Short Communication

On a Mixed Arithmetic-Mean, Geometric-Mean, Harmonic-Mean Inequality

Kyumin Nam
Independent Researcher, Incheon, South Korea.

Abstract

In 1992, F. Holland conjectured a mixed arithmetic-mean, geometric-mean inequality, and it was proved by K. Kedlaya in 1994. In this short communication, we provide more extended inequality: a mixed arithmetic-mean, geometricmean, and harmonic-mean inequality.

Keywords - Arithmetic mean, Geometric mean, Harmonic mean, Mixed mean, Mixed mean inequality.

1. Introduction

In 1992, F. Holland [1] conjectured the following mixed arithmetic-mean, geometric-mean inequality:

$$
\begin{equation*}
\left(x_{1} \cdot \frac{x_{1}+x_{2}}{2} \cdots \frac{x_{1}+x_{2}+\cdots x_{n}}{n}\right)^{1 / n} \geq \frac{1}{n}\left(x_{1}+\sqrt{x_{1} x_{2}}+\cdots+\sqrt[n]{x_{1} x_{2} \cdots x_{n}}\right) \tag{1}
\end{equation*}
$$

Where $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers with equality if and only if $x_{1}=x_{2}=\ldots=x_{n}$. And K. Kedlaya [2] proved it in 1994. We can extend this inequality, and the purpose of this paper is to address it.

2. Main Results

Before introducing the proof in [2], first, we'll state the following lemma from [2] without proof.
Lemma 1. The vectors $\mathbf{a}(i, j)=\left(a_{1}(i, j), a_{2}(i, j), \ldots, a_{n}(i, j)\right)$ given by

$$
\begin{equation*}
a_{k}(i, j)=\frac{C(n-i, j-k) C(i-1, k-1)}{C(n-1, j-1)}=\frac{(n-i)!(n-j)!(i-1)!(j-1)!}{(n-1)!(k-1)!(n-i-j+k)!(i-k)!(j-k)!} \tag{2}
\end{equation*}
$$

$(i, j=1,2, \ldots, n)$ satisfy
i. $\quad a_{k}(i, j) \geq 0$ for all i, j, k,
ii. $\quad a_{k}(i, j)=0$ for $k>\min (i, j)$,
iii. $\quad a_{k}(i, j)=a_{k}(j, i)$ for all i, j, k,
iv. $\quad a_{1}(i, j)+a_{2}(i, j)+\ldots+a_{n}(i, j)=1$ for all i, j,
v. $\quad a_{k}(1, j)+a_{k}(2, j)+\ldots+a_{k}(n, j)=n / j$ for $k \leq j, a_{k}(1, j)+a_{k}(2, j)+\ldots+a_{k}(n, j)=0$ for $k>j$.

And the proof of (1) in [2] followed as:
Proposition 2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Then,

$$
\begin{equation*}
\left(\prod_{j=1}^{n} \frac{x_{1}+x_{2}+\cdots+x_{j}}{j}\right)^{1 / n} \geq \frac{1}{n} \sum_{i=1}^{n} \sqrt[n]{x_{1} x_{2} \cdots x_{i}} \tag{3}
\end{equation*}
$$

There is equality if and only if $x_{1}=x_{2}=\ldots=x_{n}$.

Proof. Let us define the weighted arithmetic mean and geometric mean of tuple x as $\mathrm{A}(\mathrm{x}, \mathrm{a})=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$ and $\mathrm{G}(\mathrm{x}$, a) $=x_{1}{ }^{a l} x_{2}{ }^{a 2} \ldots x_{n}^{a n}$ where $\mathrm{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an n-tuple of nonnegative real numbers such that $a_{1}+a_{2}+\ldots+a_{n}=1$. By the AM-GM inequality $[6,7,8,9,10,11,12,13,14,15], \mathrm{A}(\mathrm{x}, \mathrm{a}) \geq \mathrm{G}(\mathrm{x}, \mathrm{a})$ with equality if and only if x_{k} is constant over all k for which $a_{k}>0$. Let $\mathrm{A}(i, j)$ and $\mathrm{G}(i, j)$ be the means obtained by setting $\mathrm{a}=\mathrm{a}(i, j)$ in $\mathrm{A}(\mathrm{x}, \mathrm{a})$ and $\mathrm{G}(\mathrm{x}, \mathrm{a})$. Using Lemma 1 ,

$$
\begin{equation*}
\frac{x_{1}+x_{2}+\cdots+x_{j}}{j}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \sum_{i=1}^{n} a_{k}(i, j)=\frac{1}{n} \sum_{i=1}^{n} A(i, j) \geq \frac{1}{n} \sum_{i=1}^{n} G(i, j) \tag{4}
\end{equation*}
$$

Taking the geometric mean of both sides over j, we get

$$
\begin{equation*}
\left(\prod_{j=1}^{n} \frac{x_{1}+x_{2}+\cdots+x_{j}}{j}\right)^{1 / n} \geq \frac{1}{n} \prod_{j=1}^{n}\left(\sum_{i=1}^{n} G(i, j)\right)^{1 / n} \tag{5}
\end{equation*}
$$

By Hölder's inequality [3],

$$
\begin{equation*}
\frac{1}{n} \prod_{j=1}^{n}\left(\sum_{i=1}^{n} G(i, j)\right)^{1 / n} \geq \frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{n} G(i, j)^{1 / n} \tag{6}
\end{equation*}
$$

Equality holds only if every two $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{n}$ are proportional where $\mathrm{g}_{i}=(\mathrm{G}(i, 1), \mathrm{G}(i, 2), \ldots, \mathrm{G}(i, n))(i=1,2, \ldots, n)$. Since $\mathrm{G}(i, 1)=x_{1}$ and $\mathrm{G}(i, n)=x_{i}$ for all i, this would imply that $\mathrm{g}_{1}=\mathrm{g}_{2}=\ldots=\mathrm{g}_{n}$ and that would imply $x_{1}=x_{2}=\ldots=x_{n}$. Also, by Lemma 1,

$$
\begin{equation*}
\prod_{j=1}^{n} G(i, j)^{1 / n}=\prod_{k=1}^{n} \prod_{j=1}^{n} x_{k}{ }^{a_{k}(i, j) / n}=\prod_{k=1}^{i} x_{k}^{1 / i}=\sqrt[i]{x_{1} x_{2} \cdots x_{i}} \tag{7}
\end{equation*}
$$

Combining (5), (6), and (7) completes the proof.
Also, in [4], the authors proved the mixed arithmetic-mean, harmonic-mean inequality for matrices. Here we provide proof for scalars.

Proposition 3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Then,

$$
\begin{equation*}
\left[\frac{1}{n} \sum_{j=1}^{n}\left(\frac{x_{1}+x_{2}+\cdots+x_{j}}{j}\right)^{-1}\right]^{-1} \geq \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{i} \sum_{k=1}^{i} x_{k}^{-1}\right)^{-1} \tag{8}
\end{equation*}
$$

There is equality if and only if $x_{1}=x_{2}=\ldots=x_{n}$.
Proof. Let us define the weighted arithmetic mean and the geometric mean of tuple x as $\mathrm{A}(\mathrm{x}, \mathrm{a})=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$ and $\mathrm{H}(\mathrm{x}, \mathrm{a})=\left(a_{1} / x_{1}+a_{2} / x_{2}+\ldots+a_{n} / x_{n}\right)^{-1}$ where $\mathrm{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an n-tuple of nonnegative real numbers such that $a_{l}+a_{2}+$ $\ldots+a_{n}=1$. By the AM-HM inequality $[6,7,8,9,10,11,12,13,14,15], \mathrm{A}(\mathrm{x}, \mathrm{a}) \geq \mathrm{H}\left(\mathrm{x}\right.$, a) with equality if and only if x_{k} is constant over all k for which $a_{k}>0$. Let $\mathrm{A}(i, j)$ and $\mathrm{H}(i, j)$ be the means obtained by setting $\mathrm{a}=\mathrm{a}(i, j)$ in $\mathrm{A}(\mathrm{x}, \mathrm{a})$ and $\mathrm{G}(\mathrm{x}, \mathrm{a})$. Using Lemma 1 ,

$$
\begin{equation*}
\frac{x_{1}+x_{2}+\cdots+x_{j}}{j}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \sum_{i=1}^{n} a_{k}(i, j)=\frac{1}{n} \sum_{i=1}^{n} A(i, j) \geq \frac{1}{n} \sum_{i=1}^{n} H(i, j) \tag{9}
\end{equation*}
$$

Taking the harmonic mean of both sides over j, we get

$$
\begin{equation*}
\left[\frac{1}{n} \sum_{j=1}^{n}\left(\frac{x_{1}+x_{2}+\cdots+x_{j}}{j}\right)^{-1}\right]^{-1} \geq\left[\frac{1}{n} \sum_{j=1}^{n}\left(\frac{1}{n} \sum_{i=1}^{n} H(i, j)\right)^{-1}\right]^{-1} \tag{10}
\end{equation*}
$$

From [3, 5],

$$
\begin{equation*}
\left[\frac{1}{n} \sum_{j=1}^{n}\left(\frac{1}{n} \sum_{i=1}^{n} H(i, j)\right)^{-1}\right]^{-1} \geq \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{n} \sum_{j=1}^{n} H(i, j)^{-1}\right)^{-1} \tag{11}
\end{equation*}
$$

Equality holds only if $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{n}$ are proportional where $\mathrm{h}_{i}=(\mathrm{H}(i, 1), \mathrm{H}(i, 2), \ldots, \mathrm{H}(i, n))(i=1,2, \ldots, n)$. Since $\mathrm{H}(i, 1)$ $=x_{1}$ and $\mathrm{H}(i, n)=x_{i}$ for all i, this would imply that $\mathrm{h}_{1}=\mathrm{h}_{2}=\ldots=\mathrm{h}_{n}$ and that would imply $x_{1}=x_{2}=\ldots=x_{n}$. Also, by Lemma 1 ,

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} H(i, j)^{-1}=\frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{n} a_{k}(i, j) x_{k}^{-1}=\frac{1}{n} \sum_{k=1}^{n} x_{k}^{-1} \sum_{j=1}^{n} a_{k}(i, j)=\frac{1}{i} \sum_{k=1}^{i} x_{k}^{-1} \tag{12}
\end{equation*}
$$

Combining (10), (11), and (12) completes the proof.
Here, we can extend these inequalities to a mixed arithmetic-mean, geometric-mean, and harmonic-mean inequality. First, we define mixed arithmetic-mean, geometric-mean, and harmonic-mean of the first, second, and third kinds as follows:

$$
\begin{align*}
& \mathrm{AGH}_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left[\frac{1}{n} \sum_{i=1}^{n}\left(\prod_{j=1}^{i} \frac{x_{1}+x_{2}+\cdots+x_{j}}{j}\right)^{-1 / i}\right]^{-1} \tag{13}\\
& \mathrm{AGH}_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left[\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{n} \sum_{j=1}^{i} \sqrt[i]{x_{1} x_{2} \cdots x_{j}}\right)^{-1}\right]^{-1} \tag{14}\\
& \mathrm{AGH}_{3}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{i} \sum_{j=1}^{i}\left(\sqrt[j]{x_{1} x_{2} \cdots x_{j}}\right)^{-1}\right]^{-1} \tag{15}
\end{align*}
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers. Then we obtain the following theorem:
Theorem 4. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Then,

$$
\begin{equation*}
\mathrm{AGH}_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \geq \operatorname{AGH}_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \geq \mathrm{AGH}_{3}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \tag{16}
\end{equation*}
$$

There is equality if and only if $x_{1}=x_{2}=\ldots=x_{n}$.
Proof. By Proposition 2,

$$
\begin{equation*}
\left[\frac{1}{n} \sum_{i=1}^{n}\left(\prod_{j=1}^{i} \frac{x_{1}+x_{2}+\cdots+x_{j}}{j}\right)^{-1 / i}\right]^{-1} \geq\left[\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{n} \sum_{j=1}^{i} \sqrt[i]{x_{1} x_{2} \cdots x_{j}}\right)^{-1}\right]^{-1} \tag{17}
\end{equation*}
$$

Equality holds if and only if $x_{1}=x_{2}=\ldots=x_{n}$. And by Proposition 3,

$$
\begin{equation*}
\left[\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{n} \sum_{j=1}^{i} \sqrt[i]{x_{1} x_{2} \cdots x_{j}}\right)^{-1}\right]^{-1} \geq \frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{i} \sum_{j=1}^{i}\left(\sqrt[j]{x_{1} x_{2} \cdots x_{j}}\right)^{-1}\right]^{-1} \tag{18}
\end{equation*}
$$

Equality holds if and only $x_{1}=\left(x_{1} x_{2}\right)^{1 / 2}=\ldots=\left(x_{1} x_{2} \ldots x_{n}\right)^{1 / n}$, i.e., $x_{1}=x_{2}=\ldots=x_{n}$. This completes the proof.

3. Conclusion

There are many versions of mixed mean and its inequalities. We just proved a mixed arithmetic-mean, harmonic-mean inequality and a mixed arithmetic-mean, geometric-mean, harmonic-mean inequality, which is just one of the mixed mean inequalities. Undoubtedly, more mixed mean inequality will be studied and discovered.

Acknowledgments

I would like to thank my family for their support.

References

[1] F. Holland, "On a Mixed Arithmetic-mean, Geometric-Mean Inequality," Mathematics Competitions, vol. 5, pp. 60-64, 1992. [Google Scholar]
[2] Kiran Kedlaya, "Proof of a Mixed Arithmetic-mean, Geometric-Mean Inequality," The American Mathematical Monthly, vol. 101, no. 4, pp. 355-357, 1994. [CrossRef] [Google Scholar] [Publisher link]
[3] G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, 1951. [Google Scholar] [Publisher link]
[4] B. Mond, and J. E. Pecaric, "A Mixed Arithmetic-Mean-Harmonic-Mean Matrix Inequality," Linear Algebra and Its Applications, vol. 237-238, pp. 449-454, 1996. [CrossRef] [Google Scholar] [Publisher link]
[5] W.N. Anderson, and R.J. Duffin, "Series and Parallel Addition of Matrices," Journal of Mathematical Analysis and Applications, vol. 26, no. 3, pp. 576-594, 1969. [CrossRef] [Google Scholar] [Publisher link]
[6] Edwin F. Beckenbach, and Richard Bellman, Inequalities, Berlin: Springer-Verlag, 1961. [CrossRef] [Publisher link]
[7] Dragoslav S. Mitrinović, Analytic Inequalities, Berlin:Springer-Verlag, 1970. [CrossRef] [Google Scholar] [Publisher link]
[8] D.S. Mitrinović, J.E. Pečarić, and A.M. Fink, Classical and New Inequalities in Analysis, Springer Dordrecht, 1993. [CrossRef] [Publisher link]
[9] Jiří Herman, Jaromír Šimša, and Radan Kučera, Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory, New York: Springer-Verlag, 2000. [CrossRef] [Google Scholar] [Publisher link]
[10] P.S. Bullen, D.S. Mitrinović, and P.M. Vasić, Means and Their Inequalities, Springer Dordrecht, 1988. [CrossRef] [Publisher link]
[11] Dieter Rüthing, "Proofs of the Arithmetic Mean-geometric Mean Inequality," International Journal of Mathematical Education in Science and Technology, vol. 13, no. 1, pp. 49-54, 1982. [CrossRef] [Google Scholar] [Publisher link]
[12] Kong-Ming Chong, "The Arithmetic-Geometric Mean Inequality: A Short Proof," International Journal of Mathematical Education in Science and Technology, vol. 12, no. 6, pp. 653-654, 1981. [CrossRef] [Google Scholar] [Publisher link]
[13] Norman Schaumberger, "A Calculus Proof of the Arithmetic-Geometric Mean Inequality," The Two-Year College Mathematics Journal, vol. 9, no. 1, pp. 16-17, 1978. [Google Scholar] [Publisher link]
[14] Ronald L. Persky, "Classroom Note: Using the Binomial Series to Prove the Arithmetic Mean-geometric Mean Inequality," International Journal of Mathematical Education in Science and Technology, vol. 34, no. 6, pp. 927-928, 2003. [CrossRef] [Google Scholar] [Publisher link]
[15] Philip Wagala Gwanyama, "The HM-GM-AM-QM Inequalities," The College Mathematics Journal, vol. 35, no. 1, pp. 47-50, 2004. [CrossRef] [Google Scholar] [Publisher link]

