Matrix Associate with Holomorphic Functions Taking Values in Clifford Algebras

Nguyen Thi Huyen ${ }^{1}$, Dao Viet Cuong ${ }^{2}$
1,2 Faculty of Basic Sciences, University of Transport and Communications, Hanoi, Vietnam
${ }^{1}$ Corresponding Author : huyennt@utc.edu.vn

Received: 02 April 2023
Revised: 06 May 2023
Accepted: 17 May 2023
Published: 31 May 2023

Abstract

In this paper, we introduce the matrix classes $\widetilde{D}(1,2, \ldots, m ; N)$ and it associates with functions taking values in Clifford algebras. This is an extension of the holomorphic function class from the complex plane to higher dimensional spaces. Some results and examples are presented with low-dimensional spaces.

Keywords - Holomorphic function, Clifford analysis, Reguler function, Cachy-Riemann system.

1. Introduction

So far, as we know, the theory of a holomorphic function has not only reached its fullness and beauty in terms of structure but also enriched many applications in different fields.

In the theory of partial differential equations sense, the theory of a holomorphic function is essentially the theory of the solution of the following Cauchy-Riemann system.

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0
\end{array}\right.
$$

The real part and imaginary part of the holomorphic function $f(z)=u+i v$ are harmonic functions. But not with any two harmonic functions u and v , then $\mathrm{u}+\mathrm{iv}$ is a holomorphic function: They must be pairs of harmonic functions associated together by a specified rule (conjugate rule). Here, the conjugate rule is the Cauchy-Riemann condition.

The ideas of complex analysis started in the middle of the 18th century, first of all in connection with the Swiss mathematician Leonhard Euler, and its main results in the 19th century have introduced by AugustinLouis Cauchy, Georg Friedrich Bernhard Riemann and Karl Theodor Wilhelm Weierstrass.

As more and more new problems emerge from the realities that need to be solved, more research has been done to expand the Cauchy-Riemann system (which is also an extension of the theory of a holomorphic function). Looking back at these expansions, one can see that; the authors find several ways to link the harmonic functions together.

As we know, to define a holomorphic function in a complex variable, there must be two harmonic functions that are adjoined together by the Cauchy- Riemann condition. With the addition of the number of equations, functions and variables, there are many new difficulties that appear; one suggested an alternative extension: to construct the theory of hyper-complex numbers and hyper-complex functions. Started by Moisil (see [11-14]) in 1931, this theory has been growing steadily and has many important applications using the results of Moisil, Theodorescu ([6-8]), Nef ([18]), Sobrero ([19]), Fueter ([20,21]), Iftimie ([1,2]), Delanghe ([3]), Goldschmidt ([22-24]), Gilbert ([25,26]), Colton ([27,28]), Sommen ([29]), Tutschke ([30,31]), etc.

It is necessary to build a class of matrices to represent and calculate holomorphic functions in space with high dimensions. In this paper, we introduce the matrix classes. $\widetilde{D}(1,2, \ldots, m ; N)$ and it associates with functions taking values in Clifford algebras.

2. Matrix $\widetilde{D}(1,2, \ldots, m ; N)$ Classes

A holomorphic function $f(z)=u+i v$ an equivalent to a vector which has 2 components in \mathbb{R}^{2}. Its components satisfies linear first-order homogeneous partial equation (Cauchy-Riemann system)

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 \tag{2.1}\\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0
\end{array}\right.
$$

In ([21]), A.V. Bisatze had prescribed "Cauchy-Riemann type in 3-dimensional Euclidean space" by considering the following system

$$
\left\{\begin{align*}
\frac{\partial q_{2}}{\partial x_{1}}+\frac{\partial q_{3}}{\partial x_{2}}+\frac{\partial q_{4}}{\partial x_{3}} & =0 \tag{2.2}\\
\frac{\partial q_{1}}{\partial x_{1}}-\frac{\partial q_{3}}{\partial x_{3}}+\frac{\partial q_{4}}{\partial x_{2}} & =0 \\
\frac{\partial q_{1}}{\partial x_{2}}+\frac{\partial q_{2}}{\partial x_{3}}-\frac{\partial q_{4}}{\partial x_{1}} & =0 \\
\frac{\partial q_{1}}{\partial x_{3}}-\frac{\partial q_{2}}{\partial x_{2}}+\frac{\partial q_{3}}{\partial x_{1}} & =0
\end{align*}\right.
$$

(Moisil-Theodorescu system). Since the properties of the solution in the Cauchy-Riemann system is also true with the Moisil-Theodorescu system, then the vector $q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ Sao;otisfying Moisil-Theodorescu system can be called a "holomorphic vector" in \mathbb{R}^{3}.

In 1964, V-S.Vinogradov had represented the "Cauchy-Riemann type in 4-dimensional space" by investigating the following system.

$$
\left\{\begin{array}{l}
\frac{\partial u_{1}}{\partial x_{1}}-\frac{\partial u_{2}}{\partial x_{2}}-\frac{\partial u_{3}}{\partial x_{3}}-\frac{\partial u_{4}}{\partial x_{4}}=0 \tag{2.3}\\
\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{3}}{\partial x_{4}}+\frac{\partial u_{4}}{\partial x_{3}}=0 \\
\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{2}}{\partial x_{4}}+\frac{\partial u_{3}}{\partial x_{1}}-\frac{\partial u_{4}}{\partial x_{2}}=0 \\
\frac{\partial u_{1}}{\partial x_{4}}-\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{4}}{\partial x_{1}}=0
\end{array}\right.
$$

For each solution of (2.3) has 4 components $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$, it has the same properties as the solution of the CauchyRiemann system, so it to be called a "holo-morphic vector" in \mathbb{R}^{4}.

There are many results that have expanded the Cauchy-Riemann system in different. In order to unify many different ways of extending that Cauchy-Riemann system into a common direction, consistently presenting the same method, and further can be expanded and generalized, we have a basic comment. as follows: each of these systems is associated with a square matrix of matrix $\widetilde{D}(1,2, \ldots, m ; N)$ which we will be defined as follows (see definition 1.1). For instance, the Moisil-Theodorescu system can be prescribed by following the matrix

$$
\left(\begin{array}{cccr}
0 & 1 & 2 & 3 \tag{2.4}\\
1 & 0 & -3 & 2 \\
2 & 3 & 0 & -1 \\
3 & -2 & 1 & 0
\end{array}\right)
$$

The number 3 at the position which has 3 -line and 2 -column prescribes that, in the 3 th-equations, the derivative of the 2 thcomponent respect to x_{3} which has a coefficient equal to +1 , the number "- 1 " at the position which has 3-line and 4-column prescribes that, in the 3th-equations, derivative of the 4th-component respect to x_{1} which has a coefficient equal to -1 . (For equations (1.1), (1.2), (1.4) and the system can be investigated in [1], [2], [12],.., all of the coeffcients of the derivatives equal to 1 or -1).

By that denoting, the Cauchy-Riemann system can be presented by following the matrix

$$
\left(\begin{array}{cc}
1 & -2 \tag{2.5}\\
2 & 1
\end{array}\right)
$$

and the system (2.3) can be represented by

$$
\left(\begin{array}{cccc}
1 & -2 & -3 & -4 \tag{2.6}\\
2 & 1 & -4 & 3 \\
3 & 4 & 1 & -2 \\
4 & -3 & 2 & 1
\end{array}\right)
$$

The matrixes presented by (2.4), (2.5), (2.6), or the matrix which is considered in [1], [2], [12], ... belongs to $\widetilde{D}(1,2, \ldots, m ; N)$, which is defined in the following.

Definition 1.1. Let A be a N-order square matrix $(N \geq 2)$. The matrix A is called belong to $\widetilde{D}(1,2, \ldots, m ; N)$, if it has the following 2 properties:

Property 1. For any element of A which has only values: $0, \pm 1, \pm 2, \ldots, \pm m,(2 \leq m \leq N)$. If we do not care about the sign of these numbers, each row (and each column) contains all the integers $1,2, \ldots, m$, and each number only appears once (if $m=$ N, there is no zero in A).
Property 2. Considering for any two columns (rows) of A, we have: if in a particular row (or column), there are two elements are $i, k(i, k \neq 0)$, there exists only one another row (or column) which has two elements: $-k$ and $i($ or $k,=i)$.

It is easy to see that the matrixes (2.4), (2.5), (2.6) belong to $\widetilde{D}(1,2,3 ; 4), \widetilde{D}(1,2 ; 2), \widetilde{D}(1,2,3,4 ; 4)$. In the following, we can prove that, for a given integer number $m \geq 2$, there exists a uniquely minimum $N_{0} \geq m$ such that, $\widetilde{D}\left(1,2, \ldots, m ; N_{0}\right)$ is non-empty.

In the case $m=2$, then $N_{0}=2$, and $m=3,4$, then $N_{0}=4$, and in cases $m=5,6,7,8$, we can close proof that $N_{0}=$ 8. There are 4 matrixes that depend on $\widetilde{D}(1,2, \ldots, m ; 8)$, which applied for $m=5,6,7,8$ resp.

$$
\begin{align*}
& \left(\begin{array}{cccccccc}
1 & -2 & -3 & -4 & -5 & 0 & 0 & 0 \\
2 & 1 & 4 & -3 & 0 & -5 & 0 & 0 \\
3 & -4 & 1 & 2 & 0 & 0 & -5 & 0 \\
4 & 3 & -2 & 1 & 0 & 0 & 0 & -5 \\
5 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 5 & -4 & -3 & 2 & 1 \\
0 & 5 & 0 & 0 & -2 & 1 & -4 & 3 \\
0 & 0 & 5 & 0 & -3 & 4 & 1 & -2
\end{array}\right) \tag{2.7}\\
& \left(\begin{array}{cccccccc}
1 & -2 & -3 & -4 & -5 & -6 & 0 & 0 \\
2 & 1 & 0 & 5 & -4 & 0 & -6 & -3 \\
3 & 0 & 1 & 0 & 6 & -5 & -4 & 2 \\
4 & -5 & 0 & 1 & 2 & 0 & 3 & -6 \\
5 & 4 & -6 & -2 & 1 & 3 & 0 & 0 \\
6 & 0 & 5 & 0 & -3 & 1 & 2 & 4 \\
0 & 6 & 4 & -3 & 0 & -2 & 1 & -5 \\
0 & 3 & -2 & 6 & 0 & -4 & 5 & 1
\end{array}\right) \tag{2.8}\\
& \left(\begin{array}{cccccccc}
1 & -2 & -3 & -4 & -5 & -6 & -7 & 0 \\
2 & 1 & -6 & 7 & 0 & -3 & -4 & -5 \\
3 & -6 & -1 & 0 & -7 & 2 & -5 & 4 \\
4 & -7 & 0 & 1 & 6 & 5 & 2 & -3 \\
5 & 0 & 7 & 6 & -1 & -4 & 3 & 2 \\
6 & 3 & 2 & -5 & -4 & 1 & 0 & -7 \\
7 & 4 & -5 & -2 & 3 & 0 & 1 & 6 \\
0 & 5 & 4 & 3 & 2 & 7 & -6 & 1
\end{array}\right) \tag{2.9}\\
& \left(\begin{array}{cccccccc}
1 & -2 & 3 & -4 & 5 & -6 & 7 & 8 \\
2 & 1 & -4 & 3 & 6 & 5 & 8 & -7 \\
3 & 4 & 1 & -2 & 7 & 8 & -5 & 6 \\
4 & -3 & 2 & 1 & -8 & 7 & 6 & 5 \\
-5 & -6 & -7 & 8 & 1 & 2 & -3 & 4 \\
-6 & 5 & 8 & 7 & 2 & -1 & 4 & 3 \\
-7 & -8 & 5 & -6 & 3 & 4 & 1 & -2 \\
-8 & 7 & -6 & -5 & -4 & 3 & 2 & 1
\end{array}\right) \tag{2.10}
\end{align*}
$$

3. Matrix Associated with Holomorphic Functions Taking Values in Clifford Algebras

In this section, we will show that the following equations

$$
\begin{equation*}
\left(\sum_{i=0}^{n} e_{i} \frac{\partial}{\partial x_{i}}\right)\left(\sum_{A} e_{A} f_{A}\right)=0 \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\sum_{i=0}^{n} \alpha_{i} e_{A} \frac{\partial}{\partial x_{i}}\right)\left(\sum_{A} e_{A} f_{A}\right)=0 \tag{3.2}
\end{equation*}
$$

also associated with classes matrix $\widetilde{D}(1,2, \ldots, m ; N)$.

3.1. First Case

We rewrite (3.1) as follows.

$$
\begin{aligned}
& \sum_{i, A} e_{i} e_{A} \frac{\partial f}{\partial x_{i}}=0 \\
& \Leftrightarrow \sum_{s} g_{s} e_{s}=0
\end{aligned}
$$

For each e_{s}-fixed, then g_{s} is the sum of the term $\left(\pm \frac{\partial f}{\partial x_{i}}\right)$, we have

$$
\begin{gathered}
e_{i} e_{A}=e_{s} \quad(\mathrm{a}), \quad\left(\mathrm{or}-e_{S}\right) \\
\begin{array}{c}
\text { a) } \Rightarrow-e_{i}\left(e_{i} e_{A}\right)=-e_{i} e_{s} \\
\Leftrightarrow e_{A}^{(i)}=-e_{i} e_{S}
\end{array} \quad \text { (b), } i=0,1,2, \ldots, n .
\end{gathered}
$$

From (b) deduced, in each equation $g_{s}=0$, we have $(n+1)$ derivatives $\frac{\partial f_{A}^{(i)}}{\partial x_{i}}$ are joined with coefficient ± 1.
One hand, for each f_{A}-fixed then $e_{i} e_{A}$ has $(n+1)$-distinguishing element vectors e_{S}. Thus $\frac{\partial f_{A}}{\partial x_{i}}$ will be appeared in $(n+1)$ equations. Therefore, the matrix associated with the system (3.1) has Property 1 of the $\widetilde{D}(1,2, \ldots, m ; N)$ classes.

On the other hand, suppose in g_{s} has two terms

$$
e_{i} e_{A}=e_{j} e_{B} \quad \text { (a) } \quad\left(=e_{s}\right)
$$

Therefore

$$
\begin{gathered}
-e_{i} e_{i} e_{A}=-e_{i} e_{j} e_{B} \\
\Leftrightarrow e_{A}=-e_{i} e_{j} e_{B}
\end{gathered}
$$

Multiply from the left-hand side above equation with $-e_{j}$, we have

$$
\begin{gathered}
-e_{j} e_{A}=e_{j} e_{i} e_{j} e_{B} \\
\Leftrightarrow-e_{j} e_{A}=e_{i} e_{B} \quad \text { (b) } \quad\left(=e_{S}^{\prime}\right) .
\end{gathered}
$$

From (a) and (b) deduces: when we consider two fixed-columns f_{A} and f_{B} respectively, if one certain row contains i and j, then in other row will contain $(-j)$ and i, that means which has Property 2 of the $\widetilde{D}(1,2, \ldots, m ; N)$ classes.
To sum up, the system (3.1) associated with the $\widetilde{D}(1,2, \ldots, m ; N)$ classes.
Examples 3.1. In the Quaternion algebra, $\operatorname{dim} C=4$, we have

$$
\begin{gathered}
\left(e_{0} \frac{\partial}{\partial x_{0}}+e_{1} \frac{\partial}{\partial x_{1}}+e_{2} \frac{\partial}{\partial x_{2}}\right)\left(e_{0} u_{0}+e_{1} u_{1}+e_{2} u_{2}+e_{1} e_{2} u_{3}\right)=0 \\
\Leftrightarrow e_{0}\left(\frac{\partial u_{0}}{\partial x_{0}}-\frac{\partial u_{1}}{\partial x_{1}}-\frac{\partial u_{2}}{\partial x_{2}}\right)+e_{1}\left(\frac{\partial u_{0}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{0}}+\frac{\partial u_{3}}{\partial x_{2}}\right)
\end{gathered}
$$

$$
\begin{gathered}
+e_{2}\left(\begin{array}{lll}
\left.\frac{\partial u_{0}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{0}}-\frac{\partial u_{3}}{\partial x_{1}}\right)+e_{1} e_{2}\left(-\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{3}}{\partial x_{0}}\right)=0 \\
\Leftrightarrow & \begin{array}{lll}
\frac{\partial u_{0}}{\partial x_{0}} & -\frac{\partial u_{1}}{\partial x_{1}} & -\frac{\partial u_{2}}{\partial x_{2}} \\
\frac{\partial u_{0}}{\partial x_{1}} & +\frac{\partial u_{1}}{\partial x_{0}} & +\frac{\partial u_{3}}{\partial x_{2}} \\
\frac{\partial u_{0}}{\partial x_{2}} & =0 \\
& +\frac{\partial u_{2}}{\partial x_{0}} & -\frac{\partial u_{3}}{\partial x_{1}}
\end{array}=0 \\
-\frac{\partial u_{1}}{\partial x_{2}} & +\frac{\partial u_{2}}{\partial x_{1}} & +\frac{\partial u_{3}}{\partial x_{0}}
\end{array}=0 .\right.
\end{gathered}
$$

This system is associated with the following matrix

$$
\left(\begin{array}{cccr}
1 & -2 & -3 & 0 \\
2 & 1 & 0 & 3 \\
3 & 0 & 1 & -2 \\
0 & -3 & 2 & 1
\end{array}\right) .
$$

Examples 3.2. In case dimC $=8$. Acting operator

$$
D=e_{0} \frac{\partial}{\partial x_{0}}+e_{1} \frac{\partial}{\partial x_{1}}+e_{2} \frac{\partial}{\partial x_{2}}+e_{3} \frac{\partial}{\partial x_{3}}
$$

on function

$$
u=e_{0} u_{0}+e_{1} u_{1}+e_{2} u_{2}+e_{1} e_{2} u_{4}+e_{1} e_{3} u_{5}+e_{2} e_{3} u_{6}+e_{1} e_{2} e_{3} u_{7}
$$

then the equation $D_{u}=0$ has the following form

$$
\begin{gathered}
e_{0}\left(\frac{\partial u_{0}}{\partial x_{0}}-\frac{\partial u_{1}}{\partial x_{1}}-\frac{\partial u_{2}}{\partial x_{2}}-\frac{\partial u_{3}}{\partial x_{3}}\right)+e_{1}\left(\frac{\partial u_{0}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{0}}+\frac{\partial u_{4}}{\partial x_{2}}+\frac{\partial u_{5}}{\partial x_{3}}\right)+ \\
+e_{2}\left(\frac{\partial u_{0}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{0}}-\frac{\partial u_{4}}{\partial x_{1}}+\frac{\partial u_{6}}{\partial x_{3}}\right)+e_{3}\left(\frac{\partial u_{0}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{0}}-\frac{\partial u_{5}}{\partial x_{1}}-\frac{\partial u_{6}}{\partial x_{2}}\right)+ \\
+e_{1} e_{2}\left(-\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{4}}{\partial x_{0}}-\frac{\partial u_{7}}{\partial x_{3}}\right)+e_{1} e_{3}\left(-\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{5}}{\partial x_{0}}+\frac{\partial u_{7}}{\partial x_{2}}\right)+ \\
+e_{2} e_{3}\left(-\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{6}}{\partial x_{0}}-\frac{\partial u_{7}}{\partial x_{1}}\right)+e_{1} e_{2} e_{3}\left(\frac{\partial u_{4}}{\partial x_{3}}-\frac{\partial u_{5}}{\partial x_{2}}+\frac{\partial u_{6}}{\partial x_{1}}+\frac{\partial u_{7}}{\partial x_{0}}\right)=0 .
\end{gathered}
$$

Therefore, we obtain a matrix belonging to $\widetilde{D}(1,2,3,4 ; 8)$ classes as follows

$$
\left(\begin{array}{cccccccc}
1 & -2 & -3 & -4 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 3 & 4 & 0 & 0 \\
3 & 0 & 1 & 0 & -2 & 0 & 4 & 0 \\
4 & 0 & 0 & 1 & 0 & -2 & -3 & 0 \\
0 & -3 & 2 & 0 & 1 & 0 & 0 & -4 \\
0 & -4 & 0 & 2 & 0 & 1 & 0 & 3 \\
0 & 0 & -4 & 3 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 4 & -3 & 2 & 1
\end{array}\right) .
$$

Examples 3.3. In case dimC $=16$, we are acting operator

$$
D=e_{0} \frac{\partial}{\partial x_{0}}+e_{1} \frac{\partial}{\partial x_{1}}+e_{2} \frac{\partial}{\partial x_{2}}+e_{3} \frac{\partial}{\partial x_{3}}+e_{4} \frac{\partial}{\partial x_{4}}
$$

on the following function

$$
\begin{gathered}
u=e_{0} u_{0}+e_{1} u_{1}+e_{2} u_{2}+e_{3} u_{3}+e_{4} u_{4}+e_{1} e_{2} u_{5}+e_{1} e_{3} u_{6}+e_{1} e_{4} u_{7}+e_{2} e_{3} u_{8}+e_{2} e_{4} u_{9}+e_{3} e_{4} u_{10}+e_{1} e_{2} e_{3} u_{11} \\
+e_{1} e_{2} e_{4} u_{12}+e_{1} e_{3} e_{4} u_{13}+e_{2} e_{3} e_{4} u_{14}+e_{1} e_{2} e_{3} e_{4} u_{15}
\end{gathered}
$$

then we obtain a matrix belonging to $\widetilde{D}(1,2,3,4,5 ; 16)$ as follows

1	-2	-3	-4	-5	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	3	4	5	0	0	0	0	0	0	0	0
3	0	1	0	0	-2	0	0	4	5	0	0	0	0	0	0
4	0	0	1	0	0	-2	0	-3	0	5	0	0	0	0	0
5	0	0	0	1	0	0	-2	0	-3	-4	0	0	0	0	0
0	-3	2	0	0	1	0	0	0	0	0	-4	-5	0	0	0
0	-4	0	2	0	0	1	0	0	0	0	3	0	-5	0	0
0	-5	0	0	2	0	0	1	0	0	0	0	3	4	-5	0
0	0	-4	3	0	0	0	0	1	0	0	-2	0	0	4	0
0	0	-5	0	3	0	0	0	0	1	0	0	-2	0	-3	0
0	0	0	-5	4	0	0	0	0	0	1	0	0	-2	0	0
0	0	0	0	0	4	-3	0	2	0	0	1	0	0	0	5
0	0	0	0	0	5	0	-3	0	2	0	0	1	0	0	-4
0	0	0	0	0	0	5	-4	0	0	2	0	0	1	0	3
0	0	0	0	0	0	0	0	5	-4	3	0	0	0	1	-2
0	0	0	0	0	0	0	0	0	0	0	-5	4	-3	2	1

3.2. Second Case

We rewrite (3.2) as follows

$$
\sum_{i=1}^{m} \sum_{A} \alpha_{i} e_{A_{i}} e_{A} \frac{\partial f_{A}}{\partial x_{i}}=0 \Leftrightarrow \sum_{s} g_{s} e_{s}=0
$$

For each e_{s}-fixed, then g_{s} is the sum of the term $\left(\pm \frac{\partial f_{A}}{\partial x_{i}}\right)$, we have

$$
\alpha_{i} e_{A_{i}} e_{A}=e_{S} \quad \text { (a) } \quad\left(\text { or }-e_{S}\right)
$$

(a) $\Rightarrow\left(\alpha_{i} \overline{e_{A_{l}}}\right) \alpha_{i} e_{A_{i}} e_{A}=\left(\alpha_{i} \overline{e_{A_{l}}}\right) e_{s}$

$$
\Leftrightarrow e_{A}=\left(\alpha_{i} \overline{e_{A_{l}}}\right) e_{S} \quad \text { (b) }
$$

In (b), we consider for each $i=1,2, \ldots, m$, we obtain m vectors $e_{A}^{(i)}$, therefore we have m derivatives $\frac{\partial f_{A}^{(i)}}{\partial x_{i}}$, thus, each row will has full of integers: $1,2, \ldots, m$.
On the other hand, for each A-fixed then $\alpha_{i} e_{A_{i}} e_{A},(i=1,2, \ldots, m)$ has m-distinguishing vectors, which means each column of the matrix will have full of integers: $1,2, \ldots, m$.
Thus, the matrix associated with the system (3.2) has Property 1 of the $\widetilde{D}(1,2, \ldots, m ; N)$ classes.
On the other hand, suppose in g_{s} has two terms with the same values (equal to e_{s})

$$
\begin{equation*}
\alpha_{i} e_{A_{i}} e_{A}=\alpha_{j} e_{A_{i}} e_{B} \tag{c}
\end{equation*}
$$

We have to prove that, from (c), we obtain

$$
\begin{equation*}
\alpha_{j} e_{A_{i}} e_{A}=-\alpha_{i} e_{A_{i}} e_{B} \tag{d}
\end{equation*}
$$

Multiply from the left-hand side of equation (c) with $\overline{e_{A_{l}}}$, we have

$$
\alpha_{i}\left(\overline{e_{A_{l}}} e_{A_{i}}\right) e_{A}=\alpha_{j} \overline{e_{A_{l}}} e_{A_{i}} e_{B}
$$

After that, multiply the above equation with $e_{A_{j}}$, then

$$
\begin{gathered}
\alpha_{i} e_{A_{j}} e_{A}=\alpha_{j}\left(e_{A_{j}} \overline{e_{A_{l}}}\right) e_{A_{j}} e_{B} \\
\Leftrightarrow \alpha_{i} e_{A_{j}} e_{A}=\alpha_{j}\left(-e_{A_{i}} \overline{e_{A_{J}}}\right) e_{A_{j}} e_{B} \\
\Leftrightarrow \alpha_{i} e_{A_{j}} e_{A}=-\alpha_{j} e_{A_{i}} e_{B}
\end{gathered}
$$

$$
\begin{gathered}
\Leftrightarrow\left(\alpha_{i} \alpha_{j}\right) \alpha_{i} e_{A_{j}} e_{A}=\left(\alpha_{i} \alpha_{j}\right)\left(-\alpha_{j} e_{A_{i}} e_{B}\right) \\
\Leftrightarrow \alpha_{j} e_{A_{j}} e_{A}=-\alpha_{i} e_{A_{i}} e_{B} \quad \text { (d). }
\end{gathered}
$$

Thus, the matrix associated with the system (2.59) has Property 2 of the $\widetilde{D}(1,2, \ldots, m ; N)$ classes.
Examples 3.4. In Quaternion algebra, with 2^{2}-dimensional, we have $2=4.0+2$. Thus, we have "sub-space", which has basis elements $\left\{e_{0}, e_{1}, e_{2}, e_{1} e_{2}\right\}$ (i.e. whole Quaternion algebra) is inversible. There we can introduce a generalized operator.

$$
T=\sum_{i=0}^{3} \alpha_{i} e_{i} \frac{\partial}{\partial x_{i}}
$$

where $e_{3}=e_{1} e_{2}, \alpha_{i}= \pm 1$. And it is associated with a matrix belong to $\widetilde{D}(1,2,3,4 ; 4)$.
a) Let

$$
\begin{gathered}
T=e_{0} \frac{\partial}{\partial x_{0}}+e_{1} \frac{\partial}{\partial x_{1}}+e_{2} \frac{\partial}{\partial x_{2}}+e_{3} \frac{\partial}{\partial x_{3}}, \\
u=e_{0} u_{0}+e_{1} u_{1}+e_{2} u_{2}+e_{3} u_{3} .
\end{gathered}
$$

Then $T u=0$ leads to the following equation

$$
\begin{aligned}
& e_{0}\left(\frac{\partial u_{0}}{\partial x_{0}}-\frac{\partial u_{1}}{\partial x_{1}}-\frac{\partial u_{2}}{\partial x_{2}}-\frac{\partial u_{3}}{\partial x_{3}}\right)+e_{1}\left(\frac{\partial u_{0}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{0}}-\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)+ \\
+ & e_{2}\left(\frac{\partial u_{0}}{\partial x_{2}}+\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{2}}{\partial x_{0}}-\frac{\partial u_{3}}{\partial x_{1}}\right)+e_{3}\left(\frac{\partial u_{0}}{\partial x_{3}}-\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{3}}{\partial x_{0}}\right)=0 .
\end{aligned}
$$

This system is associated with the following matrix

$$
\left(\begin{array}{cccc}
1 & -2 & -3 & -4 \\
2 & 1 & -4 & 3 \\
3 & 4 & 1 & -2 \\
4 & -3 & 2 & 1
\end{array}\right)
$$

b) Let

$$
T=e_{0} \frac{\partial}{\partial x_{0}}+e_{1} \frac{\partial}{\partial x_{1}}-e_{2} \frac{\partial}{\partial x_{2}}+e_{3} \frac{\partial}{\partial x_{3}} .
$$

Then $T u=0$ leads to the following equation

$$
\begin{gathered}
e_{0}\left(\frac{\partial u_{0}}{\partial x_{0}}-\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}-\frac{\partial u_{3}}{\partial x_{3}}\right)+e_{1}\left(\frac{\partial u_{0}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{0}}-\frac{\partial u_{2}}{\partial x_{3}}-\frac{\partial u_{3}}{\partial x_{2}}\right)+ \\
+e_{2}\left(-\frac{\partial u_{0}}{\partial x_{2}}+\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{2}}{\partial x_{0}}-\frac{\partial u_{3}}{\partial x_{1}}\right)+e_{3}\left(\frac{\partial u_{0}}{\partial x_{3}}+\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{3}}{\partial x_{0}}\right)=0 .
\end{gathered}
$$

This system is associated with the following matrix

$$
\left(\begin{array}{cccc}
1 & -2 & 3 & -4 \\
2 & 1 & -4 & -3 \\
-3 & 4 & 1 & -2 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

4. Conclusion

The results in the paper are mainly presented for the low-dimensional R spaces. We will try to generalize to the general case with arbitrarily dimensional spaces \mathbb{R}^{n}.

References

[1] V. Iftimie, "Fonction hypercomplexes," Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic of Romania, vol. 9, no. 57, pp. 279-332, 1965. [Google Scholar] [Publisher Link]
[2] V. Iftimie, "Operator of the Moisil-Theodorescu Type," Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic of Romania, vol. 10, no. 58, pp. 271-305, 1966. [Google Scholar] [Publisher Link]
[3] Richard Delanghe, "On Regular-Analytic Functions with Valeurs in a Clifford Algebra," Mathematische Annalen, vol. 185, pp. 91111, 1970. [CrossRef] [Google Scholar] [Publisher Link]
[4] Richard Delanghe, "On the Singularities of Functions with Valeurs in a Clifford Algebra," Mathematische Annalen, vol. 196, no. 4, pp. 293-319, 1972. [CrossRef] [Publisher Link]
[5] R. Delanghe, and F. Brackx, "Hypercomplex Function Theory and Hilbert Modules with Reproducing Kernels," Proceedings of the London Mathematical Society, vol. s3-37, no. 3, pp, 545-576, 1978. [CrossRef] [Google Scholar] [Publisher Link]
[6] N. Theodorescu, "The Areolar Derivative and Its Applications to Mathematical Physics," Thèse, Paris, 1931. [Google Scholar] [Publisher Link]
[7] N. Theodorescu, "Spatial Derivatives and Extension of Fundamental Differential Operators: Grad, Divet, rot of Field theory," Mathematical Bulletin of the Society of Mathematical and Physical Sciences of the Romanian People's Republic, vol. 3, no. 51, pp. 363383, 1959. [Google Scholar] [Publisher Link]
[8] N. Theodorescu, La dérivée aréolaire, Ann Roumains Math - Cahier 3, Bucarest, 1936.
[9] A. Angelescu, Sur une fommule de M. D. Pompéiu, Mathématica. Cluj. 1, p. 107, 1929.
[10] Miron Nicolescu, "Complex Functions in the Plane and in Space," These, Paris, 1928. [Google Scholar] [Publisher Link]
[11] Gr. C.Moisil, Sur les systèmes d'équations de M. Dirac, du type elliptique, C. R Paris, 191, p. 1292, 1930.
[12] Gr.C. Moisil, "On Monogeneous Quaternions," Bulletin of Mathematical Sciences, vol. 55, p. 168, 1931.
[13] Gr. C. Moisil, "Holomorphic Functions in Space," Mathematica, vol. 5, p. 142, 1931.
[14] Grigore Constantin Moisil, "On a Class of Systems of Partial Differential Equations in Physics," Mathematics - Bucharest, 1931. [Google Scholar]
[15] Huan Le Dy, "Some Basic Theorems About Holomorphic Vectors," Sci. Rec., vol. 56, no. 2, p. 53, 1958.
[16] Neldelcu Coroi M., "An Application of the Spatial Derivative to the Equations of Elasticity in Space," Rev de Math. Pures at appl., vol. 5, pp. 3-4, 1960.
[17] Neldelcu Coroi M., "The Areolar Polynomial of Order," I. Rev de Math. Pures et appl, vol. 4, no. 4, 1959.
[18] Walter Nef, "The Inessential Singularities of the Regular Functions of a Quaternion Variable," Commentarii Mathematici Helvetici, vol. 16, pp. 284-304, 1943. [CrossRef] [Google Scholar] [Publisher Link]
[19] Luigi Sobréro, "Algebra of Hypercomplex Functions and Its Applications to the Mathematical Theory of Elasticity," Memoirie dell' Academia d'Italia, 1934. [Google Scholar]
[20] Rud Von Fueter, "The Singularities of the Unique Regular Functions of a Quaternion Variable," Commentarii Mathematici Helvetici, vol. 9, pp. 320-334, 1936. [CrossRef] [Google Scholar] [Publisher Link]
[21] Rud Fueter, "On the Analytic Representation of the Regular Functions of a Quaternion Variable," Commentarii Mathematici Helvetici, vol. 8, 371-378, 1935/36. [Publisher Link]
[22] Bernd Goldschmidt, "Regularity Properties of Generalized Analytic Vectors in \mathbb{R}^{n}," Mathematische Nachrichten, vol. 103, no. 1, pp. 245-254, 1981. [CrossRef] [Google Scholar] [Publisher Link]
[23] Bernd Goldschmidt, "Existence and Representation of Solutions of a Class of Elliptic Systèmes of Partial Differential Equations of first Order in the Space," Mathematische Nachrichten, vol. 108, no. 1, pp. 159-166, 1982. [CrossRef] [Google Scholar] [Publisher Link]
[24] Bernd Goldschmidt, "A Cauchy Integral Formula for a Class of Elliptic Systèmes of Partial Differential Equations of First Order in the Space," Mathematische Nachrichten, vol. 108, no. 1, pp. 167-178, 1982. [CrossRef] [Google Scholar] [Publisher Link]
[25] R.P. Gilbert, and G.N. Hile, "Hilbert Function Modules with Reproducing Kernels," Nonlinear Analysis: Theory, Methods and Applications, vol. 1, no. 2, pp. 135-150, 1977. [CrossRef] [Google Scholar] [Publisher Link]
[26] R.P. Gilbert, and G.N. Hile, "Hypercomplex Function Theory in the Sense of L. BERS," Mathematische Nachrichten, vol. 72, no. 1, pp. 187-200, 1976. [CrossRef] [Google Scholar] [Publisher Link]
[27] David Colton, "Bergman Operators for Elliptic Equations in Four Independent Variables," SIAM Journal, vol. 3, no. 3, 1972. [CrossRef] [Google Scholar] [Publisher Link]
[28] David Colton, "Integral Operators for Elliptic Equations in Three Independent Variables," Applicable Analysis, vol. 4, no. 1, pp. 77-95, 1974. [CrossRef] [Google Scholar] [Publisher Link]
[29] F. Brackx, F. Sommen, and R. Dalanghe, Clifford Analysis, Pitman, Boston, London, Mebourne, 1982.
[30] W. Tutschke, "Classical and Modern Methods of complex Analysis," Complex Analysis-Methods, Akademie-Verlag Berlin, 1983. [Google Scholar]
[31] Wolfgang Tutschke, "Reduction of the Problem of Linear Conjugation for First Order Nonlinear Elliptic Systems in the Plane to an Analogous Problem for Holomorphic Functions," Analytic Functions Kozubnik, pp. 446-455, 1980. [CrossRef] [Google Scholar] [Publisher Link]

