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Abstract - In this paper, we investigate the existence and uniqueness solutions of nonlinear boundary value problems for a
system of Caputo-type nonlinear fractional differential equations of the form:

{CD;Z“:pul(t) = Fi(t. ul(t),uz(t)) t E] = [a’ b]’
‘lb(vi(a):vi(b)) =0.

To develop a monotone iterative technique by introducing upper and lower solutions to Caputo-type fractional differential
equations with nonlinear boundary conditions. The monotone method yields monotone sequences which converge uniformly
and monotonically to extremal solutions.
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1. Introduction

Fractional differential equations or fractional differential systems have numerous applications in diverse and widespread
fields of science and technology [4, 10, 22]. The study of fractional calculus and its applications see more details [12, 13, 20].
The approach to obtain the existence and uniqueness of solutions for the nonlinear fractional differential systems, in general,
has been through the fixed point theorem method [3, 6, 9, 16, 23, 24, 25, 26]. In this paper investigates the existence and
uniqueness using the method of lower and upper solutions combined with the monotone iterative technique [5, 8, 24, 28, 29].

The monotone method is useful for nonlinear equations and systems because it reduces the problem to sequences of linear
equations. Specifically, if the nonlinear system is unwieldy and too difficult to solve explicitly, then the monotone method may
be beneficial. If one can find upper and lower solutions to the original system that are less unwieldy and satisfy the particular
requirements, then the monotone method implements a technique for constricting sequences from these upper and lower
solutions. These sequences are solutions to linear equations and converge uniformly and monotonically to maximal and
minimal solutions [11, 12, 14, 16, 17, 18, 19, 25].

Motivated by the work see [7], we determine the existence criteria of extremal solution for following system -Caputo
type fractional differential equations in a Caputo sense with nonlinear boundary conditions

{CDprui(t) =F(tw(®),u,@®) te]=I[ab]
¢(vi(@), v (b)) = 0.

The rest of the paper is arranged in the following way.
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In section 2, definitions and basic results are discussed that play a vital role in the main results. These results are useful in
main results proving that the sequences developed in the generalized monotone method converge to coupled minimal and
maximal solutions of the non-linear system of the fractional differential equation. Finally, under the uniqueness assumption, we
prove that there exists a unique solution to the non-linear system of y-Caputo fractional differential equation.

2. Definitions and Basic Results
In this section, we recall some known definitions and known results which are useful to develop our main result.

Definition 2.1 [4, 1] The y-Riemann-Liouville fractional integral of order g is defined by

17Pu(t) = f W (W) — ()" u(s)ds,t > a.

ra

Definition 2.2 [1] Let ¢, u € C™(J, R). The y-Riemann-Liouville derivative of the order of a function u with (n — 1 < q < n)
can be written as

. D,
pElu(t) = (1/; (t)) T ‘“”u(t)
1 -
=F(n—q) (t) flp @® - )" u@ds,

wheren = [q] + 1(n € N),and D, = —

Definition 2.2 [1] Let ¢, u € C™(J, R). The y-Caputo derivative of the order of a function u with (n — 1 < g < n) can be
written as

DI¥u(t) = In; ™ ul ()

Whereu["](t) ( ) u(t),n=[q]l+1forq ¢ Nandn = q for g € N.

')

One has

t
[ w @@ - uods, ifeen,
0

ull(t), ifgeN

D¥Pu(t) =

Definition 2.3 [2] One and two-parameter Mittag-Leffler function is defined as

o~ ©F
Eq(t)—kzzom tER,q>O

®*

e ,0>0,teR
. Tak+p P

Eqﬁ(t) =
Lemma2.1[1] Letp,q > 0,andu € C(J,R), forevery t € ]

i. DI 1P u(t) = u(D),
i, Iq"’CDq u(®) =u®) —u(a),0< g <1.
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it 1 (90~ $(@)" = 2 (p () - p@)"

T rp-q)
v. DI (w(®) — @) = 52 (b(©) —p@)” "
VDT (p(6) — (@) = 0, vk <neN

Lemma 2.2 [27] Let g € (0,1) and x € R, one has i. E; ; and E, , are non-negative. ii. E; ;(x) < 1,E, 4(x) < for any

x <O0.

L
r@@’
Lemma 2.3 [7] Letq € (0,1),1 € Rand g € C(J, R), then the linear problem

{CDZ;ﬂ’u(t) +au() =g@t), tej.
u(a) = ug,

has a unique solution as

u®) = ugEq (=2 — p(@)")
+ j W (O~ p()) " Eqq (-2 — p(@)")g(s)ds,
0

where E, ;(.) is the two-parametric Mittag-Leffler function

Lemma 2.4 [Comprising result] [7]Let g € (0,1) and A € Rify € C(J, R),

{CDgi,wy(t) > —1y(t), tE€ (a,b].
y(a) =0,

theny(t) = 0forallt €.

3. Main Results
In this section, we develop a monotone method for the system -Caputo fractional differential equations (3.7) using
coupled lower and upper solutions, respectively.

Definition 3.1 The functions f; € C(J, R such that CDZi}”fl-(t) exist and is continuous on J and is known to be a solution

(1.1).Further,f; gives the statistics of the equation CDZi}l’ui(t) = Fi(t, uq (), u, (t)), for each t € J and the nonlinear boundary
conditions

o(fi(@), fi(b)) =0

Definition 3.2 If the functions  v;(x,t), w;(x,t) € C>9[Qr, R] are called the lower and upper solutions of if

{CDj’;"’vi(t) < Fi(t,v,(0), v, (1) t € [a,b],
¢(vi(@), v (b)) <0

{CD;“:”wi(t) > Fy(t, w1 (), w2 (1))t € [a,b],
d(wi(a),w; (b)) =0
Theorem 3.1 Let F:J X R — R be continuous. Assume that

(i) There exist v;(t) and w; (t) as lower and upper solutions of problem (1.1) in C(J, R) respectively, with v;(t) < w;(t),t € J.
(if) There exists a constant k; > 0 with
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Fi(t,up) — Fi(tug) = —ki(u, —wy)  for () Suy Sup Swi(h),t €J
(iii) There exists non-negative constants M, N with v;(a) < x; < x, < w;(a), v;(b) <y, <y, < w;(b), such that
(2, ¥2) — Pi(x1, 1 < M(xz —x1) = Ny, — y1)

Then there exist monotone sequences {v]*(t)} and {w*(t)} such that v]*(t) — v;(t) and w]*(t) = w;(t) as n — oo uniformly
on J, to the extremal solutions of (1.1) in the sector [v;, w;] where

={u; € CU,R):v;(t) < u;(t) < w;(t),t €]}
Proof.

We construct the sequences {v***(¢)} and {w/***(¢t)} and k; > 0, we consider the following fractional differential equations

DIPVII(E) = Fi(t, v () — k(v () = () teE],
1 (3.1)
R ORTHOEEICHORHO)
DIPWIL(E) = Fi(t, wl () — k(WP H©) —wi'(®) te),
(3.2)

1
wi (@) = wi(@) ~ - oWl (@), wl' (D))

By Lemma 3 and equation (3.1),(3.2)preserve at most one solution in C(J, R we have
1
() = <vf (@) - ;d)(vi" (@), vi"(b))> Eq1 (ki ()i (®) = ¥;(@)")

+ [ OO = @) Bog (ki ~ 0i)) (R 2 @) + k(17 0) ) ds e,

1
WP (E) = (w?(a)) —— (W (@), wi”(b))) Eqa (~ki (@) = (@)
t
+ [ WO = @) Egg (ki (i ~ 1)) (s, wl ) + k(Wi ) ) ds e

Step 1: The sequences {v!"** ()}, (w***(¢)} (n = 1) are lower and upper solutions of (), respectively. We prove that v? (t) <
vi(t). Let p;(t) = v} (t) — vP(t). Then equation (3.1) and Definition 3.2, we have
Do) = DI v DL V) ()
> F; (t,00(0) - ki (vi(®) = w0 () - F (6,00 (1))
= —kipi(2).
Since p;(a) = —%d) (v?(a),v?(b)) >0, p;(t) = 0, for t € J by Lemma 4. Thus v (t) < v} (t). Assume that vF~1(¢) <
v¥(t). Now we show that v¥ (t) < v¥*1(t). Let p;(t) = vF(t) — vF1(t)
DI pi(®) = DEIVE@SDE V()
> F; (t,vf (©) = ki (vl = vE () = F (6 vF (@)
= —k;pi(2).
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Since p;(a) = —%(b (v{‘(a),v{‘(b)) >0, p;(t) =0, fort € J by Lemma 4. Thus v (t) < vf*1(t). Hence by mathematical
induction, we have

() S vi(t) <. < vF@E) < v << v (3.3)
Next, we prove that wl () — wl(t), t € J. Let p;(t) = w(t) — w}(t). Then equation (3.1) and Definition 3.2, we have
DIpi(®) = DI wl(©EDE wi(®)

2 F (6wl (0) = ki (@~ wl (0) = F (6w} ()
= —k;p;i(t).

Since p;(a) = —%qﬁ (wio(a), wi"(b)) >0, p;(t) = 0, fort € ] by Lemma 4. Thus wl(t) < w(t). Assume that w¥(t) <
wk1(t). Now we show that w*1(t) < wk(t). Let p;(t) = witi(t) — wk(t)
Dipi(®) = DI W (DI W (D)
< F (6wl (©) = ki (wlr (@) - wh®) = F (6wl @)
= —k;ip;(¢).

Since p;(a) = —%(]) (w{‘“(a),w{‘“(b)) >0, p;(t) = 0, for t € ] by Lemma 4. Thus w*1(t) < wk(t). Hence by
mathematical induction, we have

wli(E) < w! ) <. < wf () S wFD) <. < wi (@) S wl (D) (3.4)

Now to Prove that v} (t) < w}(t). Let p;(t) = wl(t) — v} (t). Using equations (3.1) and (3.2) together with assumptions (ii)
and (iii), we have

Dip(t) =F (t, wio(t)) —F, (t, v? (t)) —k; (Wi1 ®© —w (t)) + k(i (@) —v))
> —k; (WP(©) = v2(0)) — ki (Wi ©) = w(®)) + ki (vE(0) = w2 (®))

= —kip;(¢).
Since
pi@ = (wo@ —v0®) (¢ (W@, WP ) ~ ¢ (0@, o))
> S (WP o)~ o)
>0

we have v} (t) < w}(t), t € J by Lemma 4. Hence v? (t) < v} (t) < wi(t) < wi(b).
By mathematical inductions and equations (3.3) and (3.4), we get
V() < vi@) ... < V() S wi(E) <... < wi () S w(b) (3.5)

We prove that v? (t), w? (t) are extremum solutions of (1.1). Since v and w are lower and upper solutions of (1.1),
assumptions (ii)and (iii), we get
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CDZL"’v?(t) =F, (t, v?(t)) —k; (vil(t) - V?(t))

< Fi(t, v} (t))

and
$(vi@,vi(B)) < P@(@, v (B) +c(vi@) — (@) - d (vi(b) — v (b))
= —d (v(b) - v (b))
<0.
DEWIO) = Fi(Lwl(©) =k (wi (©) —w(©)

(t Wl(t))

and

¢(wi (@), w; (b)) > p(w (@), w? (b) + c (wi (@) - wl(@)) — d (wi(b) — wP (b))
—d (W (b) - w (b))

= 0.

Therefore, v} (t) ,w} (t) is the lower and upper solution of (1.1), respectively. By induction, Hence v[*(t), w;*(t) are lower and
upper solutions of (1.1), respectively.

Step 2.0 - v; and wi* - w;
First, we prove that {v]*} is uniformly bounded. By considering supposition Hypothesis 2, we have
Fi (6000 + kw? (©) < F(£,01(0) + kv (8) < Fy (£ w0()) + kowl(), te]
That is
0 <F(tvr®) - F (6v2©) + ki (v1(6) — v0(0))
<F (twl(©) = F (6,02(©)) + ki (W) — vP (1))
Hence, we have
IF(t 07 @) = F (600 0) + ke (o7 @ = o 0) | < IF (6wf®) = F (6,00)
+hi (w2 (£) = 0P (®)) .
Thus
F(£ 01 (0) + k@1 < IR (60 ®) = Fi (607©) + ki (v7©) = v (®)) |
+F (¢, vp(t)) + k(0 ()]
<|F (£ wP®) = F (6000 + ki (w? (©) = P (®)) |
+F: (£ 00(0) + k(@ (0]
+< 21F; (6,000 + ki@ O] + IF; (6,02 (©)) + k(v ()],

Since v?, F; are continuous on /, we can see a constant € independent of n with
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|F;(t, v () + k(D) < C
Furthermore, from Hypothesis 3, we have
W@~ b (@), 00 0)) < v (@) — b (WP @), WP (D)) < wi(@) — > ¢ (10(), w0 (D))
That is
0 <Vl (@ ~ (@) — = (@), v (1)) = § (v (@), v D))
< wP(@) ~ vf(@) = (w0, wP ) — ¢ (10(@), o0 (1))
Hence, we have
[P @) ~ v (@) — = $(v7@), v} () ~ & (vP(@), vP )
< v}'(@) — vP(a) - %c/»(v?(a). v (0)) = ¢ (v) (@), 9! ()

1
< v}'(a) ~ v (@) = Z (v} (@), v (B) = ¢ (v (@), v (B) ) I
Thus

1 1
v @ = ~p (o @ D) < v} @) ~vP (@) ~~p(v} @), v} (1)) — ¢ (v (@), ) (1))
1
ol (@) == (0! (@, v () |
1 1
< 2[vf(@) == ¢ (v (@, v ®)) | + WP (@) ~— b (! (@), W B)) | -

Since v, w? and ¢ are continuous functions; we can see a constant D independent of n with
v (@ ~ - (o (@), v ()] < D
Moreover, by (3.1) and (3.2), we have
EO1 = 7@ — - $(eF (@), v 0 Ega (~k (W) ~ $(@)")
+ f W ©W® = $(©)" " Eqq (ki@ = () [F(s, 0] () + ko ©)lds,

Using Lemma 2 along with (3.6) and (3.7), we have

n+1 _ C ¢ ’ v_ld
IO =D+ s f P OW© - () ds,

C(p®) —p(s))"
<D+ CEE)) .

(3.6)

(3.7)

Hence, v} is uniformly bounded in C(J, R). Similarly w* is uniformly bounded C(J, R). Next, to prove that the sequence v}

and w* are equi-continuous on J. Choosing t,,t, € J, with t; < t,. By (3.6),(3.7) and Lemma 2, we have
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1

|1]L?1+1(t2) _ 1]Ljrl+1(1._.1)| < |vln(a) — E(l)(vin(a).Ul'n(b))”Eq,l(_ki(lp(tz) - l,b(a))q)

~Eqg1(—k:i (¥ (&) — ¥(@)")]

- ftlll) (s) [(lp(tl) - lp(S)) - (w(tZ) - 1/)(5)) ] |F(s, Uin(S) + kiVin(S)ldS

; v(q)
() [(W(e) - ()]

+ft I'(q)
< DIy (~ki($(t2) = $(@)") = Ega(~ki($(t2) — $(@)")]

2¢(y(ty) — P(t))*
I'(g+1) '

|F(s,vi(s) + kv (s)|ds

1

By the continuity of E,,(—k;((t,) — ¥(a))?) on J, the right-hand-side of the preceding inequality approaches zero, when
t, = t,. This implies that {v!***(¢)} is equi-continuous on J. Similarly {w/*1(t)} is equi-continuous on J. Hence, by using the
Ascoli-Arzelas theorem, the subsequences converge to v; (t) and w; (t). Hence the monotonic sequences combined with v}*(t)
and wit(t) yields lim,,_ v} (t) = v; (t) and lim,_,w(t) = w;'(t), uniformly on t € J and limit functions v;, w;" satisfy
(1.1)

Step 3: v; and w;" are maximal solutions of (1.1)in [v?, w?] Let w; € [v?, w?] be any solution of (1.1). Suppose that
vir() <u(t) Swi(t), te] (3.8)
for some n € N. To prove that u;(t) < v*(t) Let p;(t) = u;(t) — v}*(t). Then from, we have
DEpi(®) = F(tw®) = Fi (6v0(0) — k(v (@) = v} ()

> —ky(i(6) = v]'(0) + ki (v (D) — v ()

= —k;p;(t).
Furthermore

1
v @) =@l - ;(¢(V?(a),vi"(b))
1 1
= Wi'(@) -7 (¢ (wi(@), u; (b)) — Z CICGORZD))

d
< u;(a) — ;((ui(b) —v'(b))

< u;(a)
that is p; = 0. By Lemma 4, we have p; > 0, t € J which implies that
v () <w(t), te]
Next, we prove that w*(t) < u;(t) Let p;(t) = w]***(t) < u;(t). Then from, we have
DI pi(®) = Rt w1 () — Fi(tu(®) — k(i (8) — w,(®))

> —k;(wibn(t) — w;(®) + k; (wi () — w; (1))

—kipi(t).
Furthermore
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1
ui(a) = (u(a) - z(‘P(ui(a)'ui(b))
1 n n 1
= (ui(@) — = (S(w]' (@, W] ) = = (¢(wi(@), w (b))
n d n
<w'(a) — Z((Wi (b) — u;(b))
< wl'(a)
that is p; = 0. By Lemma 4, we have p; > 0, t € J which implies that
() swi(t), te]
Hence,
v (@) <u(®) <w'(t), t€]
By (4.8) is satisfied on J for all n € N. For n — oo on (3.8), we have
U? < Uu; < WL*
Hence v;, w; are the extremal solutions of (1.1)in [v?, w]

Theorem 3.2 Let all the assumptions of Theorem 3.1 hold. Further, there exist non-negative constants M and N such that the
function f; satisfies the condition

filx,uq, uy) — filx, vy, v5) < M(uy —vy) + N((uy — v3),
for v? (t) < u; < wP(t). Then the problem u;(t) of (1.1) has a unique solution.

Proof. We know v (t) < wf(t) onJ. It is sufficient to prove that v; (t)° = w?(t) on J. Consider p;(t) = w(t) — v?(t).Then
we have

DEpi®) = F (6w @)~ Fi (600 () = ki (w0 ®) = wP(©) + ki (WP (©) — )
> —k; (WP(®) = v2(0)) — ki (WP(®) = wP(®)) + ks (0P (8) = 0 (D))

= —k;p; (1)
Since
p@ = (W@ v (©) (& (W@, we ) ~ & (v (@, 0 )
> S (WP o)~ o)
>0,

we have w (t) = v?(t), t € ] . By Lemma 4, we know p; > 0, implying that w? (t) > v (t) onJ. Hence v;(t) = u;(t) =
w; (t).

4. Conclusion

In this work, initially, we have investigated by using a monotone iterative method together with upper and lower solutions
for boundary value problems involving a generalized system of Caputo derivative of fractional order. The monotone method
yields monotone sequences which converge uniformly and monotonically to extremal (maximal and minimal) solutions of
(1.1). We have proven that the unique solution of u;(t) of the system.
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