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Abstract - In 1992, F. Holland conjectured a mixed arithmetic-mean, geometric-mean inequality, and it was proved by K.
Kedlaya in 1994. In this short communication, we provide more extended inequality: a mixed arithmetic-mean, geometric-
mean, and harmonic-mean inequality.
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1. Introduction
In 1992, F. Holland [1] conjectured the following mixed arithmetic-mean, geometric-mean inequality:
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Where X1, X2, ..., xnare positive real numbers with equality if and only if x; = x2 = ... = xn. And K. Kedlaya [2] proved it in
1994. We can extend this inequality, and the purpose of this paper is to address it.

2. Main Results
Before introducing the proof in [2], first, we'll state the following lemma from [2] without proof.

Lemma 1. The vectors a(i, j) = (a(i, j), az(i, j), ..., an(i, j)) given by
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ak(ilj) =
(i,j=1,2,...,n)satisfy

i. a(i, j) = 0 for all i, j, k,
ii. ak(i, j) = 0 for k > min(i, j),
iii. a(i, j) = ax(j, i) for all i, j, k,
iv. ai(i, j) +ax(i, j) + ... +an(i,j)=1foralli,j,

V. al, j)+a(2,j)+ ... tadn, j)=n/jfork <j, al,j) + a2, j)+ ... +an, j) =0 fork >j.
And the proof of (1) in [2] followed as:

Proposition 2. Let X1, X, ..., X» be positive real numbers. Then,
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There is equality if and only if X1 = X2 = ... = xn.
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Proof. Let us define the weighted arithmetic mean and geometric mean of tuple x as A(x, a) = aixy + ax¢ + ... + anXnand G(X,
a) = X:*x*...x,®" where a = (ay, ay, ..., an) is an n-tuple of nonnegative real numbers such that a; + a2 + ... + an = 1. By the
AM-GM inequality [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], A(X, a) > G(x, a) with equality if and only if Xk is constant over all k for
which ax > 0. Let A(i, j) and G(i, j) be the means obtained by setting a = a(i, j) in A(X, a) and G(x, a). Using Lemma 1,
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Taking the geometric mean of both sides over j, we get
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By Holder's inequality [3],
STy G DY = 23 T, G NY™ (6)

Equality holds only if every two @i, g2, ..., g are proportional where gi = (G(i, 1), G(i, 2), ..., G(i, n)) (i=1, 2, ..., n). Since
G(i, 1) = x1 and G(i, n) = x; for all i, this would imply that g1 = g = ... = g, and that would imply x1 = X2 = ... = xn. Also, by
Lemma 1,
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Combining (5), (6), and (7) completes the proof.

Also, in [4], the authors proved the mixed arithmetic-mean, harmonic-mean inequality for matrices. Here we provide
proof for scalars.

Proposition 3. Let x1, X, ..., X» be positive real numbers. Then,
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There is equality if and only if X1 = X2 = ... = xn.

Proof. Let us define the weighted arithmetic mean and the geometric mean of tuple x as A(x, a) = aiXy + axXz + ... + anXpand
H(x,a) = (a1/ X1 + a2/ %2 + ... + an/xn)* where a = (ay, ay, ..., an) is an n-tuple of nonnegative real numbers such that a; + a, +
.. T an = 1. By the AM-HM inequality [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], A(X, a) > H(x, a) with equality if and only if X is
constant over all k for which ax > 0. Let A(i, j) and H(i, j) be the means obtained by setting a = a(i, j) in A(x, a) and G(x, a).
Using Lemma 1,
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Taking the harmonic mean of both sides over j, we get
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Equality holds only if h, hy, ..., hy are proportional where h; = (H(i, 1), H(i, 2), ..., H(i, n)) (i=1, 2, ..., n). Since H(i, 1)
=xp and H(i, n) = x; for all i, this would imply that hy = h, = ... = h, and that would imply x; = X2 = ... = xs. Also, by Lemma 1,
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Combining (10), (11), and (12) completes the proof.

Here, we can extend these inequalities to a mixed arithmetic-mean, geometric-mean, and harmonic-mean inequality. First,
we define mixed arithmetic-mean, geometric-mean, and harmonic-mean of the first, second, and third kinds as follows:
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where xi, X, ..., xnare positive real numbers. Then we obtain the following theorem:
Theorem 4. Let X4, Xz, ..., Xn be positive real numbers. Then,
AGH, (x1, x5, -, X)) = AGH, (X1, X2, -+, %5) = AGH;(xq, %5, ++, %)  (16)
There is equality if and only if x1 = X2 = ... = xn.

Proof. By Proposition 2,
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Equality holds if and only if X1 = X2 = ... = xn. And by Proposition 3,
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Equality holds if and only x; = (XaX2)¥? = ... = (XiX2...xn)*", i.€., X1 = X2 = ... = xn. This completes the proof.

3. Conclusion

There are many versions of mixed mean and its inequalities. We just proved a mixed arithmetic-mean, harmonic-mean
inequality and a mixed arithmetic-mean, geometric-mean, harmonic-mean inequality, which is just one of the mixed mean
inequalities. Undoubtedly, more mixed mean inequality will be studied and discovered.
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