated, and the number of unknowns is bigger than the equations number (under determined system). 

Consequently, other constrains should be added to obtain a unique solution. The linear system becomes as follows: 

Φ𝑤 + 𝑃𝑐 = 𝑓                   (13) 

Where P the polynomial basis, and c involves the polynomial basis coefficients. 

The search of the additional relation involves that the terms Pc precisely corresponds to the data points, then the weights 𝑤𝑖  of 

RBFs approach zero. The representation of 𝑓 with other coefficients 𝑑. 

Φ𝑤 + 𝑃𝑐 = 𝑃𝑑                    (14) 

After multiplying each term by 𝑤𝑇 , it is obtained: 

𝑤𝑇Φ𝑤 + 𝑤𝑇𝑃𝑐 = 𝑤𝑇𝑃𝑑                    (15) 
 

𝑤𝑇Φ𝑤 = 𝑤𝑇𝑃(𝑑 − 𝑐) = 0                    (16) 

When 𝑤𝑇𝑃 = 0 is required, then 𝑤 = 0. Also, this means that 𝑃𝑐and Pd are identical when 𝑤 = 0, and the reproduction of 

polynomial is occurred exactly.  

4. Truncated Exponential Radial Basis Function (TERBF) 
The modeling of surfaces is closely connected to approximation and interpolation based on methods of level set, RBFs, and 

least squares methods. RBFs accompanied with global support possess an adequate approximation influence, but that is often 

associated with discrete matrix which has extremely large condition number. As a result, the numerical calculations become time 

consuming. Consequently, in 2019, Xu et al[15] introduced a radial truncated exponential function on n-dimensional space which 

is arbitrary ℝ𝑛, and its support is compact. 

The form of the truncated exponential function is: 

𝜑(𝑟) = (𝑒1−𝑟 − 1)𝑙                       (17) 

Where 𝑙 is an integer as 𝑙 > 0, and 𝑟 ∈ ℝ. When 𝑟 = ‖𝑥‖ and 𝑥 ∈ ℝ𝑛, Φ(𝑥) = 𝜑(𝑟) becomes radial function and its 

center is the origin (on ℝ𝑛 . 
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The authors discussed the interpolation of the scattered data relying on RBFs (compactly supported) Φ(𝑥, 𝑥𝑘) =

(𝑒1−‖𝑥−𝑥𝑘‖ − 1)
𝑙
, 𝑥, 𝑥𝑘 ∈ ℝ𝑛. Assuming a set of scattered points 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} ⊂ ℝ𝑛 , the target function interpolation can 

be presented as follows: 

𝑃𝑓(𝑥) = ∑𝑐𝑗Φ(𝑥, 𝑥𝑗),   𝑥 ∈ ℝ𝑛                       (18)

𝑁

𝑗=1

 

By solving the problem of interpolation a system of linear equations is obtained as follows: 

𝐴𝑐 = 𝑦                     (19) 

[] found that the 𝐷Φ(𝑥) can be introduced for 𝐶0 as follows: 

𝐷Φ(𝑥) = ‖Φ‖
𝐿∞(𝐵(0,2𝑐ℎ𝑥,Ω))

                   (20) 

And relying on the theorem of Lagrange’s mean value, they had: 

‖Φ‖
𝐿∞(𝐵(0,2𝑐ℎ𝑥,Ω))

= 𝑚𝑎𝑥𝑟∈(0,4𝑐ℎ𝑥,Ω)|𝑒
1−𝑟 − 1|𝑙                   (21) 

 

≤ 𝐶 𝑚𝑎𝑥𝑟∈(0,4𝑐ℎ𝑥,Ω)|1 − 𝑟|𝑙                   (22) 

 

= 𝐶 ‖Ψ‖𝐿∞(𝐵(0,2𝑐ℎ𝑥,Ω))                 (23) 

As the truncated power radial basis function is denoted by Ψ, and that corresponds to: 

‖Ψ‖𝐿∞(𝐵(0,2𝑐ℎ𝑥,Ω)) ≤ 𝐶ℎ𝑥,Ω

1

2                 (22) 

The native space methodology was used by[16] for the estimation of errors of the interpolated scattered data as discussed 

previously.For examining the approximation of the proposed radial function, the researchers employed both the single level and 

multilevel interpolation for surface modeling. 

By using the single-level approximation, the RMS error is calculated as follow: 

𝑅𝑀𝑆 − 𝑒𝑟𝑟𝑜𝑟 = √
1

𝑀
∑[𝑓(𝜉𝑘) − 𝑃𝑓(𝜉𝑘)]

2
𝑀

𝑘=1

=
1

√𝑀
‖𝑓 − 𝑃𝑓‖2

                 (23) 

Where 𝜉𝑘 are the points of evaluation. It is observed from the tables () and ()that TERBF (truncated exponential radial basis 

function) interpolation can retain better accuracy of approximation, and also generates an interpolation matrix which is well-

conditioned in comparison with other supported function (Gaussian, MQ, IMQ). The proposed method’s condition numbers 

relatively lesser (around 105) even though N equals to 4225 and 𝜀= 0.7.  

Table 2. TERBF interpolation to the 2D Franke’s function with𝜺=1 

N RMS-Error Rate Cond (A) 

9 1.951235 × 10-1 - 6.639719 × 10+0 

25 5.018953 × 10-2 1.958929 2.405994 × 10+1 

81 1.628459 × 10-2 1.623879 1.669026 × 10+2 

289 6.727682 × 10-3 1.275326 1.250365 × 10+3 

1089 2.402630 × 10-3 1.485495 1.058555 × 10+4 

4225 9.728457 × 10-4 1.304332 9.410946 × 10+4 
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Table 3. TERBF interpolation to the 2D Franke’s function with𝜺=0.7 

N RMS-Error Rate Cond (A) 

9 1.728785×10-1  1.275042× 10+0 

25 4.535991×10-2 1.930269 5.066809× 10+1 

81 1.335521×10-2 1.764015 3.608813× 10+2 

289 5.013012× 10-3 1.413653 2.719227× 10+3 

1089 1.773595× 10-3 1.499001 2.305630× 10+4 

4225 7.107796×10-4 1.319203 2.050036× 10+5 

 

In addition, it was evident that the error curves that belong to the interpolation of Gaussian and MQ for the most substantial 

datasets became erratic. On the other hand, the interpolation curves of TERBF and IMQ are relatively smooth. In specific, TERBF 

considerably improves the interpolation matrix with respect to the condition number.Moreover, Numerical calculation indicated 

that the interpolation TERBF -based is remarkably faster compared to the use of globally supported radial basis functions for the 

interpolation of scattered data. . 

With regard to the multi-level approximation, it was first conducted by [17] and investigated by several researchers [5], [18-

24]. The multilevel interpolation based on compactly supported-radial basis functions with gradually smaller support has an 

advantage that is characterized by recursive property, while the need of memory by allocation is considered as a disadvantage. 

The Numerical results indicated that multilevel interpolation based on TERBF is quite efficient for the approximation of 3D 

explicit surface.These finding sareillustrated  

d)) However, to ameliorate the requirements of allocation memory of the multilevel approach, one can take advantage of the 

method of the hierarchical collocation studied in [22]. 

 
Fig. 8 Fits and errors at Level 1. 
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5. Conclusion 
It is found based on previous studies that the RBFs is an adequate approach for producing smooth interpolation with reduced 

fluctuations when addressing high dimensional data interpolation. Moreover, it is possible to raise the interpolant capacity by 

adding polynomial terms, and also executing regularization to avert the over fitting of data. 

The dependence of numerical methods on radial basis functions is growing sharply throughout the years because of their 

mesh free nature. Several approaches rely on RBFs formulations have been presented in this review, and these approaches are 

introduced with the mathematical modeling for making them more understandable. The unsymmetrical method (Kansa method) 

considered the simplest method for addressing PDEs. RBF collocation methods are associated with high computational cost due 

to the dense matrices;thus, alternative methods are always needed for tackling such difficulties. For example, the methods of 

RBF local approximation are common because of their capability of local adaptation. The high efficiency of scalability of the 

methods of RBF for solving PDEs (high dimensional) remains under consideration. 
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