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Abstract - In 1992, F. Holland conjectured a mixed arithmetic-mean, geometric-mean inequality, and it was proved by K. 

Kedlaya in 1994. In this short communication, we provide more extended inequality: a mixed arithmetic-mean, geometric-

mean, and harmonic-mean inequality. 
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1. Introduction 
In 1992, F. Holland [1] conjectured the following mixed arithmetic-mean, geometric-mean inequality: 

(𝑥1 ⋅
𝑥1+𝑥2

2
⋯

𝑥1+𝑥2+⋯𝑥𝑛

𝑛
)
1/𝑛

≥
1

𝑛
(𝑥1 + √𝑥1𝑥2 +⋯+ √𝑥1𝑥2⋯𝑥𝑛

𝑛 )    (1) 

 

Where x1, x2, …, xn are positive real numbers with equality if and only if x1 = x2 = … = xn. And K. Kedlaya [2] proved it in 

1994. We can extend this inequality, and the purpose of this paper is to address it. 

 

2. Main Results 
Before introducing the proof in [2], first, we'll state the following lemma from [2] without proof. 

Lemma 1. The vectors a(i, j) = (a1(i, j), a2(i, j), …, an(i, j)) given by  

𝑎𝑘(𝑖, 𝑗) =
𝐶(𝑛−𝑖,𝑗−𝑘)𝐶(𝑖−1,𝑘−1)

𝐶(𝑛−1,𝑗−1)
=

(𝑛−𝑖)!(𝑛−𝑗)!(𝑖−1)!(𝑗−1)!

(𝑛−1)!(𝑘−1)!(𝑛−𝑖−𝑗+𝑘)!(𝑖−𝑘)!(𝑗−𝑘)!
    (2) 

(i, j = 1, 2, …, n) satisfy  

i. ak(i, j) ≥ 0 for all i, j, k, 

ii. ak(i, j) = 0 for k > min(i, j), 

iii. ak(i, j) = ak(j, i) for all i, j, k, 

iv. a1(i, j) + a2(i, j) + … + an(i, j) = 1 for all i, j, 

v. ak(1, j) + ak(2, j) + … + ak(n, j) = n / j for k ≤ j, ak(1, j) + ak(2, j) + … + ak(n, j) = 0 for k > j. 

And the proof of (1) in [2] followed as: 

Proposition 2. Let x1, x2, …, xn be positive real numbers. Then, 

(∏
𝑥1+𝑥2+⋯+𝑥𝑗

𝑗

𝑛
𝑗=1 )

1/𝑛

≥
1

𝑛
∑ √𝑥1𝑥2⋯𝑥𝑖

𝑛𝑛
𝑖=1 .    (3) 

There is equality if and only if x1 = x2 = … = xn. 
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Proof. Let us define the weighted arithmetic mean and geometric mean of tuple x as A(x, a) = a1x1 + a2x2 + … + anxn and G(x, 

a) = x1
a1x2

a2…xn
an where a = (a1, a2, …, an) is an n-tuple of nonnegative real numbers such that a1 + a2 + … + an = 1. By the 

AM-GM inequality [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], A(x, a) ≥ G(x, a) with equality if and only if xk is constant over all k for 

which ak > 0. Let A(i, j) and G(i, j) be the means obtained by setting a = a(i, j) in A(x, a) and G(x, a). Using Lemma 1,  

𝑥1+𝑥2+⋯+𝑥𝑗

𝑗
=

1

𝑛
∑ 𝑥𝑘 ∑ 𝑎𝑘(𝑖, 𝑗)

𝑛
𝑖=1

𝑛
𝑘=1 =

1

𝑛
∑ 𝐴(𝑖, 𝑗)𝑛
𝑖=1 ≥

1

𝑛
∑ 𝐺(𝑖, 𝑗)𝑛
𝑖=1     (4) 

Taking the geometric mean of both sides over j, we get  

(∏
𝑥1+𝑥2+⋯+𝑥𝑗

𝑗

𝑛
𝑗=1 )

1/𝑛

≥
1

𝑛
∏ (∑ 𝐺(𝑖, 𝑗)𝑛

𝑖=1 )1/𝑛𝑛
𝑗=1     (5) 

By Hölder's inequality [3],  

1

𝑛
∏ (∑ 𝐺(𝑖, 𝑗)𝑛

𝑖=1 )1/𝑛𝑛
𝑗=1 ≥

1

𝑛
∑ ∏ 𝐺(𝑖, 𝑗)1/𝑛𝑛

𝑗=1
𝑛
𝑖=1     (6) 

Equality holds only if every two g1, g2, …, gn are proportional where gi = (G(i, 1), G(i, 2), …, G(i, n)) (i = 1, 2, …, n). Since 

G(i, 1) = x1 and G(i, n) = xi for all i, this would imply that g1 = g2 = … = gn and that would imply x1 = x2 = … = xn. Also, by 

Lemma 1, 

∏ 𝐺(𝑖, 𝑗)1/𝑛𝑛
𝑗=1 = ∏ ∏ 𝑥𝑘

𝑎𝑘(𝑖,𝑗)/𝑛𝑛
𝑗=1

𝑛
𝑘=1 = ∏ 𝑥𝑘

1/𝑖𝑖
𝑘=1 = √𝑥1𝑥2⋯𝑥𝑖

𝑖     (7) 

Combining (5), (6), and (7) completes the proof. 

Also, in [4], the authors proved the mixed arithmetic-mean, harmonic-mean inequality for matrices. Here we provide 

proof for scalars. 

Proposition 3. Let x1, x2, …, xn be positive real numbers. Then, 

[
1

𝑛
∑ (

𝑥1+𝑥2+⋯+𝑥𝑗

𝑗
)
−1

𝑛
𝑗=1 ]

−1

≥
1

𝑛
∑ (

1

𝑖
∑ 𝑥𝑘

−1𝑖
𝑘=1 )

−1
𝑛
𝑖=1     (8) 

There is equality if and only if x1 = x2 = … = xn. 

Proof. Let us define the weighted arithmetic mean and the geometric mean of tuple x as A(x, a) = a1x1 + a2x2 + … + anxn and 

H(x, a) = (a1 / x1 + a2 / x2 + … + an / xn)-1 where a = (a1, a2, …, an) is an n-tuple of nonnegative real numbers such that a1 + a2 + 

… + an = 1. By the AM-HM inequality [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], A(x, a) ≥ H(x, a) with equality if and only if xk is 

constant over all k for which ak > 0. Let A(i, j) and H(i, j) be the means obtained by setting a = a(i, j) in A(x, a) and G(x, a). 

Using Lemma 1,  

𝑥1+𝑥2+⋯+𝑥𝑗

𝑗
=

1

𝑛
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1
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Taking the harmonic mean of both sides over j, we get 

[
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From [3, 5],  
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 Equality holds only if  h1, h2, …, hn are proportional where hi = (H(i, 1), H(i, 2), …, H(i, n)) (i = 1, 2, …, n). Since H(i, 1) 

= x1 and H(i, n) = xi for all i, this would imply that h1 = h2 = … = hn and that would imply x1 = x2 = … = xn. Also, by Lemma 1, 

1

𝑛
∑ 𝐻(𝑖, 𝑗)−1𝑛
𝑗=1 =

1

𝑛
∑ ∑ 𝑎𝑘(𝑖, 𝑗)𝑥𝑘

−1𝑛
𝑗=1

𝑛
𝑘=1 =

1

𝑛
∑ 𝑥𝑘

−1 ∑ 𝑎𝑘(𝑖, 𝑗)
𝑛
𝑗=1

𝑛
𝑘=1 =

1

𝑖
∑ 𝑥𝑘

−1𝑖
𝑘=1     (12) 

Combining (10), (11), and (12) completes the proof. 

Here, we can extend these inequalities to a mixed arithmetic-mean, geometric-mean, and harmonic-mean inequality. First, 

we define mixed arithmetic-mean, geometric-mean, and harmonic-mean of the first, second, and third kinds as follows: 

AGH1(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = [
1

𝑛
∑ (∏

𝑥1+𝑥2+⋯+𝑥𝑗

𝑗

𝑖
𝑗=1 )

−1/𝑖
𝑛
𝑖=1 ]
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    (13) 

AGH2(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = [
1
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∑ (

1
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𝑖𝑖
𝑗=1 )

−1
𝑛
𝑖=1 ]

−1

    (14) 

AGH3(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =
1

𝑛
∑ [

1

𝑖
∑ (√𝑥1𝑥2⋯𝑥𝑗

𝑗
)
−1𝑖

𝑗=1 ]
−1

𝑛
𝑖=1     (15) 

where x1, x2, …, xn are positive real numbers. Then we obtain the following theorem: 

Theorem 4. Let x1, x2, …, xn be positive real numbers. Then, 

AGH1(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ≥ AGH2(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ≥ AGH3(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)    (16) 

There is equality if and only if x1 = x2 = … = xn. 

Proof. By Proposition 2,  

[
1
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𝑗

𝑖
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𝑛
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𝑛
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Equality holds if and only if x1 = x2 = … = xn. And by Proposition 3, 

[
1

𝑛
∑ (

1

𝑛
∑ √𝑥1𝑥2⋯𝑥𝑗

𝑖𝑖
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𝑛
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≥
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1

𝑖
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𝑗
)
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𝑗=1 ]
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𝑛
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Equality holds if and only x1 = (x1x2)1/2 = … = (x1x2…xn)1/n, i.e., x1 = x2 = … = xn. This completes the proof. 

3. Conclusion 
There are many versions of mixed mean and its inequalities. We just proved a mixed arithmetic-mean, harmonic-mean 

inequality and a mixed arithmetic-mean, geometric-mean, harmonic-mean inequality, which is just one of the mixed mean 

inequalities. Undoubtedly, more mixed mean inequality will be studied and discovered. 
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