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Abstract - In this paper, Uniserial 𝑁-groups and Bezout 𝑁-groups are defined. Defining localized near ring, localized 

𝑁-groups, localized 𝑁-subgroups and localized ideals of 𝑁-groups the related results are discussed. It is observed that the 

various characteristics of 𝐷𝑁 -groups, multiplication 𝑁 -groups, Uniserial 𝑁 -groups and Bezout 𝑁 -groups are also 

investigated. It is also seen that in arithmetical near rings, uniserial 𝑁-groups and 𝐷𝑁-groups lead to multiplication 𝑁-groups. 

 
Keywords - Near rings, Localized 𝑁-groups, Multiplication 𝑁-groups, Distributive 𝑁-groups. 

 

AMS Subject Classification Codes: 16Y30. 

 

1. Introduction 
 In this study, the concepts of multiplication N-groups and cyclic N-groups in the near rings are defined by Elaheh 

Khodadaapour and Tahereh Roodbarilor. They discussed the relationship between multiplication N-groups and cyclic N-groups. 

The left N-group E is regarded as unitary and N as a commutative near ring with zero symmetric. This paper’s foundational 

ideas are all referenced in [6, 9]. Here, we defined the fundamental definition and outcomes required for this paper. The symbols 

≤N, ⊴N and ⊲ are used to mean N-subgroup, normal N-group and ideal respectively. Max(N) represents the collection of all 

maximal ideals of N. Most of the definitions have been extracted from [9]. 

 
Definition 1.1 If the following standards are satisfied, a nonempty set N combined with the binary operations " + " and ". " is 

referred to as right near ring. 

i. (N, +) is a group(not necessarily abelian). 

ii. (N, . ) is a semi group. 

iii. (p + b)c = pc + bc), ∀p, b, c ∈ N.  

 

Definition 1.2 An additive group (E, +) is referred to be a left N-group, if ∃ a map N × E → E, (n, u) → nu in which the 

following standards are satisfied- 

i. (m + n)u = mu + nu. 

ii. (mn)u = m(nu). 

It is to be noted that N is itself an N-group over itself. If for 1 ∈ N such that 1. u = u ∀ u ∈ E, then E is called an unitary 

N-group.  

 

    In the event that A is a subgroup of (E, +) and NA ⊆ A for any A ⊆ E, then E is referred to as an N-subgroup. 

If F is a normal subgroup of (E, +) with na ∈ F, ∀ n ∈ N, a ∈ F, then F is referred to be a normal N-subgroup of E. 

If D is a normal subgroup of (E, +) such that n(a + e) − ne ∈ D, ∀ n ∈ N, a ∈ D, e ∈ E, then D is referred to as an ideal of E. 

Let A ⊲ E. Then the set 
E

A
= {a + A: a ∈ E} forms an N-group under the operations (k + A) + (s + A) = (k + s) + A and 

m(s + A) = ms + A, ∀s, k ∈ E, m ∈ N, called quotient N-group. 

E is called cyclic if E = nl for some n ∈ N, l ∈ E. 

When x ∈ E, Nx is referred to as the principal N-subgroup of E. 

E is known as the principal N-group (PNG) if each A ≤N E is principal.  

http://www.internationaljournalssrg.org/
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E is referred to as an ideal N-group if each A ≤N E is an ideal. 

If K ⊲ E, then the N-subgroup of 
E

K
 is referred as a subfactor of E. 

If for any (left or right) J ⊲ N with I ⊆ J implies J = I or J = N, then I ⊲ N is referred to be (left or right)maximal. 

If for any J ≤N E with I ⊆ J implies J = I or J = E, then I ≤N E is referred to be maximal. 

If k or 1 − k is invertible in it for any k ∈ N or N has a unique maximal N-subgroup, then N is called local.  

N is called strongly regular if for any n ∈ N ∃ m ∈ N such that n = n2m or mn2. 

Jacobson radical, J(N) = {∩ I: I ∈ Max(N)}. 

If ∃ I, J ⊲ N such that IJ ⊆ P implies I ⊆ P or J ⊆ P, then P ⊲ N is called prime. 

If (P + T) ∩ C = P ∩ C + T ∩ C ∀ P, T, C ≤N E, then E is called left DN-group. 

A fully DN-group is a DN-group if each factor group is DN-group. 

E is referred to generated finitely if ∃ a finite set {e1, e2, e3, … en} such that E = n1e1 + n2e2 + n3e3 + ⋯ + nnen, ei ∈ E, ni ∈
N, i = 1,2, … n. 

 

Definition 1.3 E is Uniserial if any two of its N-subgroups are comparable to each other.  

  

Definition 1.4 E is called Bezout N-group if any of its N-subgroup which is generated finitely, is cyclic.  

 

Lemma 1.1 [9][2.72 corollary] Maximal ideal of a near ring with unity is a prime ideal.  

  

Lemma 1.2  N-subgroups of an ideal DN-group E are also ideal DN-groups.  

  

Proof. Let T ≤N E. If T1, T2, T3 ≤N T, then A1, A2, A3 ≤N E also. So the result.  

 

2. Localized 𝐍-groups 
Definition 2.1 H ⊆ N is called multiplicative closed if p ∈ H implies p−1 ∈ H or 1 ∈ H and p, y ∈ H imply py ∈ H.  

 

It is to be noted that for any p ∈ H, pp−1 = p−1p = 1 ∈ H and p = (p−1)−1. 

 

Definition 2.2 Let S be a multiplicative closed subset of a commutative near ring N with identity. Define " + " and ". " in 

(S−1N, +, . ) by- s1
−1n1 + s2

−1n2 = (s1s2)−1(s2n1 + s1n2) and (s1
−1n1). (s2

−1n2) = (s1s2)−1(n1n2), ∀ s1, s2 ∈ S, n1, n2 ∈ N. 

Then for any s1
−1n1, s2

−1n2, s3
−1n3 ∈ S−1N we have, (s1s2)−1 ∈ S and s2n1 + s1n2 ∈ N. So, (s1s2)−1(s2n1 + s1n2) ∈ S−1N 

⇒ s1
−1n1 + s2

−1n2 ∈ S−1N . Now, (s1
−1n1 + s2

−1n2) + s3
−1n3 = (s1s2)−1(s2n1 + s1n2) + s3

−1n3 = (s1s2s3)−1{s3(s2n1 +
s1n2) + (s1s2)n3} [since (N, . )  is associative] = (s1s2s3)−1{(s2n1 + s1n2)s3 + (s1s2)n3} [since S ⊆ N  and (N, . )  is 

commutative] 

= (s1s2s3)−1{(s2n1)s3 + (s1n2)s3 + (s1s2)n3} [by right distributive law] = (s1s2s3)−1{s3(s2n1) + s3(s1n2) +
(s1s2)n3} [since S ⊆ N  and (N, . )  is commutative] = (s1s2s3)−1{s3(s2n1) + s3(s1n2) + (s1s2)n3} [since (N, . )  is 

commutative and has right distributive property] 

= (s1s2s3)−1{(s2s3)n1) + (s1s3)n2) + (s1s2)n3} [since (N, . ) is associative and commutative]. Similarly, we can show that 

s1
−1n1 + (s2

−1n2 + s3
−1n3) = (s1s2s3)−1{(s2s3)n1) + (s1s3)n2) + (s1s2)n3} . ∴ (s1

−1n1 + s2
−1n2) + s3

−1n3 = s1
−1n1 +

(s2
−1n2 + s3

−1n3). 

For any s−1x ∈ S−1N we have, 0 + s−1x = s−10 + s−1x = s−1(0 + x)[since s−1 ∈ N, N has the right distributive property 

and (N, . ) is commutative] = s−1x. Similarly, s−1x + 0 = s−1x. Thus the identity 0 of (N, +) is the identity of (S−1N, +). 

For any s−1x ∈ S−1N, −s−1x is the inverse of s−1x as s−1x + (−s−1x) = s−1(x − x) = s−10 = 0 = (−s−1x) + s−1x. Also, 

(S−1N, . ) is closed by definition. Since N is commutative, s1
−1n1(s2

−1n2s3
−1n3) = (s1

−1n1s2
−1n2)s3

−1n3. Now, for any s, y ∈
S ⊆ N  we have, s−1, y−1, s−1y−1, (sy)−1 ∈ S ⊆ N . ∴ s−1y−1 = (s−1. 1)(y−1. 1) [since N  has the unity] = (sy)−1(1.1) [by 

hypothesis] = (sy)−1 [since N  has the unity]. ∴ (s1
−1n1 + s2

−1n2). s3
−1n3) = (s1s2)−1(s2n1 + s1n2)s3

−1n3) =
(s1s2s3)−1(s2n1 + s1n2)n3) [since (N, . ) is associative] 

= (s1s2s3)−1(s2n1n3 + s1n2n3) = (s1s2s3)−1. 1. (s2n1n3 + s1n2n3)[since N  has the unity] = (s1s2s3)−1. s3
−1s3. (s2n1n3 +

s1n2n3) [by definition of S] 

= (s1s3s2s3)−1(s2s3n1n3 + s1s3n2n3)[since N has the right distributive property and (N, . ) is commutative] =
(s1s3)−1(n1n3) + (s2s3)−1(n2n3) = s1

−1n1. s3
−1n3 + s2

−1n2. s3
−1n3 The above conditions shows that S−1N is a near ring, called 

localized near ring. 

 

Note that if h ∈ H, then h−10 = 0, where 0 is the identity of (N, +). 
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Definition 2.3 Let S be a multiplicative closed subset of a commutative near ring N with identity. Then as above (S−1N, +) is 

a group. If we define a map S−1N × S−1E → S−1E by (s1
−1n, s2

−1e) → (s1s2)−1(ne) i. e. s1
−1n. s2

−1e = (s1s2)−1(ne). Then we 

get, (s1
−1n1 + s2

−1n2)(s−1e) = (s1s2)−1(s2n1 + s1n2)s−1e = (s1s2s)−1(s2n1 + s1n2)e = (s1s2s)−1(s2n1s + s1n2s) =
(s1s2)−1s−1(s2n1e + s1n2e)   [as (xy)−1 = x−1y−1] = (s1s2)−1 (s−1s2n1e + s−1s1n2e)[as s−1 ∈ N and N is commutative] 

= s1
−1(s−1n1e) + s2

−1(s−1n2e) [by hypothesis] = (s1
−1s−1)(n1e) + (s2

−1s−1)(n2e) [since N  is commutative] = (s1s)−1 

(n1e) + (s2s)−1)(n2e) [since (xy)−1 = x−1y−1] = (s1
−1n1. s−1e) + (s2

−1n2. s−1e)[by hypothesis]. This shows that S−1E is an 

S−1N-group called localized N-group of E or simply S−1E is an N-group.  

 

Definition 2.4 Let S be a multiplicative closed subset of a commutative N with unity. If A ≤N E, then S−1A  is called 

S−1N-subgroup of S−1E if n(s−1a) = s−1(na) ∈ S−1A, for some s ∈ S, a ∈ A, n ∈ N. This S−1N-subgroup is called localized 

N-subgroup of E or simply S−1A is an N-subgroup of E.  

 

Definition 2.5 Let S be a multiplicative closed subset of a commutative N with unity. For I ⊆ N, S−1I is an ideal of S−1N if 

S−1I is an additive normal subgroup of S−1N and s1
−1x. s2

−1n, s1
−1n1(s2

−1n2 + s−1x) − s1
−1n1s2

−1n2 ∈ S−1I, for some s, s1, s2 ∈
S, n, n1, n2 ∈ N, x ∈ I. This ideal S−1I is called localized ideal of N or simply S−1I is an ideal of N.  

 

Definition 2.6 Let P ⊲ N be prime without unity. Then S = N\P is multiplicative closed subset of N because if d, b ∈ S, then 

db ∈ N and d, b ∈ P. Also, P is prime, db ∈ P and so db ∈ S. Also 1 ∈ P, 1 ∈ N ⇒ 1 ∈ S. Then S−1N is called localization 

of N at P and denoted by NP. Therefore NP = (N\P)−1N = S−1N. 

Localization of E at a prime ideal P, EP = S−1E = (N\P)−1E.  

 

Lemma 2.1  SS = S if S is a multiplicative closed subset of N.  

  

Proof. If x ∈ SS, then x = s1s2 ∈ S, for some s1, s2 ∈ S. So, SS ⊆ S. 

Again if s ∈ S, then s = 1. s [since N has identity]. Since 1 ∈ S and S is Multiplicative closed, therefore s = 1. s ∈ SS. Thus 

S ⊆ SS and hence SS = S.  

  

Lemma 2.2  Let S be a multiplicative closed subset of N and I ⊲ N. Then S−1I ⊲ S−1N.  

  

Proof. Since I  ⊲  N , for any x, y ∈ I  and n, n1, n2 ∈ N , xn ∈ I, n + x − n ∈ I  and n1(n2 + x) − n1n2 ∈ I . Now, for any 

s1, s2 ∈ S  we have, s1
−1x − s2

−1y = (s1s2)−1(s2x − s1y) ∈ S−1I  and s1
−1n + s2

−1x − s1
−1n = (s1s2)−1(s2n + s1x) +

s1
−1(−n) = (s1s2s1)−1[s1(s2n + s1x) − s1s2n] . Now, s1 ∈ S ⇒ s1 ∈ N ⇒ s1x ∈ I . Also s2n ∈ N  and so s1(s2n + s1x) −

s1s2n ∈ I . Again, s1s2s1 ∈ S  and therefore (s1s2s1)−1[s1(s2n + s1x) − s1s2n] ∈ S−1I . Now, s2
−1x. s1

−1n = (s2s1)−1(xn) ∈
S−1I  and s1

−1n1(s2
−1n2 + s−1x) − s1

−1n1s2
−1n2 = s1

−1n1[(s2s)−1(sn2 + s2x)] − (s1s2)−1(n1n2)  = (s1s2s)−1  n1(sn2 +
s2x) − (s1s2)−1(n1n2) = (s1s2s)−1[n1(sn2 + s2x) − s(n1n2)] ∈ S−1I [since s2x ∈ I]. This shows that S−1I  is an ideal of 

S−1N.  

 

      Since by lemma 1.1, maximal ideal in N with unity is prime ideal. So, P ∈ Max(N) implies S = N\P is closed subset as 

shown earlier and localized near ring, localized N-groups, localized N-subgroups, localized ideals are defined. Now, utilizing 

this idea, we will demonstrate some findings. 

  

Lemma 2.3  Let X ≤N E. Then XP ≤N EP, ∀ P ∈ Max(N).  

  

Proof. We have, XP = S−1X, EP = S−1E. Since X ≤N E, X is subgroup of E and so NX ⊆ X. Now, a, b ∈ XP  implies a =
s1

−1x1, b = s2
−1x2, for some s1, s2 ∈ S, x1, x2 ∈ X. So, a − b = (s1s2)−1(s2x1 − s1x2). Since s2x1, s1x2 ∈ X and X is subgroup 

of E, s2x1 − s1x2 ∈ X. Also, s1. s2 ∈ S [since S is multiplicative closed]. Therefore, a − b ∈ S−1X. Also, let y ∈ NP. XP. Then 

y = nx, for some n ∈ NP, x ∈ XP . ∴ n = s1
−1n1  and x = s2

−1x1 , for some n1 ∈ N, x1 ∈ X  ⇒ nx = (s1s2)−1(n1x1) ∈ S−1X . 

Thus, y = nx ∈ XP. Hence the result.  

  

Lemma 2.4  If EP = 0, ∀ P ∈ Max(N), then ∃ s ∈ S = N\P such that se = 0 ∀ e ∈ E.  

 

Proof. EP = 0 ⇒ S−1E = 0. So, for any e ∈ E there exists s ∈ S such s−1 ∈ S and (s−1)−1e = 0[Since S is closed]. Also 

s = (s−1)−1. Thus the result.  
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Theorem 2.1  For an N-group E, E = 0 if and only if EP = 0, ∀ P ∈ Max(N).  

Proof. If E = 0, ∃ s ∈ (N\P)−1 such that se = 0. So, EP = 0. Let e ∈ E. Then Ann(e) ⊲ N. Let Ann(e) ⊲ N be proper. 

Then ∃ P ∈ Max(N) such that Ann(e) ⊆ P [since every proper ideal in N is contained in a maximal ideal]. Since EP = 0, ∃ 

s ∈ S = N\P such that se = 0[by lemma 2.4]. ∴ s ∈ Ann(e) ⊆ P ⇒ s ∈ P-which contradicts s ∈ N\P. Thus Ann(e) = N ⇒
ne = 0, ∀ n ∈ N. Since 1 ∈ N, 1e = 0 ⇒ e = 0 ⇒ E = 0.  

  

Corollary 2.1  AP = BP ⇒ A = B, ∀ A, B ≤N E, P ∈ Max(N).  

Proof. Let a ∈ A. Then s1
−1a ∈ S−1A, for some s1 ∈ S = N\P ⇒ s1

−1a ∈ S−1B[since AP = BP] ⇒ s1
−1a = s2

−1b, for some s2 ∈
S, b ∈ B ⇒ s1

−1a − s2
−1b = 0 ⇒ (s1s2)−1(s2a − s1b) = 0 ⇒ (s2a − s1b)P = 0 ⇒ (s2a − s1b) = 0[ by using theorem 2.1] ⇒

s2a = s1b ⇒ s2
−1s2a = s2

−1S1b ⇒ a = 1. a ∈ NB ⊆ B. Thus A ⊆ B. Similarly, B ⊆ A. Hence A = B.  

  

Lemma 2.5  

If I ⊲ N, then IP ⊲ NP, ∀ P ∈ Max(N)  

  

Proof. As in lemma 2.2 we can prove the result.  

 

Theorem 2.2  An ideal N-group E is a DN-group if and only if EP is a also DN-group, ∀ P ∈ Max(N).  

Proof. Since E is a DN-group, (D ∩ T) + (K ∩ T) = (D + K) ∩ T, ∀ D, K, T ≤N E. Now, to show (DP + KP) ∩ TP = (DP +
TP) ∩ (KP + TP), ∀ DP, KP, TP ≤N E EP. It is enough to show that, DP + KP = (D + K)P and DP ∩ KP = (D ∩ K)P. Let x ∈
DP + KP ⇒ x = a + b,  where a ∈ DP, b ∈ KP . So, a = s1

−1a1, b = s2
−1b1  for some a1 ∈ D, b1 ∈ K . ∴ x = s1

−1a1 + s2
−1b1 =

(s1s2)−1(s2a1 + s1b2). Since D, K ≤N E, s2a1 ∈ D, s1b2 ∈ K. Also, since S is multiplicative closed, s1, s2 ∈ S ⇒ s1. s2 ∈ S. ∴
x ∈ S−1(D + K). ∴ DP + KP ⊆ (D + K)P. 

Let y ∈ (D + K)P = S−1(D + K). Then, y = s−1(x + b), for some s ∈ S, x ∈ D, b ∈ K. Since S−1x is an ideal, s−1(x + b) −
s−1b ∈ S−1x ⇒ y = s−1(x + b) ∈ S−1x + S−1b ⊆ S−1D + S−1K = DP + KP . ∴ (D + K)P ⊆ DP + KP . Thus DP + KP = (D +
K)P. 

Again, let x ∈ DP ∩ KP = S−1D ∩ S−1K. Then, x = s1
−1a = s2

−1b,for some s1, s2 ∈ S, a ∈ D, b ∈ K. Since s1
−1, s2

−1 ∈ S = N\P 

and D, K ≤N E, s1
−1a ∈ D, s2

−1b ∈ K. ∴ x ∈ D ∩ K. Since D ∩ K ≤N E and S = N\P ⊆ N, S(D ∩ K) ⊆ D ∩ K and so D ∩ K ⊆
S−1(D ∩ K) . ∴ x ∈ S−1(D ∩ K) = (D ∩ K)P . ∴ DP ∩ Kp ⊆ (D ∩ K)P . So we get, DP ∩ KP = (D ∩ K)P . Thus (DP + KP) ∩

TP = (D + K)P ∩ TP = [(D + K) ∩ T]P = [(D ∩ T) + (K ∩ T)]P  = (D ∩ T)P + (K ∩ T)P = (DP ∩ TP) + (KP ∩ TP).  But by 

lemma 2.3, DP, KP, TP ≤N EP. Hence EP is a DN-group. 

Let EP be DN-group, then for any D, K, T ≤N E, (DP + KP) ∩ TP = (DP ∩ TP) + (KP ∩ TP) ⇒ ((D + K) ∩ T)P = ((D ∩ T) +
(K ∩ T))P ⇒ (D + K) ∩ T = (D ∩ T) + (K ∩ T)[by corollary 2.1]. This shows that E is a DN-group.  

  

Proposition 2.1  An ideal N-group E generated finitely if and only if EP generated finitely, ∀ P ∈ Max(N).  

Proof. Let ep ∈ EP = S−1E = (N\P)−1 . Then eP = s−1e, for some s ∈ S, e ∈ E.  Since E  generated finitely, e = n1e1 +

n2e2 + ⋯ + nnen, where ni ∈ N, ei ∈ E, i = 1,2, . . n. Since S−1n1e1  is an ideal, s−1(n1e1 + n2e2) − s−1n2e2 ∈ S−1n1e1  ⇒
s−1(n1e1 + n2e2) = s1

−1n1e1 + s−1n2e2, for some s1 ∈ S = n1(s1
−1e1) + n2(s2

−1e2)[since N is commutative], where s = s2. 

In the same way, it can be extended to a finite number n of steps, i. e eP = s−1e = s−1(n1e1 + n2e2 + n3e3 + ⋯ + nnen) =
n1(s1

−1e1) + n2(s2
−1e2) + n3(s3

−1e3) + ⋯ nn(sn
−1en), where si ∈ S, ei ∈ E and ni ∈ N, for i = 1,2,3, … n. This shows that EP 

generated finitely.  

  

Lemma 2.6  If EP is cyclic N-group, then 
NP

IP
≅ EP, for some P ∈ Max(N).  

Proof. Let EP be cyclic N-group generated by ep. Now, let us define a function ϕ: NP → EP by ϕ(np) = (ne)p , where n ∈

N, e ∈ E. i. e.ϕ(s−1n) = s−1(ne),where s ∈ S = N\P. Clearly, ϕ is well defined and onto. For any mp, np ∈ NP we have, 

ϕ(mP + np) = ϕ(s1
−1m + s2

−1n) = ϕ((s1s2)−1)(s2m + s1n)) = (s1s2)−1((s2m + s1n)e) = (s1s2)−1(s2me + s1ne) =

s1
−1(me) + s2

−1(ne) = (me)p + (ne)p = ϕ(mp) + ϕ(np). Also, for any np ∈ Np, xp ∈ Ep, we have ϕ(npxp) = ϕ((nx)p) =

((nx)e)p = np(xe)p = npϕ(xp). ∴
NP

kerϕ
≅ EP . Since kerϕ is an ideal, taking kerϕ = Ip we get, 

NP

IP
≅ EP , where Ip  is an 

ideal of NP.  

  

 

3. Multiplication 𝐍-groups 
Definition 3.1 N is referred to be arithmetical if N considered as N-group is a DN-group or NP = (N\P)−1N is Uniserial, ∀ 

P ∈ Max(N).  
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Example 3.1  If E = N = {0, s, b, m} is the Klein’s 4-groups given by the following table- 

 

. 0 s b m 

0 0 0 0 0 

s 0 0 s s 

b 0 s b b 

m 0 s m m 

 

+ 0 s b m 

0 0 s b m 

s s 0 m b 

b b m 0 s 

m m b s 0 

 

Then (E, +, . ) is a near ring and N-group over itself. 

P = {0}, L = {0, s}, E ≤N E as NP = P, NL = L and NN = N such that P ⊂ L ⊂ N. 

We have, P + L = L + P = L, P + E = E + P = E, L + E = E + L = E, P + P = P. 

and (P + L) ∩ E = L = (P ∩ E) + (L ∩ E), (P + E) ∩ L = L = (P ∩ L) + (E ∩ L), (L + E) ∩ P = P = (L ∩ P) + (E ∩ P), (L +
P) ∩ E = L = (L ∩ E) + (P ∩ E), ((E + P) ∩ L = L = (E ∩ L) + (P ∩ L), (E + L) ∩ P = P = (E ∩ P) + (L ∩ P). 
Thus E is a DN-group and hence E is arithmetical.  

 

Definition 3.2 If an N-subgroup A of E has the form IE for some I ⊲ N, it is referred to be multiplication.  

  

Definition 3.3 E is referred to as a multiplication N-group if A is multiplication ∀A ≤N E.  

  

Example 3.2  Example of a multiplication N-group. 

Let N = (E, +, . ) = {0, s, b, k} be the Klein’s 4-groups under the operations given below- 

 

. 0 s b k 

0 0 0 0 0 

s 0 0 s s 

b 0 s k b 

k 0 s b k 
 

+ 0 s b k 

0 0 s b k 

s s 0 k b 

b b k 0 s 

k k b s 0 
 

      Then (N, +, . ) is a near ring as well as N-group over itself. D = {0}, K = {0, s}, E ≤N E. Also, D, K, N ⊲ N such that 

D = DE, K = KE and E = NE. Thus E is a multiplication N-group. 

 

Theorem 3.1 If K ⊲ N such that K ⊆ J(N) and E is multiplication N-group, then KE = 0 implies E = 0.  

Proof. Let x ∈ E. Since E is a multiplication N-group, therefore by definition of multiplication N-group, Nx = JE, for some J 
⊲ N[since Nx is a principal N-subgroup]. Now, KE = 0 ⇒ JKE = 0 ⇒ KJE = 0[since N is commutative] ⇒ KNx = 0. Since 

x ∈ Nx, ax = 0∀a ∈ K ⇒ a−1ax = 0[since a ∈ K ⊆ J(N)] ⇒ x = 0[since E is unitary] ⇒ E = 0.  
  

Definition 3.4 (AP: EP) = {nP ∈ NP: nPEP ⊆ AP}, for any AP ≤N EP.  
 

Definition 3.5 An IP  ≤N  NP  is called an ideal of NP  if xP − yP ∈ IP, nP + xP − nP ∈ IP, nP(n′P + yP) − nPn′P ∈
IP, ∀xP, yP ∈ IP, nP, n′P ∈ NP.  
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Definition 3.6 EP is referred to as a multiplication N-group if for every AP ≤N EP, AP = IPEP, for some IP ⊲ NP.  

 

Theorem 3.2  Every cyclic localized N-group is a localized multiplication N-group.  

Proof. Let EP  be cyclic generated by eP , for some e ∈ E . Let AP ≤N EP . Now, (AP: EP) = {nP ∈ NP: nPEP ⊆ AP}.  So, 

(AP: EP)EP ⊆ AP. Let aP ∈ AP ⊆ EP ⇒ aP = nPeP, for some n ∈ N. Now, for any mP ∈ EP we have, nPmP = nPn′PeP, for 

some n′ ∈ N  = n′P(nPeP) [since N  is commutative] = n′PaP ∈ NPAP ⊆ AP [since AP ≤N EP ]. ∴ nPEP ⊆ AP  ⇒ nP ∈
(AP: EP)  ⇒ aP ∈ (AP: EP)EP  ⇒ AP ⊆ (AP: EP)EP . ∴ AP = (AP: EP)EP . Let xP, yP ∈ (AP: EP)  and nP, n′P ∈ NP . Since 

AP ≤N EP , for any e ∈ E , (xP − yP)eP = xPeP − yPeP ∈ AP . ∴ (xP − yP)EP ⊆ AP  ⇒ xP − yP ∈ (AP: EP) . Since N  is 

commutative nP + xP − nP = xP ∈ (AP: EP) and nP(n′P + yP) − nPn′P = nPyP. But for any e ∈ E,(nPyP)ep = (yPnP)eP =

yP(nPeP) ∈ yPEP ⊆ AP. ∴ nPyP ∈ (AP: EP). Thus (AP: EP) is an ideal of NP and hence EP is a multiplication N-group.  

 

 

Theorem 3.3  Every localized multiplication N-group over local N is cyclic.  

Proof. Let EP be multiplication N-group over local N. ∴ EP = IPEP, for some IP ⊲ NP ⇒ EP = IPEP ⊆ NPEP ⊆ EP. ∴ EP =
NPEP . So, for any e ∈ E, NPeP ⊆ NPEP = EP  ⇒ NPeP ⊆ EP . Let eP ∈ EP  and a ∈ N . Since N  is local, a  or 1 − a  is 

invertible in it. If a is invertible, then aPeP ∈ NPEP ⇒ aPeP = npeP, for some n ∈ N. ⇒ (s1
−1a)(s2

−1e) = (s3
−1n)(s4

−1e), for 

some s1, s2, s3, s4 ∈ S, n ∈ N  ⇒ (s1s2)−1(ae) = (s3s4)−1(ne)  ⇒ a−1(s1s2)−1(ae) = a−1(s3s4)−1(ne)  ⇒
(s1s2)−1(a−1(ae)) = (s3s4)−1(a−1(ne)) [since N  is commutative] ⇒ (s1s2)−1(e) = (s3s4)−1((a−1n)e)  ⇒ (s1s2)−1(e) =
(s3

−1(a−1n))(s4
−1e) ⇒ ep ∈ NPeP ⇒ EP ⊆ NPeP. Thus EP = NPeP and hence EP is cyclic.  

 

 

Theorem 3.4  Localized multiplication N-group is also multiplication N-group. 

Proof. Let M′ ≤N S−1E = EP. Then ∃ M ≤N E such that M′ = S−1M. Since E is a multiplication N-group, M = IE, for some 

I ⊲ N. Then M′ = S−1(IE) = (SS)−1(IE)[using lemma 2.1]. So, M′ = (S−1I)(S−1E). Also, by lemma 2.2, S−1I is an ideal of 

S−1N. Thus the result.  

 

Corollary 3.1  Since Every multiplication N-group over local N is cyclic and localized N-group of a multiplication N-group is 

also multiplication N-group, every localized multiplication N-group over local N is cyclic.  

 

Theorem 3.5  If E is a generated finitely, then E is multiplication if and only if EP is multiplication N-group, ∀ P ∈ Max(N).  

Proof. Let E be multiplication. So, by theorem 3.4, EP  is a multiplication N-group. Conversely, let EP  be multiplication 

N-group. Let X ≤N E. Then XP = IP. EP, for some ideal IP of NP. ∴ XP = S−1I. S−1E = (SS)−1(IE) = S−1(IE) = (IE)P [since 

SS = S]. So, by corollary 2.1, X = IE. Hence E is a multiplication N-group.  

  

Theorem 3.6  If Ann(E) ⊆ Pi only, Pi ∈ Max(N) such that each principal N-subgroup is an ideal and EPi
 is cyclic, then EP 

is a multiplication N-group for i = 1,2 … n.  

  

Proof. Since EPi
 is cyclic, EPi

= (Nei)Pi
, where ei ∈ E, i = 1,2,3, … n. Let us choose bi ∈ (⋂i=j Pi)\Pi, i = j, i = 1,2 … n. Let 

X ≤N E be cyclic and generated by x = ∑n
i=1 biei. Now, EP1

= (Ne1)P1
⇒ (N\P1)−1E = (N\P1)−1(Ne1) ⇒ (N\P1)E = Ne1 

[since (N\P1)N ⊆ N] ⇒ siei = nie1 , for some si ∈ N\P1, ni ∈ N. Let s = s1s2s3 … sn and s′i = s1s2s3 … si−1si+1 … sn  such 

that s = sis′i . ∴ sx = s(b1e1 + b2e2 + ⋯ bnen) . Now, s(b1e1 + b2e2 + ⋯ bnen) − s(b2e2 + ⋯ bnen) ∈ Sb1e1  ⇒ sx −
s(b2e2 + ⋯ bnen) = s′b1e1, for some s′ ∈ S  ⇒ (ss)−1[sx − s(b2e2 + ⋯ bnen)] = (ss)−1(s′b1e1)  ⇒ (ss)−1[sx − s(b2e2 +
⋯ bnen)] = s−1(s′b1e1)  ⇒ s−1(x) − s−1(b2e2 + ⋯ bnen)] = (ss)−1(s′b1e1) . Since s′b1e1 ∈ E, ss ∈ S, x ∈ X, b2e2 +
⋯ bnen ∈ J(N)E, therefore EP = XP − (J(N)E)P. Since Ann(E) ⊆ Pi only, Ann(E) ⊆ P, ∀ P ∈ Max(N). So, ∃ s ∈ Ann(E), 

but s ∈ P ⇒ sE = 0, for s ∈ N, but s ∈ P ⇒ EP = 0[since s ∈ N\P = S]. So, XP = (J(N)E)P ⇒ XP = S−1(J(N)E) ⇒ XP =
(SS)−1(J(N)E)[since SS=S] ⇒ XP = (S−1J(N)). (S−1E) ⇒ XP = J(N)P. Ep . By lemma 2.5, J(N)P  ⊲ NP [since J(N) ⊲ N]. 

This shows that EP is a multiplication N-group.  

  

Definition 3.7 E is called locally cyclic if EP is cyclic, ∀ P ∈ Max(N).  

 

Theorem 3.7  If E generated finitely on local N, then E is multiplication iff it is locally cyclic N-group.  

Proof. If E is a multiplication ideal N-group which generated finitely on local N, then by theorem 3.5, EP is multiplication 

N-group, ∀ P ∈ Max(N). Since N is local, EP is cyclic N-group ∀P ∈ Max(N)[by theorem3.3]. So, by definition E is locally 

cyclic N-group. Conversely, suppose E is locally cyclic N-group. Then EP is cyclic, ∀ P ∈ Max(N). So, EP is multiplication 
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N-group, ∀ P ∈ Max(N)[by theorem 3.2] and so E is multiplication [by theorem 3.5].  

  

Definition 3.8 Every N-subgroup of E is referred to as a principal ideal N-group if it is both principal and ideal.  

 

Theorem 3.8  If E is principal DN-group over local N and every localized DN-group over local N is Uniserial, then E is 

multiplication N-group.  

Proof. Since E is a principal DN-group, every N-subgroup is principal and so generated finitely. Let M ≤N E generated 

finitely. Since by lemma 1.2, N-subgroups of a DN-group are also ideal DN-groups, M is a DN-group. ∴ By theorem 2.2, MP 

is a DN-group. Since N  is a local, MP  is an Uniserial N-group[by hypothesis]. Since M  generated finitely, MP  is also 

generated finitely[by proposition 2.1]. So, for mP ∈ Mp  we have, mP = n1pe1p + n2pe2p + n3pe3p + ⋯ + nnpenp , where 

niP ∈ NP, eiP ∈ MP ⇒ mP ∈ Npe1P + Npe2P + Npe3P + ⋯ + NpenP. Since MP is Uniserial, so any two of its N-subgroups are 

comparable, we may assume Npe1P ⊆ Npe2P ⊆ Npe3P ⊆ ⋯ ⊆ NpenP . ∴ mP ⊆ NPenP  ⇒ MP ⊆ NPenP .  Since MP  is 

N-subgroup and enP ∈ MP, NPenP ⊆ MP. ∴ MP = NPenP ⇒ MP is cyclic ⇒ M is locally cyclic So, by theorem 3.7, M is a 

multiplication N-group and hence E is multiplication.  
  

Definition 3.9 A local near ring is referred to as convey if it is strongly regular.  
 

Theorem 3.9  If E is an ideal DN-group which generated finitely over a convey N with inverse property and every ideal 

DN-group over a strongly regular near ring is Bezout, then E is a multiplication N-group.  
  

Proof. Let M ≤N E. Since E generated finitely, M generated finitely. Since N-subgroups of an ideal DN-group are also ideal 

DN-group, M  is an ideal DN-group. So, by theorem 2.2, MP  is also DN-group. Since M  generated finitely, MP  is also 

generated finitely [ by proposition 2.1]. Since N is convey, MP is an ideal DN-group over a strongly regular near ring. By 

hypothesis, MP is a Bezout N-group. So, every generated finitely N-subgroup is cyclic. Since MP generated finitely, MP is 

cyclic. So, by definition M  is locally cyclic. Thus by theorem 3.7, M is a multiplication N-group. Hence E is multiplication.  
  

Proposition 3.1  If N is an arithmetical, then ∀ Q ∈ Max(N), 
NQ

IQ
 is an Uniserial N-group.  

Proof. Let N be an arithmetical. Then by definition, NQ is Uniserial, ∀ Q ∈ Max(N). Now, to show for any sub factors (ideals 

of 
NQ

IQ
) X̅Q =

NQ

I1p
 and Y̅Q =

NQ

I2p
, X̅Q ⊆ Y̅Q  or Y̅Q ⊆ X̅Q . Since I1p, I2p  are ideals of the Uniserial N-group NQ , I1p ⊆ I2p  or 

I2p ⊆ I1p. Let a̅ ∈ X̅Q. Then a ∈ I1p ⇒ a ∈ I2p ⇒ a̅ ∈ Y̅Q. ∴ X̅Q ⊆ Y̅Q. Thus if I1p ⊆ I2p, then X̅Q ⊆ Y̅Q. Similarly, if I2p ⊆

I1p, then Y̅Q ⊆ X̅Q. This shows the result  

  

Theorem 3.10  If Eis multiplication ideal N-group which generated finitely and N is arithmetical local near ring, then E is a 

DN-group.  

Proof. EP is also multiplication N-group as E is a multiplication N-group[ by theorem 3.4]. Also, by theorem 3.3, EP is cyclic. 

So, by lemma 2.6, 
NP

IP
≅ EP ∀P ∈ Max(N). Since N is a arithmetical local, 

NP

IP
 is an Uniserial N-group[ by proposition 3.1]. So, 

EP is an Uniserial N-group ⇒ EP is a DN-group[since Uniserial N-group is DN-group] ⇒ E is a DN-group[by theorem 2.2]. 

 

4. Conclusion 
 Near ring theory is a domain of Algebra with many applications. Multiplication N-groups have a wide range to study. By this 

work this structure will become familiar in near ring theory. This study describes the Uniserial N-groups, Bezout N-groups, 

multiplication N-groups and their relations under certain conditions. Although, these works will not study their direct application 

and societal benefit, other science communities may use these structures for their different works. 
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