Original Article

Annihilator in a Distributive q-Lattice

Ashok S Kulkarni

¹Department of Mathematics, D.A.B.N. College, Chikhali, Tal-Shirala, Dist-Sangli, Maharashtra, India.

Received: 10 April 2023Revised: 19 May 2023Accepted: 04 June 2023Published: 15 June 2023

Abstract - In this paper, we define an annihilator (a: b) in a distributive q-lattice A, and we prove (a:b), which we call an annihilator of 'a' relative to 'b', is an ideal of A. Also, we observe some basic properties of these annihilators.

Keywords - Distributive q-lattice, An annihilator (a: b), Ideal element.

1. Preliminaries

Ivan Chajda [1] defined the concept of q-lattice A and defined distributive q-lattice.

Definition: 1.1

An algebra (A, V, Λ) whose binary operations V, Λ satisfy the following is called a q-lattice.

(1) $a_1 \vee b_1 = b_1 \vee a_1$; $a_1 \wedge b_1 = b_1 \wedge a_1$ (commutativity) (2) $a_1 \vee (b_1 \vee c_1) = (a_1 \vee b_1) \vee c_1$; $a_1 \wedge (b_1 \wedge c_1) = (a_1 \wedge b_1) \wedge c_1$ (associatativity) (3) $a_1 \vee (a_1 \wedge b_1) = a_1 \vee a_1$; $a_1 \wedge (a_1 \vee b_1) = a_1 \wedge a_1$ (weak- absorption) (4) $a_1 \vee b_1 = a_1 \vee (b_1 \vee b_1)$; $a_1 \wedge b_1 = a_1 \wedge (b_1 \wedge b_1)$ (weak- idempotence) (5) $a_1 \vee a_1 = a_1 \wedge a_1$ (equalization)

G.C. Rao et al. [2] defined the concept of ideal in a distributive q-lattice A.

Definition: 1.2

A q-lattice (A, V, Λ) is distributive if $a_1 \vee (b_1 \wedge c_1) = (a_1 \vee b_1) \wedge (a_1 \vee c_1)$ for all $a_1, b_1, c_1 \in A$. In [2], it is proved that If A be a distributive q-lattice, then $a_1 \wedge (b_1 \vee c_1) = (a_1 \wedge b_1) \vee (a_1 \wedge c_1)$ for all $a_1, b_1, c_1 \in A$.

Definition: 1.3

A nonempty subset I1 of a distributive q-lattice A is called an ideal of A if

- (1) x_1 and $y_1 \in I_1$ implies $x_1 \lor y_1 \in I_1$
- (2) $x_1 \in I_1$ and $a_1 \in A$ implies $a_1 \land x_1 \in I_1$

Annihilator in a Distributive q-lattice

G. C. Rao and M. Sambasiva Rao [3] defined ' annihilator ' as an Almost Distributive Lattice (ADLs) and derived some properties

In paper [4], we defined the annihilator in distributive q-lattice A and proved for any ideal I of distributive q-lattice A and $a \in A$, the annihilator (a: I) is an ideal of A and derived some properties.

Here we define an annihilator (a: b) in a distributive q-lattice A, and we prove (a:b), which we call an annihilator of 'a' relative to 'b', is an ideal of A. Also, we observe some basic properties of these annihilators. Throughout this paper, we consider A to be a distributive q-lattice

Definition: 1.2.1

Definition: Ideal element of a distributive q-lattice :

Let A be a distributive q-lattice and 'b' be a special element of A satisfying property $b \vee b = b$, and for any element r of A, $r \wedge b = b$, then we call element 'b' as an ideal element of a distributive q-lattice A.

Definition: 1.2.2

Let A be distributive q-lattice and 'b' be an ideal element of A; then, for any element a of A, we define annihilator (a: b) of a relative to b as (a: b) = { $x \in A / x \land a = b$ }

Definition: 1.2.3

If P be a nonempty set of a distributive q-lattice A, then we consider the annihilator (P: b) of P relative to an ideal element b as $t \in (P: b)$ then $(P: b) = \{x \in A / x \land a = b, \text{ for all } x \in P \}$

In the following theorem, we observed the annihilator (a₁: b) of $a_1 \in A$ relative to b is an ideal of A.

Throughout this paper, we consider 'b' to be an ideal element of a distributive

q-lattice A.

Theorem: 1.2.4

If b be an ideal element of distributive q-lattice A, then the annihilator $(a_1: b)$ of $a_1 \in A$ is an ideal of A.

Proof : (i) Let $x_1 \in (a_1: b)$ and $y_1 \in (a_1: b)$. Implies $x_1 \wedge a_1 = b$ and $y_1 \wedge a_1 = b$. Now to show $x_1 \lor y_1 \in (a_1: b)$. Consider $(x_1 \lor y_1) \land a_1 = a_1 \land (x_1 \lor y_1)$ (: commutativity) $= (a_1 \wedge x_1) \vee (a_1 \wedge y_1)$ (:: A is a distributive q-lattice) (: commutativity) $= (\mathbf{x}_1 \wedge \mathbf{a}_1) \vee (\mathbf{y}_1 \wedge \mathbf{a}_1)$ $= b \vee b$ = bimplies $(x_1 \lor y_1) \land a_1 = b$, implies $x_1 \lor y_1 \in (a_1; b)$. ii) Let $x_1 \in (a_1: b)$ and $r_1 \in A$. Implies $x_1 \wedge a_1 = b$ and $r_1 \in A$. To show $r_1 \land x_1 \in (a_1: b)$ means to show $(r_1 \land x_1) \land a_1 = b$. As $(r_1 \wedge x_1) \wedge a_1 = r_1 \wedge (x_1 \wedge a_1)$. Implies $r_1 \wedge (x_1 \wedge a_1) = r_1 \wedge b = b$ implies $r_1 \land x_1 \in (a_1: b)$ Implies (a₁: b) is an ideal of a distributive q-lattice A.

Theorem: 1.2.5

If b be an ideal element of distributive q-lattice A and P be a non-empty subset A. Then we have the following O

$$x \in P$$
 (x: b) = (P:

Proof: Suppose $t \in (P: b)$ Then $t \land x = b$ for all $x \in P$, means $t \land x = b$ for all $x \in \{x\}$. Hence $t \in (x: b)$ for all $x \in P$. Therefore $t \in \bigcap_{x \in P} (x: b)$. Therefore $(P: b) \subseteq \bigcap_{x \in P} (x: b)$. And reversely, let $t \in \bigcap_{x \in P} (x: b)$ Implies $t \in (x: b)$ for all $x \in P$ implies $t \land x = b$ for all $x \in P$ implies $t \in (P: b)$. Therefore $\bigcap_{x \in P} (x: b) \subseteq (P: b)$. Hence $\bigcap_{x \in P} (x: b) = (P: b)$.

b)

Theorem: 1.2.6

If $(a_1: b)$ and $(b_1: b)$ are ideals of a distributive q-lattice A, then $(a_1: b) \cap (b_1: b)$ is an ideal of A.

Proof : Let x , y \in (a₁: b) \cap (b₁: b) Then x \in (a₁: b), x \in (b₁: b) and y \in (a₁: b), y \in (b₁: b) Implies x \land a₁ =b, x \land b₁ =b and y \land a₁ =b, y \land b₁ =b Now to show x \lor y \in (a₁: b) \cap (b₁: b) Consider (x \lor y) \land a₁= a₁ \land (x \lor y) (\because commutativity) = (a₁ \land x) \lor (a₁ \land y) (\because A is a distributive q-lattice) = (x \land a₁) \lor (y \land a₁) (\because commutativity) = b \lor b therefore (x \lor y) \in (a₁: b) similarly Consider $(x \lor y) \land b_1 = b_1 \land (x \lor y)$ (:: commutativity) (:: A is a distributive q-lattice) $= (b_1 \wedge x) \vee (b_1 \wedge y)$ $= (x \wedge b_1) \vee (y \wedge b_1)$ (: commutativity) $= b \vee b$ = btherefore $(x \lor y) \in (b_1: b)$ Implies $x \lor y \in (a_1: b) \cap (b_1: b)$ Now let $x \in (a_1: b) \cap (b_1: b)$ and $r \in A$. Then $x \in (a_1: b)$ and $x \in (b_1: b)$ since (a₁: b) and (b₁: b) are ideals Then $r \land x \in (a_1: b)$ and $r \land x \in (b_1: b)$ Therefore $r \land x \in (a_1: b) \cap (b_1: b)$. Hence $(a_1: b) \cap (b_1: b)$ is an ideal of a distributive q-lattice A. **Theorem: 1.2.7** If b be an ideal element of distributive q-lattice A and $a_1, b_1 \in A$, then (i) If $a_1 \wedge b_1 = b_1$ then $(a_1: b) \subseteq (b_1: b)$ (ii) $(a_1 \land b_1: b) = (b_1 \land a_1: b)$ (iii) $(a_1 \lor b_1: b) = (b_1 \lor a_1: b)$ (iv) If property $(x \land a_1) \lor (x \land b_1) = b$ implies $x \land a_1 = b$ and $x \land b_1 = b$ then $(a_1 \lor b_1: b) = (a: J) \cap (b: J)$ (v) $(a_1: b) = A$ if and only if a_1 has property for every $x \in A$, $x \land a_1 = b$ **Proof**: (i) Suppose $a_1 \wedge b_1 = b_1$ Let $x \in (a_1: b)$ implies $x \wedge a_1 = b$ Consider $x \wedge b_1 = x \wedge (a_1 \wedge b_1)$ $= (x \wedge a_1) \wedge b_1$ ∵ commutativity $= b \wedge b_1$ * associativity $= \mathbf{b}$ Implies $x \in (b_1: b)$ Therefore $(a_1: b) \subseteq (b_1: b)$ (ii) Let $x \in (a_1 \land b_1 : b)$ \Leftrightarrow x \land (a₁ \land b₁) = b $\Leftrightarrow x \land (b_1 \land a_1) = b$ $\Leftrightarrow x \in (b_1 \land a_1: b) \,.$ Therefore $(a_1 \land b_1: b) = (b_1 \land a_1: b)$ (iii) Let $x \in (a_1 \lor b_1 : b)$ \Leftrightarrow x \land (a₁ \lor b₁) = b \Leftrightarrow x \land (b₁ \lor a₁) = b :: commutativity \Leftrightarrow x \in (b₁ V a₁: b). Therefore $(a_1 \vee b_1: b) = (b_1 \vee a_1: b)$ (iv) Let $x \in (a_1 \lor b_1: b)$ Implies $x \land (a_1 \lor b_1) = b$ implies $(x \land a_1) \lor (x \land b_1) = b$, by given property implies $x \land a_1 = b$ and $x \land b_1 = b$ implies $x \in (a_1: b)$ and $x \in (b_1: b)$ implies $x \in (a_1: b) \cap (b_1: b)$ implies $(a_1 \lor b_1: b) \subseteq (a_1: b) \cap (b_1: b)$ Conversely, let $x \in (a_1: b) \cap (b_1: b)$ then $x \in (a_1: b)$ and $x \in (b_1: b)$. Implies $x \wedge a_1 = b$ and $x \wedge b_1 = b$ Now consider $x \land (a_1 \lor b_1) = (x \land a_1) \lor (x \land b_1)$ Since $x \wedge a_1 = b$, $x \wedge b_1 = b$ therefore $(x \land a_1) \lor (x \land b_1) = b \lor b = b$ Hence $x \land (a_1 \lor b_1) = b$ Therefore $x \in (a_1 \lor b_1: b)$ Thus (a: J) \cap (b: J) \subseteq (a₁ \lor b₁: b). Therefore $(a_1 \lor b_1: b) = (a: J) \cap (b: J)$ (v) Consider $a_1 \in A$, clearly $(a_1: b) \subseteq A$. Now let $x \in A$, and as a_1 has property for every $x \in A$, $x \wedge a_1 = b$ implies

 $x \land a_1 = b$ $x \in (a_1; b)$ therefore $A \subseteq (a_1; b)$ Hence $(a_1; b) = A$ if and only if a_1 has property for every $x \in A$, $x \land a_1 = b$

2. Conclusion

This study develops the concept of an annihilator (a: b) in a distributive q-lattice A called annihilator of 'a' relative to 'b' for a special element 'b'. We proved annihilator (a: b) is an ideal of A. From this study, we defined annihilator (P:b) for a non-empty set P of a distributive q-lattice A, and we can extend the study for properties of an annihilator (a: b) and an annihilator (P:b).

References

- [1] Ivan Chajada, "Lattices in Quasiordered Sets," Acta Universitatis Palackianae Olomucensis Facultas Rerum Naturalium. Mathematica, vol. 31, no. 1, pp. 6-12, 1992. [Google Scholar] [Publisher Link]
- [2] G.C. Rao et al., "Some Remarks on Distributive Q-Lattices," *International Journal of Computational Cognition*, vol. 9, no. 2, pp. 79-81, 2011. [Google Scholar] [Publisher Link]
- [3] G.C. Rao, and M. Sambasiva Rao, "Relative Annihilators in Almost Distributive Lattices," *International Journal of Computational Cognition*, vol. 9, no. 2, 2011.
- [4] A.D. Lokhande, and Ashok S. Kulkarni, "Filter and Annihilator in Distributive q-lattices," Online International Interdisciplinary Research Journal [Bi-Monthly], vol. 3, no. 1, pp. 68-77, 2013. [Publisher Link]
- [5] G.C. Rao, and M. Sambasiva Rao, "Annihilators ideals in Almost Distributive Lattices," *International Mathematical Forum*, vol. 4, no. 15, pp. 733-746, 2009. [Google Scholar] [Publisher Link]
- [6] G.C. Rao, and S. Ravi Kumar, "Minimal Prime Ideals in Almost Distributive Lattices," *International Journal of Contemporary Mathematical Sciences*, vol. 4, no. 10, pp. 475-484, 2009. [Google Scholar] [Publisher Link]
- [7] A.D. Lokhande, and Ashok S. Kulkarni, "Some Remarks in Semi q-Lattices," *International Journal of Latest Research in Science and Technology*, vol. 4, no. 6, pp. 12-14, 2015. [Publisher Link]
- [8] Ashok S. Kulkarni, and A.D. Lokhande, "Remarks on Ideal in Distributive Q-lattices," Online International Interdisciplinary Research Journal [Bi-Monthly], vol. 3, pp. 54-63, 2013. [Publisher Link]
- [9] Manisha Vasantrao Patil, "Generalizations of Distributive Lattices," Doctoral Thesis, Department of Mathematics, Shivaji University, Kolhapur, 2008.
- [10] A.D. Lokhande, and Ashok S. Kulkarni, "Semi- Ideal and Semi-Filter in Distributive Q-lattices," International Journal on Recent and Innovation Trends in Computing and Communication, vol. 2, no. 3, pp. 501-506, 2014. [Google Scholar] [Publisher Link]
- [11] A.S.A. Noor, and Momtaz Begum, "Some Properties of 0-distributive Meet Semilattices," *Annals of Pure and Applied Mathematics*, vol. 2, no. 1, pp. 60-66, 2012. [Google Scholar] [Publisher Link]
- [12] H.S. Chakraborty, and M.R. Talukder, "Some Characterizations of 0-Distributive Semilattices," *Mathematics Subject Classification*, 2012. [Google Scholar] [Publisher Link]
- [13] P. Balasubramani, "Characterizations of the 0-Distributive Semilattice," *Mathematica Bohemica*, vol. 128, no. 3, pp. 237-252, 2003. [CrossRef] [Google Scholar] [Publisher Link]
- [14] Y.S. Pawar, and A.D. Lokhande, "Normal Semilattices," Indian Journal of Puremathematics, vol. 29, no. 12, 1998.
- [15] Y.S. Pawar, and N.K. Thakare, "0-Distributive Semilattices," *Canadian Mathematical Bulletin*, vol. 21, no. 4, pp. 469-475, 1978. [CrossRef] [Google Scholar] [Publisher Link]
- [16] Ashok S Kulkarni, and A.D. Lokhande, "Semi Prime Ideal in a-Distributive Lattice," *International Journal of Mathematics and Its Applications*, vol. 6, no. 3, pp. 63-68, 2018. [Google Scholar] [Publisher Link]
- [17] Ashok S Kulkarni, "Atom and Semi Atom in A-Distributive Poset," *International Journal of Research and Analytical Reviews*, vol. 6, no. 1, pp. 147-149.
- [18] Aroon Dattatraya Lokhande, "A Study of Ideals In Lattices and Semilattices," Doctoral Thesis, Department of Mathematics, Shivaji University, Kolhapur, 2000.
- [19] C. Jayaram, "Semi-atoms in Semilattices," Mathematics Seminar Notes, vol. 10, pp. 351-366, 1982.