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Abstract - In this paper, we introduce the matrix classes 𝐷 ̃(1,2, … ,𝑚;𝑁) and it associates with functions taking values in 
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Some results and examples are presented with low-dimensional spaces. 

Keywords - Holomorphic function, Clifford analysis, Reguler function, Cachy-Riemann system. 

1. Introduction 
 So far, as we know, the theory of a holomorphic function has not only reached its fullness and beauty in terms of structure 

but also enriched many applications in different fields. 

 In the theory of partial differential equations sense, the theory of a holomorphic function is essentially the theory of the 

solution of the following Cauchy-Riemann system. 

{
 
 

 
 𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦
= 0

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
= 0.

 

 The real part and imaginary part of the holomorphic function f(z) = u + iv are harmonic functions. But not with any two 

harmonic functions u and v, then u + iv is a holomorphic function: They must be pairs of harmonic functions associated 

together by a specified rule (conjugate rule). Here, the conjugate rule is the Cauchy-Riemann condition. 

 The ideas of complex analysis started in the middle of the 18th century, first of all in connection with the Swiss 

mathematician Leonhard Euler, and its main results in the 19th century have introduced by AugustinLouis Cauchy, Georg 

Friedrich Bernhard Riemann and Karl Theodor Wilhelm Weierstrass. 

 As more and more new problems emerge from the realities that need to be solved, more research has been done to expand 

the Cauchy-Riemann system (which is also an extension of the theory of a holomorphic function). Looking back at these 

expansions, one can see that; the authors find several ways to link the harmonic functions together. 

 As we know, to define a holomorphic function in a complex variable, there must be two harmonic functions that are 

adjoined together by the Cauchy- Riemann condition. With the addition of the number of equations, functions and variables, 

there are many new difficulties that appear; one suggested an alternative extension: to construct the theory of hyper-complex 

numbers and hyper-complex functions. Started by Moisil (see [11-14]) in 1931, this theory has been growing steadily and has 

many important applications using the results of Moisil, Theodorescu ([6-8]), Nef ([18]), Sobrero ([19]), Fueter ([20,21]), 

Iftimie ([1,2]), Delanghe ([3]), Goldschmidt ([22-24]), Gilbert ([25,26]), Colton ([27,28]), Sommen ([29]), Tutschke ([30,31]), 

etc. 

 It is necessary to build a class of matrices to represent and calculate holomorphic functions in space with high dimensions. 

In this paper, we introduce the matrix classes. �̃�(1,2, … ,𝑚;𝑁) and it associates with functions taking values in Clifford 

algebras. 
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2. Matrix �̃�(𝟏, 𝟐, … ,𝒎;𝑵) Classes 
A holomorphic function 𝑓(𝑧) = 𝑢 + 𝑖𝑣 an equivalent to a vector which has 2 components in ℝ2. Its components satisfies 

linear first-order homogeneous partial equation (Cauchy-Riemann system)  

     {

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
= 0

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= 0

                                                                                           (2.1) 

In ([21]), A.V. Bisatze had prescribed “Cauchy-Riemann type in 3-dimensional Euclidean space” by considering the 

following system 

{
  
 

  
 

𝜕𝑞2

𝜕𝑥1
+
𝜕𝑞3

𝜕𝑥2
+
𝜕𝑞4

𝜕𝑥3
= 0

𝜕𝑞1

𝜕𝑥1
−
𝜕𝑞3

𝜕𝑥3
+
𝜕𝑞4

𝜕𝑥2
= 0

𝜕𝑞1

𝜕𝑥2
+
𝜕𝑞2

𝜕𝑥3
    −

𝜕𝑞4

𝜕𝑥1
 = 0

𝜕𝑞1

𝜕𝑥3
− 

𝜕𝑞2

𝜕𝑥2
+
𝜕𝑞3

𝜕𝑥1
    = 0

                                                         (2.2) 

(Moisil-Theodorescu system). Since the properties of the solution in the Cauchy-Riemann system is also true with the 

Moisil-Theodorescu system, then the vector 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) Sao;otisfying Moisil-Theodorescu system can be called a 

“holomorphic vector” in ℝ3. 

 In 1964, V-S.Vinogradov had represented the “Cauchy-Riemann type in 4-dimensional space” by investigating the 

following system. 

{
 
 
 

 
 
 
𝜕𝑢1

𝜕𝑥1
−  

𝜕𝑢2

𝜕𝑥2
−  

𝜕𝑢3

𝜕𝑥3
− 

𝜕𝑢4

𝜕𝑥4
= 0

𝜕𝑢1

𝜕𝑥2
+ 

𝜕𝑢2

𝜕𝑥1
− 

𝜕𝑢3

𝜕𝑥4
+
𝜕𝑢4

𝜕𝑥3
= 0

𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢2

𝜕𝑥4
+
𝜕𝑢3

𝜕𝑥1
  − 

𝜕𝑢4

𝜕𝑥2
= 0

𝜕𝑢1

𝜕𝑥4
−  

𝜕𝑢2

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥2
  +

𝜕𝑢4

𝜕𝑥1
= 0.

                                                    (2.3) 

For each solution of (2.3) has 4 components (𝑢1, 𝑢2, 𝑢3, 𝑢4), it has the same properties as the solution of the Cauchy-

Riemann system, so it to be called a “holo-morphic vector” in ℝ4. 

 There are many results that have expanded the Cauchy-Riemann system in different. In order to unify many different ways 

of extending that Cauchy-Riemann system into a common direction, consistently presenting the same method, and further can 

be expanded and generalized, we have a basic comment. as follows: each of these systems is associated with a square matrix of 

matrix 𝐷 ̃ (1,2, … ,𝑚;𝑁) which we will be defined as follows (see definition 1.1). For instance, the Moisil-Theodorescu system 

can be prescribed by following the matrix 

(

0 1
1 0

2 3
−3 2

2 3
3 −2

0 −1
1 0

).                                          (2.4) 

The number 3 at the position which has 3-line and 2-column prescribes that, in the 3th-equations, the derivative of the 2th-

component respect to 𝑥3  which has a coefficient equal to +1, the number ”-1” at the position which has 3-line and 4-column 

prescribes that, in the 3th-equations, derivative of the 4th-component respect to 𝑥1 which has a coefficient equal to -1. (For 

equations (1.1), (1.2), (1.4) and the system can be investigated in [1], [2], [12],..., all of the coeffcients of the derivatives equal 

to 1 or -1).  

 By that denoting, the Cauchy-Riemann system can be presented by following the matrix 

(
1 −2
2 1

)                                           (2.5) 

and the system (2.3) can be represented by 
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(

1 −2
2 1

−3 −4
−4 3

3 4
4 −3

1 −2
2    1

).                            (2.6) 

 The matrixes presented by (2.4), (2.5), (2.6), or the matrix which is considered in [1], [2], [12], ... belongs to 

𝐷 ̃(1,2, … ,𝑚;𝑁), which is defined in the following. 

Definition 1.1. Let 𝐴   be a 𝑁-order square matrix (𝑁 ≥ 2). The matrix 𝐴 is called belong to 𝐷 ̃(1,2, … ,𝑚;𝑁),  if it has the 

following 2 properties: 

Property 1. For any element of 𝐴 which has only values:0,±1,±2, … ,±𝑚, (2 ≤ 𝑚 ≤ 𝑁). If we do not care about the sign of 

these numbers, each row (and each column) contains all the integers 1, 2, ..., m, and each number only appears once (if  𝑚 =
𝑁, there is no zero in 𝐴). 

Property 2. Considering for any two columns (rows) of 𝐴, we have: if in a particular row (or column), there are two elements 

are 𝑖, 𝑘 (𝑖, 𝑘 ≠ 0), there exists only one another row (or column) which has two elements: −𝑘  and 𝑖 (or 𝑘,= 𝑖). 

 It is easy to see that the matrixes (2.4), (2.5), (2.6) belong to 𝐷 ̃(1,2,3; 4), 𝐷 ̃(1,2; 2), 𝐷 ̃(1,2,3,4; 4). In the following, 

we can prove that, for a given integer number 𝑚 ≥ 2, there exists a uniquely minimum 𝑁0 ≥ 𝑚 such that, 𝐷 ̃(1,2, … ,𝑚;𝑁0) is 

non-empty. 

 In the case 𝑚 = 2, then 𝑁0 = 2, and 𝑚 = 3,4, then 𝑁0 = 4, and in cases 𝑚 = 5,6,7,8, we can close proof that 𝑁0 =
8. There are 4 matrixes that depend on 𝐷 ̃(1,2, … ,𝑚; 8), which applied for 𝑚 = 5,6,7,8 resp. 

(

 
 
 
 
 

1 −2
2 1

−3 −4
4 −3

3 −4
4 3

 1   2
−2    1

−5 0
0 −5

0  0
0    0

0     0
0     0

−5 0
0 −5

5   0
0    0

 
 0   0
 0    5

0     5
0   0

 0    0
  5     0

1 2
−4 −3

3    4
2     1

−2  1
−3   4 

−4 3
1 −2)

 
 
 
 
 

                              (2.7) 

(

 
 
 
 
 

1 −2
2 1

−3 −4
0 5

3 0
4 −5

1   0
0    1

−5 −6
−4 0

0 0
−6 −3

6 −5
  2    0

−4 2
3 −6

5   4
6   0

−6 −2
5 0

0  6
0  3

4 −3
−2 6

1 3
−3    1

0    0
2    4

0  −2
0  −4

1 −5
5 1 )

 
 
 
 
 

                              (2.8) 

(

 
 
 
 
 

1 −2
2 1

−3 −4
−6 7

3 −6
4 −7

−1   0
0   1

−5 −6
0 −3

−7 0
−4 −5

−7 2
6 5

−5 4
2 −3

5   0
6   3

   7  6
   2 −5

7   4
0  5

−5 −2
4 3

−1 −4
−4 1

3   2
0 −7

3    0
2   7

1 6
−6   1)

 
 
 
 
 

                             (2.9) 

(

 
 
 
 
 

1 −2
2   1

3 −4
−4 3

3   4
4 −3

1 −2
  2    1

5 −6
6 5

7 8
8 −7

7 8
−8 7

−5 6
6 5

−5 −6
−6 5

−7   8
8 7

−7 −8
−8 7

5 −6
−6 −5

  1    2
2 −1

−3 4
4 3

 3    4
−4   3

1 −2
2   1)

 
 
 
 
 

                          (2.10) 
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3. Matrix Associated with Holomorphic Functions Taking Values in Clifford Algebras 

In this section, we will show that the following equations 

(∑ 𝑒𝑖
𝜕

𝜕𝑥𝑖

𝑛
𝑖=0 ) (∑ 𝑒𝐴𝑓𝐴𝐴 ) = 0                                                                     (3.1) 

or 

(∑ 𝛼𝑖𝑒𝐴
𝜕

𝜕𝑥𝑖

𝑛
𝑖=0 ) (∑ 𝑒𝐴𝑓𝐴𝐴 ) = 0                                                                (3.2) 

also associated with classes matrix 𝐷 ̃(1,2, … ,𝑚;𝑁). 

3.1. First Case 

We rewrite (3.1) as follows.  

∑ 𝑒𝑖𝑒𝐴
𝑖,𝐴

𝜕𝑓

𝜕𝑥𝑖
 = 0 

⇔∑𝑔𝑠𝑒𝑠
𝑠

= 0. 

For each 𝑒𝑠-fixed, then 𝑔𝑠 is the sum of the term ( ±
𝜕𝑓

𝜕𝑥𝑖
 ), we have 

𝑒𝑖𝑒𝐴 = 𝑒𝑠   (a) ,    (or −𝑒𝑠 ) 

(a) ⇒ −𝑒𝑖(𝑒𝑖𝑒𝐴) = −𝑒𝑖𝑒𝑠 

⟺ 𝑒𝐴
(𝑖) = −𝑒𝑖𝑒𝑠     (b),  𝑖 = 0,1,2, … , 𝑛. 

From (b) deduced, in each equation 𝑔𝑠 = 0, we have (𝑛 + 1) derivatives  
𝜕𝑓𝐴

(𝑖)

𝜕𝑥𝑖
  are joined with coefficient ±1. 

 One hand, for each 𝑓𝐴-fixed then 𝑒𝑖𝑒𝐴  has (𝑛 + 1)-distinguishing element vectors 𝑒𝑠. Thus 
𝜕𝑓𝐴

𝜕𝑥𝑖
   will be appeared in 

(𝑛 + 1) equations. Therefore, the matrix associated with the system (3.1) has Property 1 of the 𝐷 ̃(1,2, … ,𝑚;𝑁) classes. 

 On the other hand, suppose in 𝑔𝑠 has two terms 

𝑒𝑖𝑒𝐴 = 𝑒𝑗𝑒𝐵   (a)    (= 𝑒𝑠 ). 

Therefore  

−𝑒𝑖𝑒𝑖𝑒𝐴 = −𝑒𝑖𝑒𝑗𝑒𝐵 

⟺ 𝑒𝐴 = −𝑒𝑖𝑒𝑗𝑒𝐵. 

Multiply from the left-hand side above equation with −𝑒𝑗 , we have 

−𝑒𝑗𝑒𝐴 = 𝑒𝑗𝑒𝑖𝑒𝑗𝑒𝐵 

⟺−𝑒𝑗𝑒𝐴 = 𝑒𝑖𝑒𝐵    (b)   (= 𝑒𝑠
′). 

From (a) and (b) deduces: when we consider two fixed-columns 𝑓𝐴 and 𝑓𝐵 respectively, if one certain row contains 𝑖 and 𝑗, 
then in other row will contain (−𝑗) and 𝑖, that means which has Property 2 of the 𝐷 ̃(1,2, … ,𝑚;𝑁) classes. 

To sum up, the system (3.1) associated with the 𝐷 ̃(1,2, … ,𝑚;𝑁) classes. 

Examples 3.1. In the Quaternion algebra, 𝑑𝑖𝑚𝐶 = 4, we have 

(𝑒0
𝜕

𝜕𝑥0
 +  𝑒1

𝜕

𝜕𝑥1
+ 𝑒2

𝜕

𝜕𝑥2
) (𝑒0𝑢0 + 𝑒1𝑢1 + 𝑒2𝑢2 + 𝑒1𝑒2𝑢3) = 0 

⟺ 𝑒0 (
𝜕𝑢0
𝜕𝑥0

 −
𝜕𝑢1
𝜕𝑥1

−
𝜕𝑢2
𝜕𝑥2

) + 𝑒1 (
𝜕𝑢0
𝜕𝑥1

+
𝜕𝑢1
𝜕𝑥0

+
𝜕𝑢3
𝜕𝑥2

) 
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                             +𝑒2 (
𝜕𝑢0
𝜕𝑥2

 +
𝜕𝑢2
𝜕𝑥0

−
𝜕𝑢3
𝜕𝑥1

) + 𝑒1𝑒2 (−
𝜕𝑢1
𝜕𝑥2

 +
𝜕𝑢2
𝜕𝑥1

+
𝜕𝑢3
𝜕𝑥0

) = 0 

⟺

{
 
 
 
 

 
 
 
 
𝜕𝑢0
𝜕𝑥0

−  
𝜕𝑢1
𝜕𝑥1

−  
𝜕𝑢2
𝜕𝑥2

         = 0

𝜕𝑢0
𝜕𝑥1

+ 
𝜕𝑢1
𝜕𝑥0

           +
𝜕𝑢3
𝜕𝑥2

  = 0

𝜕𝑢0
𝜕𝑥2

     +
𝜕𝑢2
𝜕𝑥0

  − 
𝜕𝑢3
𝜕𝑥1

= 0

 −  
𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥1

  +
𝜕𝑢3
𝜕𝑥0

= 0.

 

This system is associated with the following matrix 

(

1 −2
2 1

−3   0
0  3

3 0
0 −3

1 −2
2    1

). 

Examples 3.2. In case 𝑑𝑖𝑚𝐶 = 8. Acting operator 

𝐷 = 𝑒0
𝜕

𝜕𝑥0
+ 𝑒1

𝜕

𝜕𝑥1
+ 𝑒2

𝜕

𝜕𝑥2
+ 𝑒3

𝜕

𝜕𝑥3
 

on function 

𝑢 = 𝑒0𝑢0 + 𝑒1𝑢1 + 𝑒2𝑢2 + 𝑒1𝑒2𝑢4 + 𝑒1𝑒3𝑢5  + 𝑒2𝑒3𝑢6 + 𝑒1𝑒2𝑒3𝑢7 

then the equation 𝐷𝑢 = 0 has the following form 

𝑒0 (
𝜕𝑢0
𝜕𝑥0

 −
𝜕𝑢1
𝜕𝑥1

−
𝜕𝑢2
𝜕𝑥2

 −
𝜕𝑢3
𝜕𝑥3

) + 𝑒1 (
𝜕𝑢0
𝜕𝑥1

+
𝜕𝑢1
𝜕𝑥0

+
𝜕𝑢4
𝜕𝑥2

 +
𝜕𝑢5
𝜕𝑥3

) + 

+ 𝑒2 (
𝜕𝑢0
𝜕𝑥2

 +
𝜕𝑢2
𝜕𝑥0

−
𝜕𝑢4
𝜕𝑥1

 +
𝜕𝑢6
𝜕𝑥3

) + 𝑒3 (
𝜕𝑢0
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥0

−
𝜕𝑢5
𝜕𝑥1

 −
𝜕𝑢6
𝜕𝑥2

) + 

+ 𝑒1𝑒2 ( − 
𝜕𝑢1
𝜕𝑥2

 +
𝜕𝑢2
𝜕𝑥1

+
𝜕𝑢4
𝜕𝑥0

 −
𝜕𝑢7
𝜕𝑥3

) + 𝑒1𝑒3 (−
𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥1

+
𝜕𝑢5
𝜕𝑥0

 +
𝜕𝑢7
𝜕𝑥2

) + 

+ 𝑒2𝑒3 ( − 
𝜕𝑢2
𝜕𝑥3

 +
𝜕𝑢3
𝜕𝑥2

+
𝜕𝑢6
𝜕𝑥0

 −
𝜕𝑢7
𝜕𝑥1

) + 𝑒1𝑒2𝑒3 (
𝜕𝑢4
𝜕𝑥3

−
𝜕𝑢5
𝜕𝑥2

+
𝜕𝑢6
𝜕𝑥1

 +
𝜕𝑢7
𝜕𝑥0

)  = 0. 

Therefore, we obtain a matrix belonging to 𝐷 ̃(1,2,3,4; 8) classes as follows 

(

 
 
 
 
 

1 −2
2 1

−3 −4
0 0

3    0
4   0

 1    0
0     1

0   0
3   4

0  0
0    0

−2   0
   0    −2

4   0
−3  0

0  −3
0    −4

 
 2    0
 0     2

0     0
0   0

 −4    3
  0     0

  1     0
 0    1

 0   −4
 0     3

  
0   0
4   −3 

1   −2
2   1 )

 
 
 
 
 

. 

Examples 3.3. In case 𝑑𝑖𝑚𝐶 = 16, we are acting operator 

𝐷 = 𝑒0
𝜕

𝜕𝑥0
+ 𝑒1

𝜕

𝜕𝑥1
+ 𝑒2

𝜕

𝜕𝑥2
+ 𝑒3

𝜕

𝜕𝑥3
 +  𝑒4

𝜕

𝜕𝑥4
 

on the following function 

𝑢 = 𝑒0𝑢0 + 𝑒1𝑢1 + 𝑒2𝑢2 + 𝑒3𝑢3 + 𝑒4𝑢4 + 𝑒1𝑒2𝑢5 + 𝑒1𝑒3𝑢6 + 𝑒1𝑒4𝑢7  + 𝑒2𝑒3𝑢8 + 𝑒2𝑒4𝑢9 + 𝑒3𝑒4𝑢10 + 𝑒1𝑒2𝑒3𝑢11
+ 𝑒1𝑒2𝑒4𝑢12 + 𝑒1𝑒3𝑒4𝑢13  + 𝑒2𝑒3𝑒4𝑢14  + 𝑒1𝑒2𝑒3𝑒4𝑢15  
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then we obtain a matrix belonging to 𝐷 ̃(1,2,3,4,5; 16)  as follows 

1
2
3
4
5
0
0
0
0
0
0
0
0
0
0
0

−2
1
0
0
0
−3
−4
−5
0
0
0
0
0
0
0
0

−3
0
1
0
0
2
0
0
−4
−5
0
0
0
0
0
0

−4
0
0
1
0
0
2
0
3
0
−5
0
0
0
0
0

−5
0
0
0
1
0
0
2
0
3
4
0
0
0
0
0

0
3
−2
0
0
1
0
0
0
0
0
4
5
0
0
0

0
4
0
−2
0
0
1
0
0
0
0
−3
0
5
0
0

0
5
0
0
−2
0
0
1
0
0
0
0
−3
−4
0
0

0
0
4
−3
0
0
0
0
1
0
0
2
0
0
5
0

0
0
5
0
−3
0
0
0
0
1
0
0
2
0
−4
0

0
0
0
5
−4
0
0
0
0
0
1
0
0
2
3
0

0
0
0
0
0
−4
3
0
−2
0
0
1
0
0
0
−5

0
0
0
0
0
−5
0
3
0
−2
0
0
1
0
0
4

0
0
0
0
0
0
−5
4
0
0
−2
0
0
1
0
−3

0
0
0
0
0
0
0
−5
4
−3
0
0
0
0
1
2

0
0
0
0
0
0
0
0
0
0
0
5
−4
3
−2
1

 

3.2. Second Case 

We rewrite (3.2) as follows 

∑ ∑ 𝛼𝑖𝑒𝐴𝑖𝑒𝐴
𝐴

𝑚

𝑖=1

𝜕𝑓𝐴
𝜕𝑥𝑖

 = 0 ⇔∑𝑔𝑠𝑒𝑠 = 0.

𝑠

 

For each 𝑒𝑠-fixed, then 𝑔𝑠 is the sum of the term ( ±
𝜕𝑓𝐴

𝜕𝑥𝑖
 ), we have 

𝛼𝑖𝑒𝐴𝑖𝑒𝐴 = 𝑒𝑠   (a)    (or −𝑒𝑠 ) 

(a) ⇒ (𝛼𝑖𝑒𝐴𝑖̅̅ ̅̅ )𝛼𝑖𝑒𝐴𝑖𝑒𝐴 = (𝛼𝑖𝑒𝐴𝑖̅̅ ̅̅ )𝑒𝑠 

⟺ 𝑒𝐴 = (𝛼𝑖𝑒𝐴𝑖̅̅ ̅̅ )𝑒𝑠    (b). 

In (b), we consider for each 𝑖 = 1,2, … ,𝑚, we obtain  𝑚 vectors 𝑒𝐴
(𝑖)

, therefore we have 𝑚 derivatives 
𝜕𝑓𝐴

(𝑖)

𝜕𝑥𝑖
 , thus, each row will 

has full of integers: 1,2, … ,𝑚. 

On the other hand, for each 𝐴-fixed then 𝛼𝑖𝑒𝐴𝑖𝑒𝐴, (𝑖 = 1,2, … ,𝑚) has 𝑚−distinguishing vectors, which means each column of 

the matrix will have full of integers: 1,2, … ,𝑚. 

Thus, the matrix associated with the system (3.2) has Property 1 of the 𝐷 ̃(1,2, … ,𝑚;𝑁) classes. 

On the other hand, suppose in 𝑔𝑠 has two terms with the same values (equal to 𝑒𝑠) 

𝛼𝑖𝑒𝐴𝑖𝑒𝐴 = 𝛼𝑗𝑒𝐴𝑖𝑒𝐵     (c) 

We have to prove that, from (c), we obtain 

𝛼𝑗𝑒𝐴𝑖𝑒𝐴 = − 𝛼𝑖𝑒𝐴𝑖𝑒𝐵.     (d) 

Multiply from the left-hand side of equation (c) with 𝑒𝐴𝑖̅̅ ̅̅  , we have 

𝛼𝑖(𝑒𝐴𝑖̅̅ ̅̅ 𝑒𝐴𝑖)𝑒𝐴 = 𝛼𝑗𝑒𝐴𝑖̅̅ ̅̅ 𝑒𝐴𝑖𝑒𝐵 

After that, multiply the above equation with 𝑒𝐴𝑗 , then 

𝛼𝑖𝑒𝐴𝑗𝑒𝐴 = 𝛼𝑗 (𝑒𝐴𝑗𝑒𝐴𝑖̅̅ ̅̅ ) 𝑒𝐴𝑗𝑒𝐵 

⟺ 𝛼𝑖𝑒𝐴𝑗𝑒𝐴 = 𝛼𝑗 (−𝑒𝐴𝑖𝑒𝐴𝑗̅̅ ̅̅ ) 𝑒𝐴𝑗𝑒𝐵 

⟺ 𝛼𝑖𝑒𝐴𝑗𝑒𝐴 = − 𝛼𝑗𝑒𝐴𝑖𝑒𝐵 
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⟺ (𝛼𝑖𝛼𝑗)𝛼𝑖𝑒𝐴𝑗𝑒𝐴 = (𝛼𝑖𝛼𝑗)(− 𝛼𝑗𝑒𝐴𝑖𝑒𝐵) 

⟺ 𝛼𝑗𝑒𝐴𝑗𝑒𝐴 = − 𝛼𝑖𝑒𝐴𝑖𝑒𝐵   (d). 

Thus, the matrix associated with the system (2.59) has Property 2 of the 𝐷 ̃(1,2, … ,𝑚;𝑁) classes. 

Examples 3.4. In Quaternion algebra, with 22 -dimensional, we have 2 = 4.0 + 2. Thus, we have ”sub-space”, which has basis 

elements {𝑒0, 𝑒1, 𝑒2, 𝑒1𝑒2} (i.e. whole Quaternion algebra) is inversible. There we can introduce a generalized operator. 

𝑇 =∑ 𝛼𝑖
3

𝑖=0
𝑒𝑖
𝜕

𝜕𝑥𝑖
 

where 𝑒3 = 𝑒1𝑒2, 𝛼𝑖 = ±1. And it is associated with a matrix belong to 𝐷 ̃(1,2,3,4; 4). 

a) Let  

𝑇 = 𝑒0
𝜕

𝜕𝑥0
+ 𝑒1

𝜕

𝜕𝑥1
+ 𝑒2

𝜕

𝜕𝑥2
+ 𝑒3

𝜕

𝜕𝑥3
   , 

𝑢 = 𝑒0𝑢0 + 𝑒1𝑢1 + 𝑒2𝑢2 + 𝑒3𝑢3. 

Then 𝑇𝑢 = 0 leads to the following equation 

𝑒0 (
𝜕𝑢0
𝜕𝑥0

 −
𝜕𝑢1
𝜕𝑥1

−
𝜕𝑢2
𝜕𝑥2

 −
𝜕𝑢3
𝜕𝑥3

) + 𝑒1 (
𝜕𝑢0
𝜕𝑥1

+
𝜕𝑢1
𝜕𝑥0

−
𝜕𝑢2
𝜕𝑥3

 +
𝜕𝑢3
𝜕𝑥2

) + 

+ 𝑒2 (
𝜕𝑢0
𝜕𝑥2

 +
𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢2
𝜕𝑥0

 −
𝜕𝑢3
𝜕𝑥1

) + 𝑒3 (
𝜕𝑢0
𝜕𝑥3

−
𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥1

 +
𝜕𝑢3
𝜕𝑥0

) = 0. 

This system is associated with the following matrix 

(

1 −2
2 1

−3   −4
−4  3

3 4
4 −3

1 −2
2    1

). 

 b) Let  

𝑇 = 𝑒0
𝜕

𝜕𝑥0
+ 𝑒1

𝜕

𝜕𝑥1
− 𝑒2

𝜕

𝜕𝑥2
+ 𝑒3

𝜕

𝜕𝑥3
. 

Then 𝑇𝑢 = 0  leads to the following equation 

𝑒0 (
𝜕𝑢0
𝜕𝑥0

 −
𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢2
𝜕𝑥2

 −
𝜕𝑢3
𝜕𝑥3

) + 𝑒1 (
𝜕𝑢0
𝜕𝑥1

+
𝜕𝑢1
𝜕𝑥0

−
𝜕𝑢2
𝜕𝑥3

 −
𝜕𝑢3
𝜕𝑥2

) + 

+ 𝑒2 (− 
𝜕𝑢0
𝜕𝑥2

 +
𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢2
𝜕𝑥0

 −
𝜕𝑢3
𝜕𝑥1

) + 𝑒3 (
𝜕𝑢0
𝜕𝑥3

+
𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥1

 +
𝜕𝑢3
𝜕𝑥0

) = 0. 

This system is associated with the following matrix 

(

1 −2
2 1

3   −4
−4  −3

−3 4
4 3

1 −2
2    1

). 

4. Conclusion 
 The results in the paper are mainly presented for the low-dimensional R spaces. We will try to generalize to the general 

case with arbitrarily dimensional spaces ℝ𝑛. 
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