Original Article

h-Normal Spaces in General Topology

Hamant kumar¹, Poonam Sharma²

¹Department of Mathematics, Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India) ²Department of Mathematics, HIMT College, Greater Noida, U. P. (India)

Received: 09 April 2023Revised: 18 May 2023Accepted: 03 June 2023Published: 15 June 2023

Abstract - In this paper, we introduce and study a new class of sets, called h generalized closed sets and relationships among closed, g-closed and hg-closed sets are investigated. Further, we introduce a new class of normal spaces, called h-normal spaces and obtain a characterization of h-normal spaces. Moreover, we define the forms of generalized h-closed, h-generalized closed and some h-generalized continuous functions. By utilizing these functions, we study properties of the forms of generalized h-closed functions and preservation theorems for h-normal spaces.

Keywords - h-open, gh-closed and hg-closed sets, h-normal spaces, h-closed, gh-closed and h-gh-closed functions.

2020 Mathematics Subject Classification: 54A05, 54C08, 54C10, 54D15.

1. Introduction

In 1970, Levine [15] initiated the investigation of g-closed sets in topological spaces; since then, many modifications of gclosed sets have been defined and investigated by a large number of topologists. In 1973, Carnahan [5] introduced some properties related to compactness in topological spaces. In 1978, Maheshwari and Prasad [16] introduced s-normal spaces and obtained their characterizations. In 2000, Dontchev and Noiri [6] studied the concept of quasi-normal spaces and obtained their properties.

In 2008, Kalantan [11] introduced the notion of π -normal spaces and obtained their characterizations. In 2018, Kumar [12] introduced the concept of softly normal spaces and obtained their properties. In 2019, Kumar [13, 14] introduced the notions of silky normal and β^* g-normal spaces and obtained their characterizations. In 2021, Abbas [1] introduced the concept of h-open sets and obtained their properties. In 2022, Abdullah [2] introduced the concept of generalized h-closed sets and studied their properties.

In this paper, we introduce and study a new class of sets, called h generalized closed sets and relationships among closed, g-closed, gh-closed and hg-closed sets are investigated. Further, we introduce a new class of normal spaces, called h-normal spaces and obtain a characterization and preservation theorems of h-normal spaces.

2. Preliminaries

In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and $f : (X, \mathfrak{I}) \rightarrow (Y, \sigma)$ (or simply $f: X \rightarrow Y$) denotes a function f of a space (X, \mathfrak{I}) into a space (Y, σ) . Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively. A subset A of the topological space (X, \mathfrak{I}) is said to be an h-open [1] set if for every non-empty set U in X, $U \neq X$ and $U \in \mathfrak{I}$, such that $A \subset int(A \cup U)$. The complement of the h-open set is called h-closed. The collection of all h-open (resp. h-closed) sets is denoted by h-O(X) (resp. h-C(X)).

2.1. Definition. A subset A of a topological space (X, \mathfrak{I}) is said to be

- (1) **g-closed** [15] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.
- (2) generalized h-closed [2] (briefly gh-closed) if $h-cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.
- (3) **h-generalized-closed** (briefly hg-closed) if $h-cl(A) \subset U$ whenever $A \subset U$ and $U \in h-O(X)$.

2.2. Remark. We have the following implications for the properties of subsets:

closed		\rightarrow		g-closed	
\downarrow				\downarrow	
h-closed	\rightarrow	hg-closed	\rightarrow	gh-closed	

Where none of the implications are reversible.

2.3. Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. Then the subset $A = \{a\}$ is h-closed as well as gh-closed but not g-closed in (X, \mathfrak{I}) .

2.4. Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then the subset $A = \{a\}$ is h-closed but not closed in (X, \mathfrak{I}) .

2.5. Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}\}$. Then the subset $A = \{a\}$ is h-closed as well as gh-closed in (X, \mathfrak{I}) . But $A = \{b\}$ is gh-closed but not h-closed in (X, \mathfrak{I}) .

3. h-Normal Spaces

3.1. Definition. A space X is said to be **h-normal** if, for any pair of disjoint closed sets A and B of X, there exist disjoint hopen sets U and V such that $A \subset U$ and $B \subset V$.

3.2. Remark. The following diagram holds for a topological space (X, \Im) :

normal \rightarrow h-normal

Where none of the implications are reversible.

3.3. Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. Consider the disjoint closed sets $A = \{b\}$ and $B = \{c\}$. Then there exist disjoint h-open sets $U = \{b\}$ and $V = \{c\}$ such that $A \subset U$ and $B \subset V$. Hence the topological space (X, \mathfrak{I}) is h-normal but not normal, since U and V are not open sets.

3.4. Example. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Consider the disjoint closed sets $A = \phi$ and $B = \{d\}$. Then there exist disjoint h-open sets $U = \{a\}$ and $V = \{b, c, d\}$ such that $A \subset U$ and $B \subset V$. Hence the topological space (X, \Im) is h-normal but not normal since the set V is not open.

3.5. Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}\}$. Consider the disjoint closed sets $A = \phi$ and $B = \{b, c\}$. Then there exist disjoint h-open sets $U = \{a\}$ and $V = \{b, c\}$ such that $A \subset U$ and $B \subset V$. Hence the topological space (X, \mathfrak{I}) is h-normal but not normal since V is not an open set.

3.6. Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, X, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$. Consider the disjoint closed sets $A = \phi$ and $B = \{c\}$. Then there exist disjoint h-open sets $U = \{b\}$ and $V = \{a, c, d\}$ such that $A \subset U$ and $B \subset V$. Hence the topological space (X, \mathfrak{I}) is h-normal but not normal since the sets U and V are not open.

3.7. Theorem. For a space X, the following are equivalent:

(1) X is h-normal,

(2) For every pair of open sets U and V whose union is X, there exist h-closed sets A and B such that $A \subset U, B \subset V$ and $A \cup B = X$,

(3) For every closed set H and every open set K containing H, there exists an h-open set U such that $H \subset U \subset h-cl(U) \subset K$.

Proof. (1) \Rightarrow (2): Let U and V be a pair of open sets in an h-normal space X such that $X = U \cup V$. Then X - U, X - V are disjoint closed sets. Since X is h-normal, there exist disjoint h-open sets U_1 and V_1 such that $X - U \subset U_1$ and $X - V \subset V_1$. Let $A = X - U_1$, $B = X - V_1$. Then A and B are h-closed sets such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

 $(2) \Rightarrow (3)$: Let H be a closed set and K be an open set containing H. Then X – H, and K are open sets whose union is X. Then by (2), there exist h-closed sets M₁ and M₂ such that M₁ \subset X – H and M₂ \subset K and M₁ \cup M₂ = X. Then H \subset X – M₁, X – K \subset

 $X - M_2$ and $(X - M_1) \cap (X - M_2) = \phi$. Let $U = X - M_1$ and $V = X - M_2$. Then U and V are disjoint h-open sets such that $H \subset U \subset X - V \subset K$. As X - V is an h-closed set, we have h-cl(U) $\subset X - V$ and $H \subset U \subset$ h-cl(U) $\subset K$.

 $(3) \Rightarrow (1)$: Let H_1 and H_2 be any two disjoint closed sets of X. Put $K = X - H_2$, then $H_2 \cap K = \phi$. $H_1 \subset K$, where K is an open set. Then by (3), there exists an h-open set U of X such that $H_1 \subset U \subset h\text{-cl}(U) \subset K$. It follows that $H_2 \subset X - h\text{-cl}(U) = V$, say, then V is h-open and $U \cap V = \phi$. Hence H_1 and H_2 are separated by h-open sets U and V. Therefore, X is h-normal.

4. Some Related Generalized Functions with h-Normal Spaces

4.1. Definition. A function $f: X \rightarrow Y$ is called

(1) **R-map** [5] if $f^{-1}(V)$ is regular open in X for every regular open set V of Y,

- (2) completely continuous [3] if $f^{-1}(V)$ is regular open in X for every open set V of Y,
- (3) **rc-continuous** [10] if for each regular closed set F in Y, $f^{-1}(F)$ is regular closed in X.

4.2. Definition. A function $f: X \rightarrow Y$ is called

- (1) **strongly h-open** if $f(U) \in h-O(Y)$ for each $U \in h-O(X)$,
- (2) strongly h-closed if $f(U) \in h-C(Y)$ for each $U \in h-C(X)$,

(3) **almost h-irresolute** if for each x in X and each h-neighbourhood V of f(x), $h-cl(f^{-1}(V))$ is a h-neighbourhood of x.

4.3. Theorem. A function $f: X \to Y$ is strongly h-closed if and only if for each subset A in Y and for each h-open set U in X containing $f^{-1}(A)$, there exists an h-open set V containing A such that $f^{-1}(V) \subset U$.

Proof. (\Rightarrow): Suppose that f is strongly h-closed. Let A be a subset of Y and U \in h-O(X) containing f⁻¹(A). Put V = Y - f(X - U), then V is an h-open set of Y such that A \subset V and f⁻¹(V) \subset U.

(⇐): Let K be any h-closed set of X. Then $f^{-1}(Y - f(K)) \subset X - K$ and $X - K \in h-O(X)$. There exists an h-open set V of Y such that $Y - f(K) \subset V$ and $f^{-1}(V) \subset X - K$. Therefore, we have $f(K) \supset Y - V$ and $K \subset f^{-1}(Y - V)$. Hence, we obtain f(K) = Y - V, and f(K) is h-closed in Y. This shows that f is strongly h-closed.

4.4. Lemma. For a function f: $X \rightarrow Y$, the following are equivalent: (1) f is almost h-irresolute,

(1) I is annost in-intesolute,

 $(2) \ f^{-1}(V) \subset \text{-int}(h\text{-}cl(f^{-1}(V))) \ for \ every \ V \in h\text{-}O(Y).$

4.5. Theorem. A function f: $X \rightarrow Y$ is almost -irresolute if and only if $f(h-cl(U)) \subset h-cl(f(U))$ for every $U \in h-O(X)$.

Proof. (\Rightarrow): Let $U \in h$ -O(X). Suppose $y \notin h$ -cl(f(U)). Then there exists $V \in h$ -O(Y) such that $V \cap f(U) = \phi$. Hence, $f^{-1}(V) \cap U = \phi$. Since $U \in h$ -O(X), we have h-int(h-cl($f^{-1}(V)$)) $\cap h$ -cl(U) = ϕ . Then by Lemma 4.4, $f^{-1}(V) \cap h$ -cl(U) = ϕ and hence $V \cap f(h$ -cl(U)) = ϕ . This implies that $y \notin f(h$ -cl(U)).

(⇐): If $V \in h-O(Y)$, then $M = X - h-cl(f^{-1}(V)) \in h-O(X)$. By hypothesis, $f(h-cl(M)) \subset h-cl(f(M))$ and hence $X - h-int(h-cl(f^{-1}(V))) = h-cl(M) \subset f^{-1}(h-cl(f(M))) \subset f^{-1}(h-cl(f(X - f^{-1}(V)))) \subset f^{-1}(h-cl(Y - V)) = f^{-1}(Y - V) = X - f^{-1}(V)$. Therefore, $f^{-1}(V) \subset h-int(h-cl(f^{-1}(V)))$. By Lemma 4.4, f is almost h-irresolute.

4.6. Theorem. If f: $X \rightarrow Y$ is a strongly h-open continuous almost h-irresolute function from an h-normal space X onto a space Y, then Y is h-normal.

Proof. Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, $f^{-1}(A)$ is closed, and $f^{-1}(B)$ is an open set of X such that $f^{-1}(A) \subset f^{-1}(B)$. As X is h-normal, there exists an h-open set U in X such that $f^{-1}(A) \subset U \subset h$ cl(U) $\subset f^{-1}(B)$ by Theorem 3.7. Then, $f(f^{-1}(A)) \subset f(U) \subset f(h\text{-cl}(U)) \subset f(f^{-1}(B))$. Since f is a strongly h-open, almost hirresolute surjection, we obtain $A \subset f(U) \subset h\text{-cl}(f(U)) \subset B$. Then again, by Theorem 3.7, the space Y is h-normal.

4.7. Theorem. If f: $X \rightarrow Y$ is a strongly h-closed continuous function from an h-normal space X onto a space Y, then Y is h-normal.

Proof. Let M_1 and M_2 be disjoint closed sets. Then $f^{-1}(M_1)$ and $f^{-1}(M_2)$ are closed sets. Since X is h-normal, then there exist disjoint h-open sets U and V such that $f^{-1}(M_1) \subset U$ and $f^{-1}(M_2) \subset V$. By Theorem 4.3, there exist h-open sets A and B such that $M_1 \subset A$, $M_2 \subset B$, $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Also, A and B are disjoint. Thus, Y is h-normal.

5. Some Generalized h-Closed Functions

- **5.1. Definition**. A function $f: X \rightarrow Y$ is said to be
- (1) h-closed [1] if f(A) is h-closed in Y for each closed set A of X,

(2) **hg-closed** if f(A) is hg-closed in Y for each closed set A of X,

(3) **gh-closed** if f(A) is gh-closed in Y for each closed set A of X.

5.2. Definition. A function $f: X \rightarrow Y$ is said to be

- (1) **quasi h-closed** if f(A) is closed in Y for each $A \in h$ -C(X),
- (2) **h-hg-closed** if f(A) is hg-closed in Y for each $A \in h$ -C(X),
- (3) **h-gh-closed** if f(A) is gh-closed in Y for each $A \in h$ -C(X),
- (4) **almost gh-closed** if f(A) is gh-closed in Y for each $A \in R$ -C(X).

5.3. Definition. A function f: $X \to Y$ is said to be h-gh-continuous if $f^{-1}(K)$ is gh-closed in X for every $K \in hC(Y)$.

5.4. Definition. A function f: $X \to Y$ is said to be h-irresolute [1] if $f^{-1}(V) \in h$ -O(X) for every $V \in h$ -O(Y).

5.5. Theorem. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then

(1) the composition gof: $X \rightarrow Z$ is h-gh-closed if f is h-gh-closed and g is continuous h-gh-closed.

(2) the composition gof: $X \rightarrow Z$ is h-gh-closed if f is strongly h-closed and g is h-gh-closed.

(3) the composition gof: $X \rightarrow Z$ is h-gh-closed if f is quasi h-closed and g is gh-closed.

5.6. Theorem. Let $f: X \to Y$ and $g: Y \to Z$ be functions, and let the composition gof: $X \to Z$ be h-gh-closed. If f is an h-irresolute surjection, then g is h-hg-closed.

Proof. Let $K \in h$ -C(Y). Since f is h-irresolute and surjective, $f^{-1}(K) \in h$ -C(X) and $(gof)(f^{-1}(K)) = g(K)$. Hence, g(K) is gh-closed in Z, and hence g is h-gh-closed.

5.7. Lemma. A function $f: X \to Y$ is h-gh-closed if and only if for each subset B of Y and each $U \in h-O(X)$ containing $f^{-1}(B)$, there exists a g h-open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. (\Rightarrow): Suppose that f is h-gh-closed. Let B be a subset of Y and U \in h-O(X) containing f⁻¹(B). Put V = Y - f(X - U), then V is a gh-open set of Y such that B \subset V and f⁻¹(V) \subset U.

(\Leftarrow): Let K be any h-closed set of X. Then $f^{-1}(Y - f(K)) \subset X - K$ and $X - K \in h-O(X)$. There exists a gh-open set V of Y such that $Y - f(K) \subset V$ and $f^{-1}(V) \subset X - K$. Therefore, we have $f(K) \supset Y - V$ and $K \subset f^{-1}(Y - V)$. Hence, we obtain f(K) = Y - V, and f(K) is gh-closed in Y. This shows that f is h-gh-closed.

5.8. Theorem. If f: X \rightarrow Y is continuous h-gh-closed, then f(H) is gh-closed in Y for each gh-closed set H of X. **Proof**. Let H be any g-closed set of X and V, an open set of Y containing f(H). Since f⁻¹(V) is an open set of X containing H, h-cl(H) \subset f⁻¹(V) and hence f(h-cl(H)) \subset V. Since f is h-gh-closed and h-cl(H) \in hC(X), we have h-cl(f(H)) \subset h-cl(f(h-cl(H))) \subset V. Therefore, f(H) is gh-closed in Y.

5.9. Remark. Every h-irresolute function is h-gh-continuous but not conversely.

5.10. Theorem. A function f: $X \rightarrow Y$ is h-gh-continuous if and only if $f^{-1}(V)$ is gh-open in X for every $V \in h$ -O(Y).

5.11. Theorem. If f: $X \to Y$ is closed h-gh-continuous, then $f^{-1}(K)$ is gh-closed in X for each gh-closed set K of Y. **Proof.** Let K be a gh-closed set of Y and U an open set of X containing $f^{-1}(K)$. Put V = Y - f(X - U), then V is open in Y, K $\subset V$, and $f^{-1}(V) \subset U$. Therefore, we have h-cl(K) $\subset V$ and hence $f^{-1}(K) \subset f^{-1}(h-cl(K)) \subset f^{-1}(V) \subset U$. Since f is h-gh-continuous, $f^{-1}(h-cl(K))$ is gh-closed in X and hence $h-cl(f^{-1}(K)) \subset h-cl(f^{-1}(h-cl(K))) \subset U$. This shows that $f^{-1}(K)$ is gh-closed in X.

5.12. Corollary. If f: X \rightarrow Y is closed h-irresolute, then f⁻¹(K) is gh-closed in X for each gh-closed set K of Y.

5.13. Theorem. If f: X \rightarrow Y is an open h-gh-continuous bijection, then f⁻¹(K) is gh-closed in X for every gh-closed set K of Y.

Proof. Let K be a gh-closed set of Y and U an open set of X containing $f^{-1}(K)$. Since f is an open surjective, $K = f(f^{-1}(K)) \subset f(U)$ and f(U) is open. Therefore, $h\text{-cl}(K) \subset f(U)$. Since f is injective, $f^{-1}(K) \subset f^{-1}(h\text{-cl}(K)) \subset f^{-1}(f(U)) = U$. Since f is h-gh-continuous, $f^{-1}(h\text{-cl}(K))$ is gh-closed in X and hence $h\text{-cl}(f^{-1}(K)) \subset h\text{-cl}(f^{-1}(h\text{-cl}(K))) \subset U$. This shows that $f^{-1}(K)$ is gh-closed in X.

5.14. Theorem. Let $f: X \to Y$ and $g: Y \to Z$ be functions, and let the composition gof: $X \to Z$ be h-gh-closed. If g is an open h-gh-continuous bijection, then f is h-gh-closed.

Proof. Let $H \in h$ -C(X). Then (gof)(H) is gh -closed in Z and g⁻¹((gof)(H)) = f(H). By Theorem 5.13, f(H) is g h-closed in Y, and hence f is h-gh-closed.

5.15. Theorem. Let $f: X \to Y$ and $g: Y \to Z$ be functions, and let the composition gof: $X \to Z$ be h-gh-closed. If g is a closed h-gh-continuous injection, then f is h-gh-closed.

Proof. Let $H \in hC(X)$. Then (gof)(H) is gh-closed in Z and $g^{-1}((gof)(H)) = f(H)$. By Theorem 5.11, f(H) is gh-closed in Y, and hence f is h-gh-closed.

6. Characterizations and Preservation Theorems of h-Normal Spaces

6.1. Theorem. For a topological space X, the following are equivalent:

(a) X is h-normal,

(b) for any pair of disjoint closed sets A and B of X, there exist disjoint gh-open sets U and V of X such that $A \subset U$ and $B \subset V$,

(c) for each closed set A and each open set B containing A, there exists a gh-open set U such that $cl(A) \subset U \subset h-cl(U) \subset B$,

(d) for each closed A and each g-open set B containing A, there exists an h-open set U such that $A \subset U \subset h-cl(U) \subset int(B)$,

(e) for each closed A and each g-open set B containing A, there exists a gh-open set G such that $A \subset G \subset h\text{-cl}(G) \subset int(B)$,

(f) for each g-closed set A and each open set B containing A, there exists an h-open set U such that $cl(A) \subset U \subset h-cl(U) \subset B$,

(g) for each g-closed set A and each open set B containing A, there exists a gh-open set G such that $cl(A) \subset G \subset h-cl(G) \subset B$.

Proof. (a) \Leftrightarrow (b) \Leftrightarrow (c): Since every h-open set is gh-open, it is obvious.

 $(d) \Rightarrow (e) \Rightarrow (c)$ and $(f) \Rightarrow (g) \Rightarrow (c)$: Since every closed (resp. open) set is g-closed (resp. g-open), it is obvious.

 $(c) \Rightarrow (e)$: Let A be a closed subset of X and B be a g-open set such that $A \subset B$. Since B is g-open, and A is closed, $A \subset int(A)$. Then, there exists a gh-open set U such that $A \subset U \subset h\text{-cl}(U) \subset int(B)$.

(e) \Rightarrow (d): Let A be any closed subset of X and B be a g-open set containing A. Then there exists a gh-open set G such that A \subset G \subset h-cl(G) \subset int(B). Since G is gh-open, A \subset h-int(G). Put U = h-int(G), then U is h-open and A \subset U \subset h-cl(U) \subset int(B).

c) \Rightarrow (g): Let A be any g-closed subset of X and B be an open set such that $A \subset B$. Then $cl(A) \subset B$. Therefore, there exists a gh-open set U such that $cl(A) \subset U \subset h$ - $cl(U) \subset B$.

 $(g) \Rightarrow (f)$: Let A be any g-closed subset of X and B be an open set containing A. Then there exists a gh-open set G such that $cl(A) \subset G \subset h-cl(G) \subset B$. Since G is gh-open and $cl(A) \subset G$, we have $cl(A) \subset h-int(G)$, put U = h-int(G), then U is h-open and $cl(A) \subset U \subset h-cl(U) \subset B$.

6.2. Theorem. If f: $X \rightarrow Y$ is a continuous quasi h-closed surjection, and X is h-normal, then Y is normal.

Proof. Let M_1 and M_2 be any disjoint closed sets of Y. Since f is continuous, $f^{-1}(M_1)$ and $f^{-1}(M_2)$ are disjoint closed sets of X. Since X is h-normal, there exist disjoint U_1 , $U_2 \in h$ -O(X) such that $f^{-1}(M_i) \subset U_i$ for i = 1, 2. Put $V_i = Y - f(X - U_i)$; then V_i is open in Y, $M_i \subset V_i$ and $f^{-1}(V_i) \subset U_i$ for i = 1, 2. Since $U_1 \cap U_2 = \phi$ and f is surjective; we have $V_1 \cap V_2 = \phi$. This shows that Y is normal.

6.3. Lemma. A subset A of a space X is gh-open if and only if $F \subset h$ -int(A) whenever F is closed and $F \subset A$.

6.4. Theorem. Let $f: X \to Y$ be a closed h-gh-continuous injection. If Y is h-normal, then X is h-normal.

Proof. Let N_1 and N_2 be disjoint closed sets of X; since f is a closed injection, $f(N_1)$ and $f(N_2)$ are disjoint closed sets of Y. By the h-normality of Y, there exist disjoint V_1 , $V_2 \in h$ -O(Y) such that $f(N_i) \subset V_i$ for i = 1, 2. Since f is h-gh-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint gh-open sets of X and $N_i \subset f^{-1}(V_i)$ for i = 1, 2. Now, put $U_i = h$ -int($f^{-1}(V_i)$) for i = 1, 2. Then, $U_i \in h$ -O(X), $N_i \subset U_i$ and $U_1 \cap U_2 = \phi$. This shows that X is h-normal.

6.5. Corollary. If f: $X \rightarrow Y$ is a closed h-irresolute injection, and Y is h-normal, then X is h-normal. **Proof.** This is an immediate consequence since every h-irresolute function is h-gh-continuous.

6.6. Lemma. A function f: $X \to Y$ is almost gh-closed if and only if for each subset B of Y and each $U \in R-O(X)$ containing f ⁻¹(B), there exists a gh-open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

6.7. Lemma. If f: X \rightarrow Y is almost gh-closed, then for each closed set M of Y and each U \in R-O(X) containing f⁻¹(M), there exists V \in h-O(Y) such that M \subset V and f⁻¹(V) \subset U.

6.8. Theorem. Let $f: X \to Y$ be a continuous, almost gh-closed surjection. If X is normal, then Y is h-normal. **Proof**. Let M_1 and M_2 be any disjoint, closed sets of Y. Since f is continuous, $f^{-1}(M_1)$ and $f^{-1}(M_2)$ are disjoint closed sets of X. By the normality of X, there exist disjoint open sets U_1 and U_2 such that $f^{-1}(M_i) \subset U_i$, where i = 1, 2. Now, put $G_i = int(cl(U_i))$ for i = 1, 2, then $G_i \in R$ -O(X), $f^{-1}(M_i) \subset U_i \subset G_i$ and $G_1 \cap G_2 = \phi$. By Lemma 6.7, there exists $V_i \in h$ -O(Y) such that $M_i \subset V_i$ and $f^{-1}(V_i) \subset G_i$, where i = 1, 2. Since $G_1 \cap G_2 = \phi$ and f is surjective, we have $V_1 \cap V_2 = \phi$. This shows that Y is h-normal.

6.9. Corollary. If f: $X \rightarrow Y$ is a continuous h-closed surjection, and X is normal, then Y is h-normal.

7. Conclusion

In this paper, we introduce and study a new class of sets, called h generalized closed sets and relationships among closed, g-closed, gh-closed and hg-closed sets are investigated. Further, we introduce a new class of normal spaces, called h-normal spaces and obtain a characterization of h-normal spaces. Moreover, we define the forms of generalized h-closed, h-generalized closed and some h-generalized continuous functions. By utilizing these functions, we study properties of the forms of generalized h-closed functions and preservation theorems for h-normal spaces. This idea can be extended to bitopological, ordered topological and fuzzy topological spaces etc.

Acknowledgements

I am heartily thankful to Dr M. C. Sharma, Department of Mathematics, N. R. E. C. College, Khurja, Uttar Pradesh (India), for his encouragement and support during the preparation of this paper.

References

- Fadhil Abbas, "On H-Open Sets and H-Continuous Function," *Journal of Applied Computational Mathematics*, vol. 9, pp. 1-5, 2020. [Google Scholar]
- [2] B. S. Abdullah, "GH Closed Set in Topological Spaces, AI-Rafidain," *Journal of Computer Science and Mathematics (RJCM)*, vol. 16, no. 1, pp. 97-102, 2022.
- [3] S.P. Arya, and R. Gupta, "On Strongly Continuous Functions," Kyungpook Mathematics Journal, vol. 14, pp. 131-141, 1974.
- [4] S.S. Benchalli, and P.G. Patil, "Some New Continuous Maps in Topological Spaces," Journal of Advanced Studies in Topology, vol. 1, no. 2, pp. 16-21, 2010. [Google Scholar] [Publisher Link]
- [5] D.A. Carnahan, "Some Properties Related to Compactness in Topological Spaces," Ph.D. Thesis, University of Arkansas, 1974. [Google Scholar] [Publisher Link]
- [6] J. Dontchev, and T. Noiri, "Quasi-Normal Spaces and πg-Closed Sets," Acta Mathematica Hungarica, vol. 89, pp. 211–219, 2000.
 [CrossRef] [Publisher Link]
- [7] J. Dugundji, Topology, Allyn and Bacon, Inc., 470, Atlantic Avenue, Boston, 1966.
- [8] Erdal Ekici, "On γ-Normal Spaces," Mathematical Bulletin of the Society of Mathematical Sciences of Romania, vol. 50, no. 98, pp. 259-272, 2007. [Google Scholar] [Publisher Link]
- [9] R. Engelking, General Topology, vol. 6, Berlin: Heldermann (Sigma Series in Pure Mathematics), Poland, 1977.
- [10] D. Jankovic, "A Note on Mappings of Extremally Disconnected Spaces," Acta Mathematica Hungarica, vol. 46, no. 1-2, pp. 83-92, 1985. [CrossRef] [Google Scholar] [Publisher Link]
- [11] Lutfi N. Kalantan, "π-Normal Topological Spaces," *Filomat*, vol. 22, no. 1, pp. 173-181, 2008. [Google Scholar] [Publisher Link]
- [12] Hamant Kumar, and M.C. Sharma, "Softly Regular Spaces in Topological Spaces," *Journal of Emerging Technologies and Innovative Research*, vol. 5, no. 11, pp. 183-190, 2018. [Publisher Link]
- [13] Hamant Kumar, "Silky Normal Spaces in Topological Spaces," *Journal of Emerging Technologies and Innovative Research*, vol. 6, no. 6, pp. 233-240, 2019. [Publisher Link]

- [14] H. Kumar, "β*g-Normal Spaces in Topological Spaces," *Journal of Emerging Technologies and Innovative Research*, vol. 6, no. 6, pp. 897-907, 2019.
- [15] N. Levine, "Generalized Closed Sets in Topological," Reports of the Mathematical Circle of Palermo, vol. 19, pp. 89-96, 1970.
- [16] S.N. Maheshwari, and R. Prasad, "On s-Normal Spaces," Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic of Romania, vol. 22, no. 2, pp. 27-29, 1978. [Google Scholar] [Publisher Link]
- [17] R.A. Mahmoud, "β-Irresolute and β-Topological Invariant," Proceedings of the Pakistan Academy of Science, vol. 27, pp. 285-296, 1990. [Google Scholar] [Publisher Link]
- [18] T.M. Nour, "Contributions to the Theory of Bitopological Spaces," PhD thesis, Delhi University, India, 1989. [Google Scholar] [Publisher Link]
- [19] Paul, and Bhattacharyya, "On p-Normal Spaces," Soochow Journal of Mathematics, vol. 21, no. 3, pp. 273-289, 1995.
- [20] M.K. Singal, and S. Arya, "On Almost Normal and Almost Completely Regular Spaces," *Glasnik Mat*, vol. 5, no. 25, pp. 141–152, 1970. [Google Scholar]
- [21] M.K. Singal, and A.R. Singal, "Mildly Normal Spaces," Kyungpook Mathematical Journal, vol. 13, no. 1, pp. 27–31, 1973. [Google Scholar]
- [22] M.C. Sharma, and Hamant Kumar, "Softly Normal Topological Spaces," Acta Ciencia Indica, vol. XLI M, no. 2, 2015. [Google Scholar] [Publisher Link]
- [23] A.L. Steen, and J.A. Seebach, Counterexamples in Topology, Dover Publications, INC., New York, 1995.
- [24] V. Zaitsev, "On Certain Classes of Topological Spaces and Their Bicompactifications," *Reports of the Academy of Sciences of the SSSR*, vol. 178, no. 4, pp. 778–779, 1968. [Google Scholar]