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Abstract - In this paper, we define an annihilator (a: b)  in a distributive q-lattice A, and we prove (a:b), which we call an 

annihilator of  ‘a’ relative to ‘b’, is an ideal of  A.  Also, we observe some basic properties of these annihilators. 
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1. Preliminaries 
Ivan Chajda [1] defined the concept of q-lattice A and defined distributive q-lattice. 

 

Definition: 1.1   

An algebra (A, ∨, ∧ ) whose binary operations ∨, ∧ satisfy the following is called a q-lattice. 

(1) a1 ∨ b1 = b1 ∨ a1  ;  a1 ∧ b1 = b1 ∧ a1         (commutativity) 

(2) a1 ∨ (b1 ∨ c1) = (a1 ∨ b1) ∨ c1  ; a1 ∧ (b1 ∧ c1) = (a1 ∧ b1) ∧ c1    (associatativity) 

(3) a1 ∨ (a1 ∧ b1)  = a1 ∨ a1  ;  a1 ∧ (a1 ∨ b1) = a1 ∧ a1      ( weak- absorption) 

(4) a1 ∨ b1 = a1 ∨ (b1 ∨ b1)  ; a1 ∧ b1 = a1 ∧ (b1 ∧ b1)   (weak- idempotence) 

(5) a1 ∨ a1 = a1 ∧ a1                        ( equalization)  

  

G.C. Rao et al. [2] defined the concept of ideal in a distributive q-lattice A.  

 

Definition: 1.2   

A q-lattice (A, ∨, ∧) is distributive if  

a1 ∨ (b1 ∧ c1) = (a1 ∨ b1) ∧ (a1 ∨ c1)    for all a1, b1, c1 ∈ A. 

In [2], it is proved that If A be a distributive q-lattice, then  

a1 ∧ (b1 ∨ c1) = (a1 ∧ b1) ∨ (a1 ∧ c1) for all a1, b1, c1 ∈ A. 

 
Definition: 1.3 

A nonempty subset I1 of a distributive q-lattice A is called an ideal of A if 

(1)    x1  and y1 ∈ I1   implies   x1 ∨ y1 ∈ I1 

(2)   x1 ∈ I1 and a1 ∈ A implies a1 ∧ x1 ∈ I1  

 

Annihilator in a Distributive q-lattice 

G. C. Rao and M. Sambasiva Rao [3] defined ‘ annihilator ’ as an Almost Distributive Lattice (ADLs) and derived 

some properties 

 

In paper [4], we defined the annihilator in distributive q-lattice A and proved for any ideal I of distributive q-lattice A 

and a∈ A, the annihilator (a: I) is an ideal of A and derived some properties. 

Here we define an annihilator (a: b)  in a distributive q-lattice A, and we prove (a:b), which we call an annihilator of  ‘a’ 

relative to ‘b’, is an ideal of  A.  Also, we observe some basic properties of these annihilators. Throughout this paper, we 

consider A to be a distributive q-lattice  

 

Definition: 1.2.1   

Definition: Ideal element of a distributive q-lattice : 

Let A be a distributive q-lattice and ‘b’ be a special element of A satisfying property b ∨ b = b, and for any element r of A, 

r ∧ b = b, then we call element ‘b’ as an ideal element of a distributive q-lattice A. 

 

Definition: 1.2.2 

Let A be distributive q-lattice and ‘b’ be an ideal element of A; then, for any element a of A, we define annihilator (a: b) of 

a relative to b as (a: b) = {x ∈ A / x ∧ a =b} 
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Definition: 1.2.3 

If P be a nonempty set of a distributive q-lattice A, then we consider the annihilator (P: b) of P relative to an ideal element 

b as  t ∈ (P: b) then (P: b) = {x ∈ A / x ∧ a =b, for all x ∈ P } 

In the following theorem, we observed the annihilator (a1: b) of a1 ∈ A relative to b is an ideal of A. 

                                                                     Throughout this paper, we consider ‘b’ to be an ideal element of a distributive 

q-lattice A. 
 

Theorem: 1.2.4   

If b be an ideal element of distributive q-lattice A, then the annihilator  (a1: b) of a1 ∈ A is an ideal of A. 

 

Proof :  (i) Let x1 ∈ (a1: b) and y1 ∈ (a1: b). 

Implies x1 ∧ a1 =b  and  y1 ∧ a1 =b. 

Now to show x1 ∨ y1 ∈ (a1: b).  

Consider (x1 ∨ y1) ∧ a1= a1 ∧ (x1 ∨ y1)                     (∵ commutativity) 

                               =  (a1 ∧ x1) ∨ (a1 ∧ y1)            (∵ A is a distributive q-lattice) 

                               =  (x1 ∧ a1) ∨ (y1 ∧ a1)             (∵  commutativity) 

                                = b ∨ b  

                                    = b 

implies (x1 ∨ y1) ∧ a1 =b,  implies   x1 ∨ y1 ∈ (a1: b). 

ii) Let x1 ∈ (a1: b) and  r1 ∈ A. 

Implies x1 ∧ a1 =b  and  r1 ∈ A. 

To show  r1 ∧ x1 ∈  (a1: b)  means to show  ( r1 ∧ x1) ∧ a1 =b. 

As  ( r1 ∧ x1) ∧ a1 = r1 ∧ (x1 ∧ a1). 

Implies   r1 ∧ (x1 ∧ a1) = r1 ∧ b = b  

implies r1 ∧ x1 ∈ (a1: b) 

Implies (a1: b)  is an ideal of a distributive q-lattice A.  

                                                                                                                                                

Theorem: 1.2.5    

If b be an ideal element of distributive q-lattice A and P be a non-empty subset A. Then we have the following 
∩

x ∈ 𝑃
 (x: b) = (P: b) 

 

Proof:  Suppose  t ∈ (P: b) 

Then t ∧ x =b for all x ∈ P,  means t ∧ x =b for all x ∈ {x}. 

Hence t ∈ (x: b) for all x ∈ P. 

Therefore t ∈  
∩

x ∈ 𝑃
 (x: b).  

Therefore  (P: b) ⊆ 
∩

x ∈ 𝑃
 (x: b) . 

And reversely,    let t ∈ 
∩

x ∈ 𝑃
 (x: b) 

Implies t ∈ (x: b)   for all x ∈  P 

implies  t ∧ x =b  for all x ∈ P 

implies t ∈ (P: b). 

Therefore  
∩

x ∈ 𝑃
 (x: b) ⊆ (P: b). 

Hence 
∩

x ∈ 𝑃
  (x: b) =(P: b).    

                                                                                                                                      
Theorem: 1.2.6  

If   (a1: b) and  (b1: b) are ideals of a distributive q-lattice A, then (a1: b) ∩ (b1: b) is an ideal of A. 

 

Proof :  Let x , y ∈ (a1: b) ∩ (b1: b) 

Then x ∈ (a1: b), x ∈ (b1: b) and  y ∈ (a1: b), y ∈ (b1: b) 

Implies x ∧ a1 =b,  x ∧ b1 =b and y ∧ a1 =b, y ∧ b1 =b 

Now to show x ∨ y ∈ (a1: b) ∩ (b1: b)  

Consider (x ∨ y) ∧ a1= a1 ∧ (x ∨ y)                     (∵ commutativity) 

                               =  (a1 ∧ x) ∨ (a1 ∧ y)            (∵ A is a distributive q-lattice) 

                               =  (x ∧ a1) ∨ (y ∧ a1)             (∵  commutativity) 

                                = b ∨ b 

                                    = b 

therefore  (x∨ y) ∈ (a1: b)   
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similarly  

Consider (x ∨ y) ∧ b1= b1 ∧ (x ∨ y)                     (∵ commutativity) 

                               =  (b1 ∧ x) ∨ (b1 ∧ y)            (∵ A is a distributive q-lattice) 

                               =  (x ∧ b1) ∨ (y ∧ b1)             (∵  commutativity) 

                                = b ∨ b 

                                    = b 

therefore  (x∨ y) ∈ (b1: b)   

Implies   x ∨ y ∈ (a1: b) ∩ (b1: b)      

Now let x ∈ (a1: b) ∩ (b1: b)     and r ∈ A. 

Then  x ∈ (a1: b) and x ∈ (b1: b)           since (a1: b) and (b1: b)   are ideals 

Then  r ∧ x ∈ (a1: b)  and r ∧ x ∈ (b1: b) 

Therefore  r ∧ x ∈ (a1: b) ∩ (b1: b).    

Hence  (a1: b) ∩ (b1: b) is an ideal of a distributive q-lattice A. 

                                                                                                                                   

Theorem: 1.2.7 

 If b be an ideal element of distributive q-lattice A and a1, b1 ∈ A, then  

(i)  If a1 ∧ b1 = b1 then (a1: b) ⊆ (b1: b) 

 (ii) (a1 ∧ b1: b) = (b1 ∧ a1: b)  

(iii) (a1 ∨ b1: b) = (b1 ∨ a1: b) 

(iv) If  property  (x ∧ a1) ∨ (x ∧ b1) = b implies x ∧ a1 =b  and x ∧ b1 = b then 

            (a1 ∨ b1: b) = (a: J) ∩ (b: J) 

      (v) (a1: b) = A if and only if a1 has property for every x ∈ A,  x ∧ a1 =b    

 

Proof :  (i) Suppose   a1 ∧ b1 = b1 

Let x ∈ (a1: b)  implies  x ∧ a1 =b 

    Consider    x ∧ b1 = x ∧ (a1 ∧ b1)  

                               =  (x ∧ a1) ∧ b1                ∵  commutativity 

                                 = b ∧ b1               ∵ associativity  

                                    = b 

Implies x ∈ (b1: b)   

Therefore   (a1: b) ⊆ (b1: b)  

 (ii)  Let x ∈ (a1 ∧ b1 :  b) 

⇔ x ∧ (a1 ∧ b1) = b 

⇔ x ∧ (b1 ∧ a1) = b 

⇔ x ∈ (b1 ∧ a1: b) . 
Therefore  (a1 ∧ b1: b) = (b1 ∧ a1: b) 

(iii)  Let  x ∈ (a1 ∨ b1 : b) 

⇔  x ∧ (a1 ∨ b1) = b 

⇔ x ∧ (b1 ∨ a1)  = b                       ∵ commutativity 

⇔ x ∈ (b1 ∨ a1: b).                

Therefore  (a1 ∨ b1: b) = (b1 ∨ a1: b) 

(iv)   Let  x ∈  (a1 ∨ b1: b)            

Implies x ∧ (a1 ∨ b1) = b  

implies (x ∧ a1) ∨ (x ∧ b1) = b ,     by given property  

implies x ∧ a1 =b  and x ∧ b1 = b 

implies x ∈ (a1: b) and x ∈ (b1: b) 

implies x ∈ (a1: b) ∩ (b1: b)    

implies (a1 ∨ b1: b) ⊆ (a1: b) ∩ (b1: b)    

Conversely, let  x ∈ (a1: b) ∩ (b1: b)   then x ∈ (a1: b) and  x ∈ (b1: b). 

Implies   x ∧ a1 = b and  x ∧ b1 = b 

Now consider x ∧ (a1 ∨ b1) = (x ∧ a1) ∨(x ∧ b1)              

Since   x ∧ a1 = b, x ∧ b1 = b 

therefore  (x ∧ a1) ∨(x ∧ b1)  = b ∨ b = b 

Hence   x ∧ (a1 ∨ b1) = b 

Therefore   x ∈ (a1 ∨ b1: b) 

Thus  (a: J) ∩ (b: J) ⊆ (a1 ∨ b1: b). 

Therefore   (a1 ∨ b1: b) = (a: J) ∩ (b: J) 

 (v) Consider a1 ∈ A , clearly   (a1: b) ⊆  A.  

Now let  x ∈ A, and as a1 has property for every x ∈ A,  x ∧ a1 =b   implies  
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x ∧ a1 = b 

x ∈  (a1: b)  

 therefore A ⊆ (a1: b) 

Hence  (a1: b) = A if and only if a1 has property for every x ∈ A,  x ∧ a1 =b    

                                                                                                                       

2. Conclusion 
This study develops the concept of an annihilator (a: b) in a distributive q-lattice A called annihilator of  ‘a’ relative to 

‘b’   for a special element ‘b’. We proved annihilator (a: b) is an ideal of  A.  From this study, we defined annihilator (P:b) 

for a non-empty set P of a distributive q-lattice A, and we can extend the study for properties of an annihilator (a: b) and an 

annihilator (P:b). 
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