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Abstract - In this paper, we introduce and study a new class of sets, called h generalized closed sets and relationships among 

closed, g-closed, gh-closed and hg-closed sets are investigated. Further, we introduce a new class of normal spaces, called h-

normal spaces and obtain a characterization of h-normal spaces. Moreover, we define the forms of generalized h-closed, h-

generalized closed and some h-generalized continuous functions. By utilizing these functions, we study properties of the forms 

of generalized h-closed functions and preservation theorems for h-normal spaces. 
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1. Introduction 
In 1970, Levine [15] initiated the investigation of g-closed sets in topological spaces; since then, many modifications of g-

closed sets have been defined and investigated by a large number of topologists. In 1973, Carnahan [5] introduced some 

properties related to compactness in topological spaces. In 1978, Maheshwari and Prasad [16] introduced s-normal spaces and 

obtained their characterizations. In 2000, Dontchev and Noiri [6] studied the concept of quasi-normal spaces and obtained their 

properties.  

 

In 2008, Kalantan [11] introduced the notion of -normal spaces and obtained their characterizations. In 2018, Kumar [12] 

introduced the concept of softly normal spaces and obtained their properties. In 2019, Kumar [13, 14] introduced the notions of 

silky normal and *g-normal spaces and obtained their characterizations. In 2021, Abbas [1] introduced the concept of h-open 

sets and obtained their properties. In 2022, Abdullah [2] introduced the concept of generalized h-closed sets and studied their 

properties.  

 

In this paper, we introduce and study a new class of sets, called h generalized closed sets and relationships among closed, 

g-closed, gh-closed and hg-closed sets are investigated. Further, we introduce a new class of normal spaces, called h-normal 

spaces and obtain a characterization and preservation theorems of h-normal spaces.  

 

2. Preliminaries 
In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly 

stated and f : (X, ) → (Y, σ) (or simply f: X → Y) denotes a function f of a space (X, ) into a space (Y, σ). Let A be a subset 

of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively. A subset A of the topological 

space (X, ) is said to be an h-open [1] set if for every non-empty set U in X, U  X and U  , such that A  int(A  U). The 

complement of the h-open set is called h-closed. The collection of all h-open (resp. h-closed) sets is denoted by h-O(X) (resp. 

h-C(X)). 

2.1. Definition. A subset A of a topological space (X, ) is said to be  

(1) g-closed [15] if cl(A)  U whenever A  U and U ∈ . 

(2) generalized h-closed [2] (briefly gh-closed) if h-cl(A)  U whenever A  U and U  . 

(3) h-generalized-closed (briefly hg-closed) if h-cl(A)  U whenever A  U and U  h-O(X). 
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http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hamant kumar & Poonam Sharma / IJMTT, 69(6), 1-7, 2023 

2 

2.2. Remark. We have the following implications for the properties of subsets: 

       closed                           →                               g-closed                                      

                                                                                                

      h-closed       →       hg-closed         →              gh-closed 

Where none of the implications are reversible. 

2.3. Example. Let X = {a, b, c} and  = {, X, {a}, {a, b}, {a, c}}. Then the subset A = {a} is h-closed as well as gh-closed 

but not g-closed in (X, ). 

2.4. Example. Let X = {a, b, c, d} and  = {, X, {a}, {a, b}, {a, c}, {a, b, c}}. Then the subset A = {a} is h-closed but not 

closed in (X, ). 

2.5. Example. Let X = {a, b, c} and  = {, X, {a}}. Then the subset A = {a} is h-closed as well as gh-closed in (X, ). But A 

= {b} is gh-closed but not h-closed in (X, ). 

3. h-Normal Spaces 
3.1. Definition. A space X is said to be h-normal if, for any pair of disjoint closed sets A and B of X, there exist disjoint h-

open sets U and V such that A  U and B  V. 

3.2. Remark. The following diagram holds for a topological space (X, ):  

                                             normal         →         h-normal  

Where none of the implications are reversible. 

3.3. Example. Let X = {a, b, c} and  = {, X, {a}, {a, b}, {a, c}}. Consider the disjoint closed sets A = {b} and B = {c}. 

Then there exist disjoint h-open sets U = {b} and V = {c} such that A  U and B   V. Hence the topological space (X, ) is 

h-normal but not normal, since U and V are not open sets. 

3.4. Example. Let X = {a, b, c, d} and  = {, X, {a}, {a, b}, {a, c}, {a, b, c}}. Consider the disjoint closed sets A =  and B = 

{d}. Then there exist disjoint h-open sets U = {a} and V = {b, c, d} such that A  U and B   V. Hence the topological space 

(X, ) is h-normal but not normal since the set V is not open. 

3.5. Example. Let X = {a, b, c} and  = {, X, {a}}. Consider the disjoint closed sets A =  and B = {b, c}. Then there exist 

disjoint h-open sets U = {a} and V = {b, c} such that A  U and B   V. Hence the topological space (X, ) is h-normal but 

not normal since V is not an open set. 

3.6. Example. Let X = {a, b, c, d} and  = {, X, {b, d}, {a, b, d}, {b, c, d}}. Consider the disjoint closed sets A =  and B = 

{c}. Then there exist disjoint h-open sets U = {b} and V = {a, c, d} such that A  U and B   V. Hence the topological space 

(X, ) is h-normal but not normal since the sets U and V are not open. 

3.7. Theorem. For a space X, the following are equivalent:  

(1) X is h-normal,  

(2) For every pair of open sets U and V whose union is X, there exist h-closed sets A and B such that A  U, B  V and A ∪ B 

= X,  

(3) For every closed set H and every open set K containing H, there exists an h-open set U such that H  U  h-cl(U)  K.  

Proof. (1)  (2): Let U and V be a pair of open sets in an h-normal space X such that X = U ∪ V. Then X − U, X − V are 

disjoint closed sets. Since X is h-normal, there exist disjoint h-open sets U1 and V1 such that X − U  U1 and X − V  V1. Let 

A = X − U1, B = X − V1. Then A and B are h-closed sets such that A  U, B  V and A ∪ B = X.  

(2)  (3): Let H be a closed set and K be an open set containing H. Then X − H, and K are open sets whose union is X. Then 

by (2), there exist h-closed sets M1 and M2 such that M1  X − H and M2  K and M1 ∪ M2 = X. Then H  X − M1, X − K  
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X − M2 and (X − M1) ∩ (X − M2) = . Let U = X − M1 and V = X − M2. Then U and V are disjoint h-open sets such that H  U 

 X − V  K. As X − V is an h-closed set, we have h-cl(U)  X − V and H  U  h-cl(U)  K.  

(3)  (1): Let H1 and H2 be any two disjoint closed sets of X. Put K = X − H2, then H2 ∩ K = . H1  K, where K is an open 

set. Then by (3), there exists an h-open set U of X such that H1  U  h-cl(U)  K. It follows that H2  X − h-cl(U) = V, say, 

then V is h-open and U ∩ V = . Hence H1 and H2 are separated by h-open sets U and V. Therefore, X is h-normal.  

4. Some Related Generalized Functions with h-Normal Spaces 
4.1. Definition. A function f: X → Y is called  

(1) R-map [5] if f −1(V) is regular open in X for every regular open set V of Y,  

(2) completely continuous [3] if f −1(V) is regular open in X for every open set V of Y,  

(3) rc-continuous [10] if for each regular closed set F in Y, f −1(F) is regular closed in X.  
 

4.2. Definition. A function f: X → Y is called  

(1) strongly h-open if f(U)  h-O(Y) for each U  h-O(X),  

(2) strongly h-closed if f(U)  h-C(Y) for each U  h-C(X),  

(3) almost h-irresolute if for each x in X and each h-neighbourhood V of f(x), h-cl(f −1(V)) is a h-neighbourhood of x.  

 

4.3. Theorem. A function f: X → Y is strongly h-closed if and only if for each subset A in Y and for each h-open set U in X 

containing f −1(A), there exists an h-open set V containing A such that f −1(V)  U. 

 Proof. (⇒): Suppose that f is strongly h-closed. Let A be a subset of Y and U  h-O(X) containing f −1(A). Put V = Y − f(X − 

U), then V is an h-open set of Y such that A  V and f −1(V)  U. 

 (⇐): Let K be any h-closed set of X. Then f −1(Y − f(K)) ⊂ X − K and X − K  h-O(X). There exists an h-open set V of Y 

such that Y − f(K)  V and f −1(V)  X − K. Therefore, we have f(K)  Y − V and K  f −1(Y − V). Hence, we obtain f(K) = Y 

− V, and f(K) is h-closed in Y . This shows that f is strongly h-closed.  

4.4. Lemma. For a function f: X → Y, the following are equivalent:  

(1) f is almost h-irresolute,  

(2) f −1(V)  -int(h-cl(f −1 (V))) for every V  h-O(Y).  

 

4.5. Theorem. A function f: X → Y is almost -irresolute if and only if f(h-cl(U))  h-cl(f(U)) for every U  h-O(X).  

Proof. (): Let U ∈ h-O(X). Suppose y  h-cl(f(U)). Then there exists V ∈ h-O(Y) such that V ∩ f(U) = . Hence, f −1(V) ∩ U 

= . Since U  h-O(X), we have h-int(h-cl(f −1(V ))) ∩ h-cl(U) = . Then by Lemma 4.4, f −1(V) ∩ h-cl(U) =  and hence V ∩ 

f(h-cl(U)) = . This implies that y  f(h-cl(U)).  

(): If V  h-O(Y), then M = X − h-cl(f −1(V))  h-O(X). By hypothesis, f(h-cl(M)) ⊂ h-cl(f(M)) and hence X − h-int(h-cl(f 
−1(V))) = h-cl(M)  f −1(h-cl(f(M)))  f −1(h-cl(f(X − f −1(V))))  f −1(h-cl(Y − V)) = f −1 (Y − V) = X − f −1(V). Therefore, f 
−1(V)  h-int(h-cl(f −1(V))). By Lemma 4.4, f is almost h-irresolute.  

4.6. Theorem. If f: X → Y is a strongly h-open continuous almost h-irresolute function from an h-normal space X onto a space 

Y, then Y is h-normal.  
 

Proof. Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f −1(A) is closed, and f −1 (B) 

is an open set of X such that f −1(A)  f −1(B). As X is h-normal, there exists an h-open set U in X such that f −1(A)  U  h-

cl(U)  f −1(B) by Theorem 3.7. Then, f(f −1(A))  f(U)  f(h-cl(U))  f(f −1(B)). Since f is a strongly h-open, almost h-

irresolute surjection, we obtain A  f(U)  h-cl(f(U))  B. Then again, by Theorem 3.7, the space Y is h-normal.  
 

4.7. Theorem. If f: X → Y is a strongly h-closed continuous function from an h-normal space X onto a space Y, then Y is h-

normal.  

 

Proof. Let M1 and M2 be disjoint closed sets. Then f −1(M1) and f −1(M2) are closed sets. Since X is h-normal, then there exist 

disjoint h-open sets U and V such that f −1(M1)  U and f −1(M2)  V. By Theorem 4.3, there exist h-open sets A and B such 

that M1  A, M2  B, f −1(A)  U and f −1(B)  V. Also, A and B are disjoint. Thus, Y is h-normal.  
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5. Some Generalized h-Closed Functions 
5.1. Definition. A function f: X → Y is said to be  

(1) h-closed [1] if f(A) is h-closed in Y for each closed set A of X,  

(2) hg-closed if f(A) is hg-closed in Y for each closed set A of X,  

(3) gh-closed if f(A) is gh-closed in Y for each closed set A of X.  

 

5.2. Definition. A function f: X → Y is said to be  

(1) quasi h-closed if f(A) is closed in Y for each A  h-C(X),  

(2) h-hg-closed if f(A) is hg-closed in Y for each A  h-C(X),  

(3) h-gh-closed if f(A) is gh-closed in Y for each A  h-C(X),  

(4) almost gh-closed if f(A) is gh-closed in Y for each A  R-C(X).  

 

5.3. Definition. A function f: X → Y is said to be h-gh-continuous if f −1(K) is gh-closed in X for every K  hC(Y).  

5.4. Definition. A function f: X → Y is said to be h-irresolute [1] if f −1(V)  h-O(X) for every V  h-O(Y).  

5.5. Theorem. Let f: X → Y and g: Y → Z be functions. Then  

(1) the composition gof: X → Z is h-gh-closed if f is h-gh-closed and g is continuous h-gh-closed.  

(2) the composition gof: X → Z is h-gh-closed if f is strongly h-closed and g is h-gh-closed.  

(3) the composition gof: X → Z is h-gh-closed if f is quasi h-closed and g is gh-closed. 

5.6. Theorem. Let f: X → Y and g: Y → Z be functions, and let the composition gof: X → Z be h-gh-closed. If f is an h-

irresolute surjection, then g is h-hg-closed.  

Proof. Let K  h-C(Y). Since f is h-irresolute and surjective, f −1(K)  h-C(X) and (gof)( f −1(K)) = g(K). Hence, g(K) is gh-

closed in Z, and hence g is h-gh-closed.  

5.7. Lemma. A function f: X → Y is h-gh-closed if and only if for each subset B of Y and each U  h-O(X) containing f −1(B), 

there exists a g h-open set V of Y such that B  V and f −1(V)  U. 

Proof. (): Suppose that f is h-gh-closed. Let B be a subset of Y and U  h-O(X) containing f −1(B). Put V = Y − f(X − U), 

then V is a gh-open set of Y such that B  V and f −1(V)  U.  

(): Let K be any h-closed set of X. Then f −1(Y − f(K))  X − K and X − K  h-O(X). There exists a gh-open set V of Y such 

that Y − f(K)  V and f −1(V)  X − K. Therefore, we have f(K)  Y − V and K  f −1(Y − V). Hence, we obtain f(K) = Y − V, 

and f(K) is gh-closed in Y . This shows that f is h-gh-closed.  

5.8. Theorem. If f: X → Y is continuous h-gh-closed, then f(H) is gh-closed in Y for each gh-closed set H of X.  

Proof. Let H be any g-closed set of X and V, an open set of Y containing f(H). Since f −1(V) is an open set of X containing H, 

h-cl(H)  f −1(V) and hence f(h-cl(H))  V . Since f is h-gh-closed and h-cl(H)  hC(X), we have h-cl(f(H))  h-cl(f(h-cl(H))) 

 V . Therefore, f(H) is gh-closed in Y.  

 

5.9. Remark. Every h-irresolute function is h-gh-continuous but not conversely.  

5.10. Theorem. A function f: X → Y is h-gh-continuous if and only if f −1(V) is gh-open in X for every V  h-O(Y).  

5.11. Theorem. If f: X → Y is closed h-gh-continuous, then f −1(K) is gh-closed in X for each gh-closed set K of Y.  

Proof. Let K be a gh-closed set of Y and U an open set of X containing f −1(K). Put V = Y − f(X − U), then V is open in Y, K 

 V, and f −1(V)  U. Therefore, we have h-cl(K)  V and hence f −1(K)  f −1(h-cl(K))  f −1(V )  U. Since f is h-gh-

continuous, f −1(h-cl(K)) is gh-closed in X and hence h-cl(f −1(K))  h-cl(f −1(h-cl(K)))  U. This shows that f −1(K) is gh-

closed in X.  

 

5.12. Corollary. If f: X → Y is closed h-irresolute, then f −1(K) is gh-closed in X for each gh-closed set K of Y.  

5.13. Theorem. If f: X → Y is an open h-gh-continuous bijection, then f −1(K) is gh-closed in X for every gh-closed set K of Y.  
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Proof. Let K be a gh-closed set of Y and U an open set of X containing f −1(K). Since f is an open surjective, K = f(f −1 (K))  

f(U) and f(U) is open. Therefore, h-cl(K)  f(U). Since f is injective, f −1(K)  f −1(h-cl(K))  f −1(f(U)) = U. Since f is h-gh-

continuous, f −1(h-cl(K)) is gh-closed in X and hence h-cl(f −1(K))  h-cl(f −1(h-cl(K)))  U. This shows that f −1(K) is gh-

closed in X.  

 

5.14. Theorem. Let f: X → Y and g: Y → Z be functions, and let the composition gof: X → Z be h-gh-closed. If g is an open 

h-gh-continuous bijection, then f is h-gh-closed.  

Proof. Let H  h-C(X). Then (gof)(H) is gh -closed in Z and g −1((gof)(H)) = f(H). By Theorem 5.13, f(H) is g h-closed in Y, 

and hence f is h-gh-closed.  

 

5.15. Theorem. Let f: X → Y and g: Y → Z be functions, and let the composition gof: X → Z be h-gh-closed. If g is a closed 

h-gh-continuous injection, then f is h-gh-closed.  

Proof. Let H  hC(X). Then (gof)(H) is gh-closed in Z and g −1((gof)(H)) = f(H). By Theorem 5.11, f(H) is gh-closed in Y, and 

hence f is h-gh-closed. 

  

6. Characterizations and Preservation Theorems of h-Normal Spaces 
6.1. Theorem. For a topological space X, the following are equivalent:  

(a) X is h-normal,  

(b) for any pair of disjoint closed sets A and B of X, there exist disjoint gh-open sets U and V of X such that A  U and B  V,  

(c) for each closed set A and each open set B containing A, there exists a gh-open set U such that cl(A)  U  h-cl(U)  B,  

(d) for each closed A and each g-open set B containing A, there exists an h-open set U such that A  U  h-cl(U)  int(B),  

(e) for each closed A and each g-open set B containing A, there exists a gh-open set G such that A  G  h-cl(G)  int(B),  

(f ) for each g-closed set A and each open set B containing A, there exists an h-open set U such that cl(A)  U  h-cl(U)  B,  

(g) for each g-closed set A and each open set B containing A, there exists a gh-open set G such that cl(A)  G  h-cl(G)  B.  

 

Proof. (a)  (b)  (c): Since every h-open set is gh-open, it is obvious.  

(d)  (e)  (c) and (f)  (g)  (c): Since every closed (resp. open) set is g-closed (resp. g-open), it is obvious.  

(c)  (e): Let A be a closed subset of X and B be a g-open set such that A  B. Since B is g-open, and A is closed, A  int(A). 

Then, there exists a gh-open set U such that A  U  h-cl(U)  int(B).  

(e)  (d): Let A be any closed subset of X and B be a g-open set containing A. Then there exists a gh-open set G such that A ⊂ 

G ⊂ h-cl(G) ⊂ int(B). Since G is gh-open, A ⊂ h-int(G). Put U = h-int(G), then U is h-open and A ⊂ U ⊂ h-cl(U) ⊂ int(B).  

c)  (g): Let A be any g-closed subset of X and B be an open set such that A  B. Then cl(A)  B. Therefore, there exists a 

gh-open set U such that cl(A)  U  h-cl(U)  B.  

(g)  (f): Let A be any g-closed subset of X and B be an open set containing A. Then there exists a gh-open set G such that 

cl(A)  G  h-cl(G)  B. Since G is gh-open and cl(A)  G, we have cl(A)  h-int(G), put U = h-int(G), then U is h-open and 

cl(A)  U  h-cl(U)  B.  

6.2. Theorem. If f: X → Y is a continuous quasi h-closed surjection, and X is h-normal, then Y is normal.  

Proof. Let M1 and M2 be any disjoint closed sets of Y. Since f is continuous, f −1(M1) and f −1(M2) are disjoint closed sets of X. 

Since X is h-normal, there exist disjoint U1, U2  h-O(X) such that f −1(Mi)  Ui for i = 1, 2. Put Vi = Y − f(X − Ui); then Vi is 

open in Y, Mi  Vi and f −1(Vi)  Ui for i = 1, 2. Since U1 ∩ U2 =  and f is surjective; we have V1 ∩ V2 = . This shows that Y 

is normal.  

 

6.3. Lemma. A subset A of a space X is gh-open if and only if F  h-int(A) whenever F is closed and F  A.  

6.4. Theorem. Let f: X → Y be a closed h-gh-continuous injection. If Y is h-normal, then X is h-normal.  

Proof. Let N1 and N2 be disjoint closed sets of X; since f is a closed injection, f(N1) and f(N2) are disjoint closed sets of Y . By 

the h-normality of Y, there exist disjoint V1, V2  h-O(Y) such that f(Ni)  Vi for i = 1, 2. Since f is h-gh-continuous, f −1(V1) 

and f −1(V2) are disjoint gh-open sets of X and Ni  f −1(Vi) for i = 1, 2. Now, put Ui = h-int(f −1(Vi)) for i = 1, 2. Then, Ui  h-

O(X), Ni  Ui and U1 ∩ U2 = . This shows that X is h-normal.  



Hamant kumar & Poonam Sharma / IJMTT, 69(6), 1-7, 2023 

6 

 

6.5. Corollary. If f: X → Y is a closed h-irresolute injection, and Y is h-normal, then X is h-normal.  

Proof. This is an immediate consequence since every h-irresolute function is h-gh-continuous. 

  

6.6. Lemma. A function f: X → Y is almost gh-closed if and only if for each subset B of Y and each U  R-O(X) containing f 
−1(B), there exists a gh-open set V of Y such that B  V and f −1(V)  U.  

 

6.7. Lemma. If f: X → Y is almost gh-closed, then for each closed set M of Y and each U  R-O(X) containing f −1(M), there 

exists V  h-O(Y) such that M  V and f −1(V)  U.  

6.8. Theorem. Let f: X → Y be a continuous, almost gh-closed surjection. If X is normal, then Y is h-normal.  

Proof. Let M1 and M2 be any disjoint, closed sets of Y. Since f is continuous, f −1(M1) and f −1(M2) are disjoint closed sets of X. 

By the normality of X, there exist disjoint open sets U1 and U2 such that f −1(Mi)  Ui, where i = 1, 2. Now, put Gi = int(cl(Ui)) 

for i = 1, 2, then Gi  R-O(X), f −1(Mi)  Ui  Gi and G1 ∩ G2 = . By Lemma 6.7, there exists Vi  h-O(Y) such that Mi  Vi 

and f −1(Vi)  Gi, where i = 1, 2. Since G1 ∩ G2 =  and f is surjective, we have V1 ∩ V2 = . This shows that Y is h-normal.  

 

6.9. Corollary. If f: X → Y is a continuous h-closed surjection, and X is normal, then Y is h-normal.    

7. Conclusion 
In this paper, we introduce and study a new class of sets, called h generalized closed sets and relationships among closed, 

g-closed, gh-closed and hg-closed sets are investigated. Further, we introduce a new class of normal spaces, called h-normal 

spaces and obtain a characterization of h-normal spaces. Moreover, we define the forms of generalized h-closed, h-generalized 

closed and some h-generalized continuous functions. By utilizing these functions, we study properties of the forms of 

generalized h-closed functions and preservation theorems for h-normal spaces. This idea can be extended to bitopological, 

ordered topological, ordered bitopological and fuzzy topological spaces etc. 
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