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Abstract - In a periodic differential equation with a singular nonlinearity, we prove the existence and multiplicity of positive 

periodic solutions of the equation through a basic application of Krasnoselskiǐ's-Guo fixed point theorem and the positivity 

of the associated Green's function. 
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1. Introduction 
In recent years, the periodic problem for the second-order singular nonlinear equation 

 ( ) ( ) ( )
( )

( )
( )

t
y t t y t t

y t
  + = +

h
a e  (1.1) 

has deserved the attention of many experts in differential equations, where   is a positive paramaeter,   is a positive 

constant, ( ) ( / , )pt L  + R Z Re , here : (0, )+ = +R  and   is a positive constant, ( ), ( ) ( / , )pt t L  R Z Ra h are 

 -periodic functions. From a mathematical perspective, differential equations with singularities can be divided into three 

classes based on the types of singularities involved in the equations of attractive, repulsive and indefinite (attractive or 

repulsive) types. Each of the above classes has its own properties, which means that their research methods are different. At 

present, there have been many results in the study of this type of equation. 

 

There are a number of methods that are widely used, starting with the pioneering paper of Lazer and Solimini. In 

particular, the method of Schauder fixed point theorem [11, 15], Krasnoselskiǐ's-Guo fixed point theorem [8, 15], the theory 

of upper and lower solutions [10], Leray-Schauder alternative principle [2], Leray-Schauder degree theory [3, 6] and 

coincidence degree theory [12] are important tools. 

 

Interest in the study of such equations began with Lazer and Solimini [10]. They investigated the existence of positive 

periodic solutions to equation (1.1) by the theory of upper and lower solutions for , 1   + , 

( ) ( / , )pt L  R Z Re  and ( ) 0t a , ( ) 1t  b  (if ( ) 1t =b it is a repulsive singular equation, and ( ) 1t = −b it is an 

attractive singular equation). After that, the use of methods Krasnoselskiǐ's-Guo fixed point theorem and Schauder fixed point 

theorem for Torres [14] and Wang [15] respectively proved that equation (1.1) has a periodic positive solution with a 

singularity of repulsive type, where , ( ), ( ) ( / , )pt t L  + R Z Ra e , ( ) ( , )t C + R Rb  is  -periodic function. Later, 

by Schauder fixed point theorem, Liu, Cheng and Wang [11] 2020 considered the existence of a positive periodic solution for 

equation (1.1) with a singularity of attractive type, where , ( ) ( / , )pt L  R Z Re , ( ), ( ) ( , )t t C − R Ra h , here 

: ( ,0)− = −R . Recently, Han and Cheng [8] 2022 discussed the existence of positive periodic solutions for equation (1.1) 

with indefinite weights, where , ( ) ( / , )pt L  R Z Ra , ( ) ( , )t C R Re . Their proofs were based on 

Krasnoselskiǐ's-Guo fixed point theorem. 

 

Although there have been many research results on equation (1.1) [5, 9], there is still room for improvement. In this 

paper, applying Krasnoselskiǐ's-Guo fixed point theorem and the positivity of the associated Green’s function, we consider 

1=

1=
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the existence and multiplicity of positive periodic solutions to equation (1.1). It is worth mentioning that since

( ) ( / , )pt L  R Z Rb this indicates that 
( )

( )

t

y t

h
 it is an indefinite type 0y = . Furthermore, depending on the value of   

taken, we can obtain the existence of one positive periodic solution and two periodic solutions to equation (1.1), respectively. 

 

2. Preparations and Notations 
Our proof relies on the following lemmas, which we describe in detail next. 

Lemma 2.1. (Krasnoselskiǐ's-Guo fixed point theorem [4, P. 94]) Let Y be a Banach space and K  is a cone in Y . Assume 

that 1S  and 2S  are open subsets of Y with 10S , 1 2S S . Let 

( )2 1: \ →T K KS S  

be a completely continuous operator such that one of the following conditions holds: 

(i) y yT  for 1y K S  and y yT  for 2y K S . 

(ii) y yT  for 1y K S  and y yT  for 2y K S . 

Then T  has a fixed point in the set ( )2 1\K S S . 

 

We will use the concept of Green's functions to write the periodic problem as an equivalent fixed point problem. A 

general mechanism for constructing Green's functions is described in [1]. The following one lemma is common to us and can 

be seen in some related literature (see, e.g., [13, Corollary 2.3]). 

 

Lemma 2.2. (see [13, Corollary 2.3]) Define 
2

1 2/

1

2

1 1
( ) ,1 ,

2

4
, ,



 


 






+

   
   
   

    + =      
  


= 

  

Where   is the Gamma function, i.e., 
1

0
( ) t yt y dy

+
− − =  e . Assume that ( ) 0t a  for almost every [0, ]t   and 

( ) ( / )pt L  R Za . Furthermore, let  

 

1

*

0
: ( ) (2 )

p p

p
t dt p

 
=  
 
a a , (2.1) 

where 
*

1

p
p

p
=

−
 if 1 p we have the Green’s function ( , ) 0t s G  for ( , ) [0, ] [0, ]t s    . 

Remark 2.1. (see [7]) In the special case 
2( )t a  with 0  . Green’s function has the following form 

cos ( )
2 ,0 ,

2 sin
2

( , )

cos ( )
2 ,0 .

2 sin
2

t s

s t

t s

t s

t s





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










− −

  



 − +
   




G

 

If 





 we have Green’s function  ( , ) 0t s G  for ( , ) [0, ] [0, ]t s    . 
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Besides, we will use the notations  

 *
0 ,

: min ( , )
s t

t s
 

=G G , 
*

0 ,
: max ( , )

s t
t s

 
=G G , 

*

*
: =

G

G
. (2.2) 

On the basis of (2.2), it is clear that 
*

*0  G G  and 0 1  . 

Where  : ( , ), ( ) ( ),y C y t y t =  + R RC for all tR  with norm : max ( )
t

y y t


= . It is easy to verify that K  it 

is a cone in C . Finally, we provide several definitions  

 ( ) : max ( ),0t t+ =h h ,  ( ) : min ( ),0t t− = −h h , 
0

1
: ( )t dt




= h h , 

*

[0, ]
: max ( )

t
t


=e e , *

[0, ]
: min ( )

t
t


=e e . 

3. Main Result 
Based on several lemmas from the previous section, we can obtain the following theorem. 

 

Theorem 3.1. Assume that equation (2.1) holds. Then the following one of conclusions holds. 

(i) There exists 0 0   such that equation (1.1) has a positive periodic solution for 0  ; 

(ii) For all sufficiently small 0  , equation (1.1) has two positive periodic solutions. 

 

Proof. A positive periodic solution of equation (1.1) is just a fixed point of the map T  defined by 

0

( )
( )( ) : ( , ) ( )

( )

s
y t t s s ds

y s



 


 
= + 

 


h
T eG .  

 According to Lemma 2.2, for all ( , ) [0, ] [0, ]t s    we have  ( , ) 0t s G . 

(i)Our proof relies on Lemma 2.1. First, define 

 

 
1 1: :R y y R=  S C  and  

2 2: :R y y R=  S C , 

where 1R  and 2R  are two positive constants and  

1

2 1

*

1
:R R






− 
   =
 
 

h

e
. 

Step 1. We claim that ( )( )2
1

\R R  T K KS S . Actually, for  ( )2
1

\R Ry K S S  we have  

1 2( )R y t R   , for all tR . 

Because 1R  we obtain  

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( )
( )

( )

( )
( )

( )

0,

t t t
t t

y t y t y t

t
t

y t

t
t

y t
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



+ −

−

−

+ = − +

 − +

 − +



h h h
e e

h
e

h
e

 (3.1) 

for all t . From (2.2) and (3.1), it can be seen that 
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0[0, ] [0, ]
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 

 
 + 

 

 
= + 

 
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
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h
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e

h
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G

G G

G G
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Which implies ( )( )2
1

\R R  T K TS S . Besides, by applying the Arzela-Ascoli theorem, we can easily prove that 

( )2
1

: \R R  →T K TS S  it is a completely continuous operator. 

Step 2. We prove that  

 y y T , for 
1Ry K S . (3.2) 

 

In fact, for 
1Ry K S ,  it is obvious that 1y R=  and  

1 1( )R y t R   , for all tR . 

It can be obtained from (3.1) that  

0

0

0

*

1

( )
( )( ) ( , ) ( )

( )

( ) ( )
( , ) ( )

( ) ( )

( )
( , )

( )
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s
y t t s s ds
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y s y s
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 
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h h
e
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Now for a fixed number 1R  , there exists 

1

1
0

*

0
R




+

+
 

hG
 such that for 0   (3.2) holds. 

 

Step 3. We prove that  

 y y T , for 
2Ry K S . (3.3) 

Actually, for any 
2Ry K S ,  we can obviously get 2y R=  and  

2 2( )R y t R   , for all tR . 

From (3.1), it can be seen that 
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( )

0

0

*
* **

22

( )
( )( ) ( , ) ( )

( )

( ) ( )
( , ) ( )

( ) ( )
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s
y t t s s ds

y s

s s
t s s ds

y s y s
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
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

 

 




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

+ −

−+

 
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 

 
= − + 

 

 
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 
 





h
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hh
e
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G

GG
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It is obvious that we can choose 2R  large enough such that  

( )

*
* **

2

22

( )( ) .y t R
RR

  


 



−+ 
  − + 
 
 

hh
T e

GG
G  

Therefore,  (3.3) is satisfied. According to Lemma 2.1, we know that T  it has a fixed point. Thus, equation (1.1) has a 

positive periodic solution. 

(ii) First, define 

 
1 1: :r y y r=  S C  and  

2 2: :r y y r=  S C , 

where 1r  and 2r  are two positive constants and 

1

1

*
2 1r r






++ 
   
 
 

hG , here 0   is a constant and 1  . 

According to Step 1 of (i), we can know that ( )( )2
1

\r r  T K TS S  and ( )2
1

: \r r  →T K TS S  is a 

completely continuous operator. 

Afterwards, let us consider 

 y y T , for 
1r

y K S . (3.4) 

In fact, for 
1r

y K S ,  we can obviously get 1y r=  and  

1 1( )r y t r   , for all tR . 

It can be obtained from (3.1) that  

0

0

0

*

1

1 1

( )
( )( ) ( , ) ( )

( )

( ) ( )
( , ) ( )

( ) ( )

( )
( , )

( )
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y t t s s ds

y s

s s
t s s ds

y s y s

s
t s ds

y s

r

r r



 



 

















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+

+

 
= + 

 

 
= − + 

 





 







h
T e

h h
e

h

h

G

G

G

G

 

since 1  . Thus (3.4) holds. 

Then we consider  

 y y T , for 
2r

y K S . (3.5) 
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Actually for 
2r

y K S ,  we can obviously get 
2y r=  and  

2 2( )r y t r   , for all tR . 

From (3.1), it can be seen that.  

( )

( )

0

0

*
* **

22

*
* *

2

( )
( )( ) ( , ) ( )

( )

( ) ( )
( , ) ( )

( ) ( )
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s
y t t s s ds
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t s s ds
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 

 


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
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


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

+ −

−+

+

 
= + 

 

 
= − + 

 

 
  − +
 
 

 
  +
 
 





h
T e

h h
e

hh
e

h
e

G

G

GG
G

G
G

 

There exists 1 0   such that  

1

2
1 * * *

2

r

r

 

 




  

+

+


+h eG G
. 

For 1  , (3.5) holds. 

It follows from Lemma 2.1 that T  has a fixed point ( )2
11 \r ry  K S S , which is a positive periodic solution of 

equation (1.1) for 1   and satisfies 1 1 2r y r  . 

 

On the other hand, define 

 
3 3: :r y y r=  S C  and  

4 4: :r y y r=  S C , 

 

where 3r  and 4r  are two positive constants and 

1

1

*
4 3 2r r r






++ 
    
 
 

hG , here 0   is a constant, 1   and 

   . 

 

Similarly, according to Step 1 of (i), we can know that  ( )( )4
3

\r r  T K TS S  and ( )4
3

: \r r  →T K TS S  is 

a completely continuous operator. 

Afterwards, let us prove that 

 y y T , for 
3r

y K S . (3.6) 

 

In fact, for any 
3r

y K S ,  it is clear that 3y r=  and  

3 3( )r y t r   , for all tR . 

From (3.1), it can be seen that.  
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+

 
= + 

 

 
= − + 

 


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
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since 1  , thus (3.6) holds. 

Then we prove that  

 y y T , for 
4r

y K S . (3.5) 

Actually, for any 
4r

y K S ,  it is clear that 4y r=  and  

4 4( )r y t r   , for all tR . 

It can be obtained from (3.1) that  
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There exists 2 0   satisfying 

1

4
2 1* * *

4

min ,
r

r

 

 


 

  

+

+

  
  

+  h eG G
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Therefore, 2  , we know (3.7) holds.  

 

It follows from Lemma 2.1 that T  has a fixed point ( )4
32 \r ry  K S S , which is a positive periodic solution of 

equation (1.1) for 2   and satisfies 3 2 4r y r  . Noting that  

 

1 1 2 3 2 4r y r r y r     , 

 

we can deduce that 1y  and 2y  are two desired distinct positive periodic solutions of equation (1.1) for 2  . 
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