Original Article

Distributive Character of Multiplication N-groups

Md Nazir Hussain¹, Navalakhi Hazarika², Anuradha Devi³

¹Department of Mathematics, Bilasipara College, Dhubri, Assam, India ²Department of Mathematics, GL Choudhury College, Barpeta, Assam, India ³Department of Mathematics, The Assam Royal Global University, Guwahati, Assam, India

Corresponding Author : nazirh328@gmail.com

Received: 23 April 2023Revised: 29 May 2023Accepted: 15 June 2023Published: 27 June 2023

Abstract - In this paper, Uniserial N-groups and Bezout N-groups are defined. Defining localized near ring, localized N-groups, localized N-subgroups and localized ideals of N-groups the related results are discussed. It is observed that the various characteristics of DN-groups, multiplication N-groups, Uniserial N-groups and Bezout N-groups are also investigated. It is also seen that in arithmetical near rings, uniserial N-groups and DN-groups lead to multiplication N-groups.

Keywords - Near rings, Localized N-groups, Multiplication N-groups, Distributive N-groups.

AMS Subject Classification Codes: 16Y30.

1. Introduction

In this study, the concepts of multiplication N-groups and cyclic N-groups in the near rings are defined by Elaheh Khodadaapour and Tahereh Roodbarilor. They discussed the relationship between multiplication N-groups and cyclic N-groups. The left N-group E is regarded as unitary and N as a commutative near ring with zero symmetric. This paper's foundational ideas are all referenced in [6, 9]. Here, we defined the fundamental definition and outcomes required for this paper. The symbols \leq_N, \leq_N and \triangleleft are used to mean N-subgroup, normal N-group and ideal respectively. Max(N) represents the collection of all maximal ideals of N. Most of the definitions have been extracted from [9].

Definition 1.1 If the following standards are satisfied, a nonempty set N combined with the binary operations "+" and "." is referred to as right near ring.

i. (N, +) is a group(not necessarily abelian).

ii. (N,.) is a semi group.

iii. (p + b)c = pc + bc), $\forall p, b, c \in N$.

Definition 1.2 An additive group (E, +) is referred to be a left N-group, if \exists a map N × E \rightarrow E, $(n, u) \rightarrow$ nu in which the following standards are satisfied-

i. (m + n)u = mu + nu.

ii. (mn)u = m(nu).

It is to be noted that N is itself an N-group over itself. If for $1 \in N$ such that $1 \cdot u = u \forall u \in E$, then E is called an unitary N-group.

In the event that A is a subgroup of (E, +) and $NA \subseteq A$ for any $A \subseteq E$, then E is referred to as an N-subgroup. If F is a normal subgroup of (E, +) with $na \in F$, $\forall n \in N, a \in F$, then F is referred to be a normal N-subgroup of E. If D is a normal subgroup of (E, +) such that $n(a + e) - ne \in D$, $\forall n \in N, a \in D, e \in E$, then D is referred to as an ideal of E. Let $A \triangleleft E$. Then the set $\frac{E}{A} = \{a + A : a \in E\}$ forms an N-group under the operations (k + A) + (s + A) = (k + s) + A and $m(s + A) = ms + A, \forall s, k \in E, m \in N$, called quotient N-group. E is called cyclic if E = nl for some $n \in N, l \in E$.

When $x \in E$, Nx is referred to as the principal N-subgroup of E.

E is known as the principal N-group (PNG) if each $A \leq_N E$ is principal.

E is referred to as an ideal N-group if each A \leq_{N} E is an ideal.

If K \triangleleft E, then the N-subgroup of $\frac{E}{\kappa}$ is referred as a subfactor of E.

If for any (left or right) $J \triangleleft N$ with $I \subseteq J$ implies J = I or J = N, then $I \triangleleft N$ is referred to be (left or right)maximal.

If for any $J \leq_N E$ with $I \subseteq J$ implies J = I or J = E, then $I \leq_N E$ is referred to be maximal.

If k or 1 - k is invertible in it for any $k \in N$ or N has a unique maximal N-subgroup, then N is called local.

N is called strongly regular if for any $n \in N \exists m \in N$ such that $n = n^2m$ or mn^2 .

Jacobson radical, $J(N) = \{ \cap I : I \in Max(N) \}.$

If $\exists I, J \lhd N$ such that $IJ \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$, then $P \lhd N$ is called prime.

If $(P + T) \cap C = P \cap C + T \cap C \forall P, T, C \leq_N E$, then E is called left DN-group.

A fully DN-group is a DN-group if each factor group is DN-group.

E is referred to generated finitely if \exists a finite set $\{e_1, e_2, e_3, \dots e_n\}$ such that $E = n_1e_1 + n_2e_2 + n_3e_3 + \dots + n_ne_n, e_i \in E, n_i \in N, i = 1, 2, \dots n$.

Definition 1.3 E is Uniserial if any two of its N-subgroups are comparable to each other.

Definition 1.4 E is called Bezout N-group if any of its N-subgroup which is generated finitely, is cyclic.

Lemma 1.1 [9][2.72 corollary] Maximal ideal of a near ring with unity is a prime ideal.

Lemma 1.2 N-subgroups of an ideal DN-group E are also ideal DN-groups.

Proof. Let $T \leq_N E$. If $T_1, T_2, T_3 \leq_N T$, then $A_1, A_2, A_3 \leq_N E$ also. So the result.

2. Localized N-groups

Definition 2.1 $H \subseteq N$ is called multiplicative closed if $p \in H$ implies $p^{-1} \in H$ or $1 \in H$ and $p, y \in H$ imply $py \in H$.

It is to be noted that for any $p \in H$, $pp^{-1} = p^{-1}p = 1 \in H$ and $p = (p^{-1})^{-1}$.

Definition 2.2 Let S be a multiplicative closed subset of a commutative near ring N with identity. Define " + " and "." in $(S^{-1}N, +, .)$ by- $s_1^{-1}n_1 + s_2^{-1}n_2 = (s_1s_2)^{-1}(s_2n_1 + s_1n_2)$ and $(s_1^{-1}n_1).(s_2^{-1}n_2) = (s_1s_2)^{-1}(n_1n_2)$, $\forall s_1, s_2 \in S, n_1, n_2 \in N$. Then for any $s_1^{-1}n_1, s_2^{-1}n_2, s_3^{-1}n_3 \in S^{-1}N$ we have, $(s_1s_2)^{-1} \in S$ and $s_2n_1 + s_1n_2 \in N$. So, $(s_1s_2)^{-1}(s_2n_1 + s_1n_2) \in S^{-1}N \Rightarrow s_1^{-1}n_1 + s_2^{-1}n_2 \in S^{-1}N$. Now, $(s_1^{-1}n_1 + s_2^{-1}n_2) + s_3^{-1}n_3 = (s_1s_2)^{-1}(s_2n_1 + s_1n_2) + s_3^{-1}n_3 = (s_1s_2s_3)^{-1}\{s_3(s_2n_1 + s_1n_2) + (s_1s_2)n_3\}$ [since (N, .) is associative] $= (s_1s_2s_3)^{-1}\{(s_2n_1 + s_1n_2)s_3 + (s_1s_2)n_3\}$ [since $S \subseteq N$ and (N, .) is commutative]

 $= (s_1s_2s_3)^{-1} \{(s_2n_1)s_3 + (s_1n_2)s_3 + (s_1s_2)n_3\}$ [by right distributive law] $= (s_1s_2s_3)^{-1} \{s_3(s_2n_1) + s_3(s_1n_2) + (s_1s_2)n_3\}$ [since $S \subseteq N$ and (N, .) is commutative] $= (s_1s_2s_3)^{-1} \{s_3(s_2n_1) + s_3(s_1n_2) + (s_1s_2)n_3\}$ [since (N, .) is commutative and has right distributive property]

 $= (s_1s_2s_3)^{-1}\{(s_2s_3)n_1\} + (s_1s_3)n_2\} + (s_1s_2)n_3\} \text{ [since (N,.) is associative and commutative]. Similarly, we can show that } s_1^{-1}n_1 + (s_2^{-1}n_2 + s_3^{-1}n_3) = (s_1s_2s_3)^{-1}\{(s_2s_3)n_1\} + (s_1s_3)n_2\} + (s_1s_2)n_3\} \qquad \therefore \qquad (s_1^{-1}n_1 + s_2^{-1}n_2) + s_3^{-1}n_3 = s_1^{-1}n_1 + (s_2^{-1}n_2 + s_3^{-1}n_3).$

For any $s^{-1}x \in S^{-1}N$ we have, $0 + s^{-1}x = s^{-1}0 + s^{-1}x = s^{-1}(0 + x)$ [since $s^{-1} \in N$, N has the right distributive property and (N,.) is commutative] = $s^{-1}x$. Similarly, $s^{-1}x + 0 = s^{-1}x$. Thus the identity 0 of (N, +) is the identity of $(S^{-1}N, +)$. For any $s^{-1}x \in S^{-1}N$, $-s^{-1}x$ is the inverse of $s^{-1}x$ as $s^{-1}x + (-s^{-1}x) = s^{-1}(x - x) = s^{-1}0 = 0 = (-s^{-1}x) + s^{-1}x$. Also, $(S^{-1}N, .)$ is closed by definition. Since N is commutative, $s_1^{-1}n_1(s_2^{-1}n_2s_3^{-1}n_3) = (s_1^{-1}n_1s_2^{-1}n_2)s_3^{-1}n_3$. Now, for any $s, y \in S \subseteq N$ we have, $s^{-1}, y^{-1}, s^{-1}y^{-1}, (sy)^{-1} \in S \subseteq N$. $\therefore s^{-1}y^{-1} = (s^{-1}.1)(y^{-1}.1)$ [since N has the unity] = $(sy)^{-1}(1.1)$ [by hypothesis] = $(sy)^{-1}$ [since N has the unity]. $\therefore (s_1^{-1}n_1 + s_2^{-1}n_2).s_3^{-1}n_3) = (s_1s_2)^{-1}(s_2n_1 + s_1n_2)s_3^{-1}n_3) = (s_1s_2s_3)^{-1}(s_2n_1 + s_1n_2)n_3)$ [since (N,.) is associative]

= $(s_1s_2s_3)^{-1}(s_2n_1n_3 + s_1n_2n_3) = (s_1s_2s_3)^{-1} \cdot 1 \cdot (s_2n_1n_3 + s_1n_2n_3)$ [since N has the unity] = $(s_1s_2s_3)^{-1} \cdot s_3^{-1}s_3 \cdot (s_2n_1n_3 + s_1n_2n_3)$ [by definition of S]

= $(s_1s_3s_2s_3)^{-1}(s_2s_3n_1n_3 + s_1s_3n_2n_3)$ [since N has the right distributive property and (N, .) is commutative] =

 $(s_1s_3)^{-1}(n_1n_3) + (s_2s_3)^{-1}(n_2n_3) = s_1^{-1}n_1 \cdot s_3^{-1}n_3 + s_2^{-1}n_2 \cdot s_3^{-1}n_3$ The above conditions shows that S⁻¹N is a near ring, called localized near ring.

Note that if $h \in H$, then $h^{-1}0 = 0$, where 0 is the identity of (N, +).

Definition 2.3 Let S be a multiplicative closed subset of a commutative near ring N with identity. Then as above $(S^{-1}N, +)$ is a group. If we define a map $S^{-1}N \times S^{-1}E \to S^{-1}E$ by $(s_1^{-1}n, s_2^{-1}e) \to (s_1s_2)^{-1}$ (ne) i. e. $s_1^{-1}n. s_2^{-1}e = (s_1s_2)^{-1}$ (ne). Then we get, $(s_1^{-1}n_1 + s_2^{-1}n_2)(s^{-1}e) = (s_1s_2)^{-1}(s_2n_1 + s_1n_2)s^{-1}e = (s_1s_2s)^{-1}(s_2n_1 + s_1n_2)e = (s_1s_2s)^{-1}(s_2n_1s + s_1n_2s) = (s_1s_2)^{-1}s^{-1}(s_2n_1e + s_1n_2e)$ [as $(xy)^{-1} = x^{-1}y^{-1}$] = $(s_1s_2)^{-1}$ $(s^{-1}s_2n_1e + s^{-1}s_1n_2e)$ [as $s^{-1} \in N$ and N is commutative] = $s_1^{-1}(s^{-1}n_1e) + s_2^{-1}(s^{-1}n_2e)$ [by hypothesis] = $(s_1^{-1}s^{-1})(n_1e) + (s_2^{-1}s^{-1})(n_2e)$ [since N is commutative] = $(s_1s^{-1})^{-1}(n_1e) + (s_2s^{-1})^{-1}(n_2e)$ [since $(xy)^{-1} = x^{-1}y^{-1}$] = $(s_1^{-1}n_1.s^{-1}e) + (s_2^{-1}n_2.s^{-1}e)$ [by hypothesis]. This shows that S⁻¹E is an S⁻¹N-group called localized N-group of E or simply S⁻¹E is an N-group.

Definition 2.4 Let S be a multiplicative closed subset of a commutative N with unity. If $A \leq_N E$, then $S^{-1}A$ is called $S^{-1}N$ -subgroup of $S^{-1}E$ if $n(s^{-1}a) = s^{-1}(na) \in S^{-1}A$, for some $s \in S, a \in A, n \in N$. This $S^{-1}N$ -subgroup is called localized N-subgroup of E or simply $S^{-1}A$ is an N-subgroup of E.

Definition 2.5 Let S be a multiplicative closed subset of a commutative N with unity. For $I \subseteq N$, $S^{-1}I$ is an ideal of $S^{-1}N$ if $S^{-1}I$ is an additive normal subgroup of $S^{-1}N$ and $s_1^{-1}x$. $s_2^{-1}n$, $s_1^{-1}n_1(s_2^{-1}n_2 + s^{-1}x) - s_1^{-1}n_1s_2^{-1}n_2 \in S^{-1}I$, for some s, $s_1, s_2 \in S$, n, $n_1, n_2 \in N$, $x \in I$. This ideal $S^{-1}I$ is called localized ideal of N or simply $S^{-1}I$ is an ideal of N.

Definition 2.6 Let $P \triangleleft N$ be prime without unity. Then $S = N \setminus P$ is multiplicative closed subset of N because if $d, b \in S$, then $db \in N$ and $d, b \notin P$. Also, P is prime, $db \notin P$ and so $db \in S$. Also $1 \notin P, 1 \in N \Rightarrow 1 \in S$. Then $S^{-1}N$ is called localization of N at P and denoted by N_P . Therefore $N_P = (N \setminus P)^{-1}N = S^{-1}N$. Localization of E at a prime ideal P, $E_P = S^{-1}E = (N \setminus P)^{-1}E$.

Lemma 2.1 SS = S if S is a multiplicative closed subset of N.

Proof. If $x \in SS$, then $x = s_1s_2 \in S$, for some $s_1, s_2 \in S$. So, $SS \subseteq S$. Again if $s \in S$, then s = 1. s [since N has identity]. Since $1 \in S$ and S is Multiplicative closed, therefore s = 1. $s \in SS$. Thus $S \subseteq SS$ and hence SS = S.

Lemma 2.2 Let S be a multiplicative closed subset of N and I \triangleleft N. Then S⁻¹I \triangleleft S⁻¹N.

Proof. Since $I \lhd N$, for any $x, y \in I$ and $n, n_1, n_2 \in N$, $xn \in I, n + x - n \in I$ and $n_1(n_2 + x) - n_1n_2 \in I$. Now, for any $s_1, s_2 \in S$ we have, $s_1^{-1}x - s_2^{-1}y = (s_1s_2)^{-1}(s_2x - s_1y) \in S^{-1}I$ and $s_1^{-1}n + s_2^{-1}x - s_1^{-1}n = (s_1s_2)^{-1}(s_2n + s_1x) + s_1^{-1}(-n) = (s_1s_2s_1)^{-1}[s_1(s_2n + s_1x) - s_1s_2n]$. Now, $s_1 \in S \Rightarrow s_1 \in N \Rightarrow s_1x \in I$. Also $s_2n \in N$ and so $s_1(s_2n + s_1x) - s_1s_2n \in I$. Again, $s_1s_2s_1 \in S$ and therefore $(s_1s_2s_1)^{-1}[s_1(s_2n + s_1x) - s_1s_2n] \in S^{-1}I$. Now, $s_2^{-1}x \cdot s_1^{-1}n = (s_2s_1)^{-1}(xn) \in S^{-1}I$ and $s_1^{-1}n_1(s_2^{-1}n_2 + s^{-1}x) - s_1^{-1}n_1s_2^{-1}n_2 = s_1^{-1}n_1[(s_2s)^{-1}(s_1z_2 + s_2x)] - (s_1s_2)^{-1}(n_1n_2) = (s_1s_2s)^{-1} n_1(s_1z_2 + s_2x) - (s_1s_2)^{-1}(n_1n_2) = (s_1s_2s)^{-1}[n_1(s_1z_2 + s_2x) - s(n_1n_2)] \in S^{-1}I$ [since $s_2x \in I$]. This shows that $S^{-1}I$ is an ideal of $S^{-1}N$.

Since by lemma 1.1, maximal ideal in N with unity is prime ideal. So, $P \in Max(N)$ implies $S = N \setminus P$ is closed subset as shown earlier and localized near ring, localized N-groups, localized N-subgroups, localized ideals are defined. Now, utilizing this idea, we will demonstrate some findings.

Lemma 2.3 Let $X \leq_N E$. Then $X_P \leq_N E_P$, $\forall P \in Max(N)$.

Proof. We have, $X_P = S^{-1}X$, $E_P = S^{-1}E$. Since $X \leq_N E$, X is subgroup of E and so $NX \subseteq X$. Now, $a, b \in X_P$ implies $a = s_1^{-1}x_1$, $b = s_2^{-1}x_2$, for some $s_1, s_2 \in S, x_1, x_2 \in X$. So, $a - b = (s_1s_2)^{-1}(s_2x_1 - s_1x_2)$. Since $s_2x_1, s_1x_2 \in X$ and X is subgroup of E, $s_2x_1 - s_1x_2 \in X$. Also, $s_1, s_2 \in S$ [since S is multiplicative closed]. Therefore, $a - b \in S^{-1}X$. Also, let $y \in N_P$. X_P . Then y = nx, for some $n \in N_P, x \in X_P$. $\therefore n = s_1^{-1}n_1$ and $x = s_2^{-1}x_1$, for some $n_1 \in N, x_1 \in X \Rightarrow nx = (s_1s_2)^{-1}(n_1x_1) \in S^{-1}X$. Thus, $y = nx \in X_P$. Hence the result.

Lemma 2.4 If $E_P = 0$, $\forall P \in Max(N)$, then $\exists s \in S = N \setminus P$ such that $se = 0 \forall e \in E$.

Proof. $E_P = 0 \Rightarrow S^{-1}E = 0$. So, for any $e \in E$ there exists $s \in S$ such $s^{-1} \in S$ and $(s^{-1})^{-1}e = 0$ [Since S is closed]. Also $s = (s^{-1})^{-1}$. Thus the result.

Theorem 2.1 For an N-group E, E = 0 if and only if $E_P = 0$, $\forall P \in Max(N)$.

Proof. If E = 0, $\exists s \in (N \setminus P)^{-1}$ such that se = 0. So, $E_P = 0$. Let $e \in E$. Then $Ann(e) \triangleleft N$. Let $Ann(e) \triangleleft N$ be proper. Then $\exists P \in Max(N)$ such that $Ann(e) \subseteq P$ [since every proper ideal in N is contained in a maximal ideal]. Since $E_P = 0$, $\exists s \in S = N \setminus P$ such that se = 0[by lemma 2.4]. $\therefore s \in Ann(e) \subseteq P \Rightarrow s \in P$ -which contradicts $s \in N \setminus P$. Thus $Ann(e) = N \Rightarrow ne = 0$, $\forall n \in N$. Since $1 \in N$, $1e = 0 \Rightarrow e = 0 \Rightarrow E = 0$.

Corollary 2.1 $A_P = B_P \Rightarrow A = B, \forall A, B \leq_N E, P \in Max(N).$

Proof. Let $a \in A$. Then $s_1^{-1}a \in S^{-1}A$, for some $s_1 \in S = N \setminus P \Rightarrow s_1^{-1}a \in S^{-1}B[\text{since } A_P = B_P] \Rightarrow s_1^{-1}a = s_2^{-1}b$, for some $s_2 \in S$, $b \in B \Rightarrow s_1^{-1}a - s_2^{-1}b = 0 \Rightarrow (s_1s_2)^{-1}(s_2a - s_1b) = 0 \Rightarrow (s_2a - s_1b)_P = 0 \Rightarrow (s_2a - s_1b) = 0[$ by using **theorem 2.1**] $\Rightarrow s_2a = s_1b \Rightarrow s_2^{-1}s_2a = s_2^{-1}S_1b \Rightarrow a = 1$. $a \in NB \subseteq B$. Thus $A \subseteq B$. Similarly, $B \subseteq A$. Hence A = B.

Lemma 2.5

If $I \lhd N$, then $I_P \lhd N_P$, $\forall P \in Max(N)$

Proof. As in lemma 2.2 we can prove the result.

Theorem 2.2 An ideal N-group E is a DN-group if and only if E_P is a also DN-group, $\forall P \in Max(N)$.

Proof. Since E is a DN-group, $(D \cap T) + (K \cap T) = (D + K) \cap T$, $\forall D, K, T \leq_N E$. Now, to show $(D_P + K_P) \cap T_P = (D_P + T_P) \cap (K_P + T_P)$, $\forall D_P, K_P, T_P \leq_N E E_P$. It is enough to show that, $D_P + K_P = (D + K)_P$ and $D_P \cap K_P = (D \cap K)_P$. Let $x \in D_P + K_P \Rightarrow x = a + b$, where $a \in D_P, b \in K_P$. So, $a = s_1^{-1}a_1, b = s_2^{-1}b_1$ for some $a_1 \in D, b_1 \in K$. $\therefore x = s_1^{-1}a_1 + s_2^{-1}b_1 = (s_1s_2)^{-1}(s_2a_1 + s_1b_2)$. Since $D, K \leq_N E, s_2a_1 \in D, s_1b_2 \in K$. Also, since S is multiplicative closed, $s_1, s_2 \in S \Rightarrow s_1, s_2 \in S$. $\therefore x \in S^{-1}(D + K)$. $\therefore D_P + K_P \subseteq (D + K)_P$.

Let $y \in (D + K)_P = S^{-1}(D + K)$. Then, $y = s^{-1}(x + b)$, for some $s \in S, x \in D, b \in K$. Since $S^{-1}x$ is an ideal, $s^{-1}(x + b) - s^{-1}b \in S^{-1}x \Rightarrow y = s^{-1}(x + b) \in S^{-1}x + S^{-1}b \subseteq S^{-1}D + S^{-1}K = D_P + K_P$. $\therefore (D + K)_P \subseteq D_P + K_P$. Thus $D_P + K_P = (D + K)_P$.

Again, let $x \in D_P \cap K_P = S^{-1}D \cap S^{-1}K$. Then, $x = s_1^{-1}a = s_2^{-1}b$, for some $s_1, s_2 \in S, a \in D, b \in K$. Since $s_1^{-1}, s_2^{-1} \in S = N \setminus P$ and $D, K \leq_N E, s_1^{-1}a \in D, s_2^{-1}b \in K$. $\therefore x \in D \cap K$. Since $D \cap K \leq_N E$ and $S = N \setminus P \subseteq N$, $S(D \cap K) \subseteq D \cap K$ and so $D \cap K \subseteq S^{-1}(D \cap K)$. $\therefore x \in S^{-1}(D \cap K) = (D \cap K)_P$. $\therefore D_P \cap K_P \subseteq (D \cap K)_P$. So we get, $D_P \cap K_P = (D \cap K)_P$. Thus $(D_P + K_P) \cap T_P = (D + K)_P \cap T_P = [(D \cap T) + (K \cap T)]_P = (D \cap T)_P + (K \cap T)_P = (D_P \cap T_P) + (K_P \cap T_P)$. But by lemma 2.3, $D_P, K_P, T_P \leq_N E_P$. Hence E_P is a DN-group.

Let E_P be DN-group, then for any D, K, $T \leq_N E$, $(D_P + K_P) \cap T_P = (D_P \cap T_P) + (K_P \cap T_P) \Rightarrow ((D + K) \cap T)_P = ((D \cap T) + (K \cap T))_P \Rightarrow (D + K) \cap T = (D \cap T) + (K \cap T)[by$ **corollary 2.1**]. This shows that E is a DN-group.

Proposition 2.1 An ideal N-group E generated finitely if and only if E_P generated finitely, $\forall P \in Max(N)$.

Proof. Let $e_p \in E_p = S^{-1}E = (N \setminus P)^{-1}$. Then $e_p = s^{-1}e_i$ for some $s \in S, e \in E$. Since E generated finitely, $e = n_1e_1 + n_2e_2 + \dots + n_ne_n$, where $n_i \in N, e_i \in E, i = 1, 2, \dots n$. Since $S^{-1}n_1e_1$ is an ideal, $s^{-1}(n_1e_1 + n_2e_2) - s^{-1}n_2e_2 \in S^{-1}n_1e_1 \Rightarrow s^{-1}(n_1e_1 + n_2e_2) = s_1^{-1}n_1e_1 + s^{-1}n_2e_2$, for some $s_1 \in S = n_1(s_1^{-1}e_1) + n_2(s_2^{-1}e_2)$ [since N is commutative], where $s = s_2$. In the same way, it can be extended to a finite number n of steps, i. $e e_p = s^{-1}e = s^{-1}(n_1e_1 + n_2e_2 + n_3e_3 + \dots + n_ne_n) = n_1(s_1^{-1}e_1) + n_2(s_2^{-1}e_2) + n_3(s_3^{-1}e_3) + \dots + n_n(s_n^{-1}e_n)$, where $s_i \in S, e_i \in E$ and $n_i \in N$, for $i = 1, 2, 3, \dots n$. This shows that E_p generated finitely.

Lemma 2.6 If E_P is cyclic N-group, then $\frac{N_P}{I_P} \cong E_P$, for some $P \in Max(N)$.

Proof. Let E_p be cyclic N-group generated by e_p . Now, let us define a function $\phi: N_p \to E_p$ by $\phi(n_p) = (ne)_p$, where $n \in N, e \in E$. i. $e.\phi(s^{-1}n) = s^{-1}(ne)$, where $s \in S = N \setminus P$. Clearly, ϕ is well defined and onto. For any $m_p, n_p \in N_p$ we have, $\phi(m_P + n_p) = \phi(s_1^{-1}m + s_2^{-1}n) = \phi((s_1s_2)^{-1})(s_2m + s_1n)) = (s_1s_2)^{-1}((s_2m + s_1n)e) = (s_1s_2)^{-1}(s_2me + s_1ne) = s_1^{-1}(me) + s_2^{-1}(ne) = (me)_p + (me)_p = \phi(m_p) + \phi(n_p)$. Also, for any $n_p \in N_p$, we have $\phi(n_px_p) = \phi((nx_p)_p = \phi((nx_p)_p) = \phi((nx_p)_p)$.

 $s_1^{-1}(me) + s_2^{-1}(ne) = (me)_p + (ne)_p = \phi(m_p) + \phi(n_p)$. Also, for any $n_p \in N_p$, $x_p \in E_p$, we have $\phi(n_p x_p) = \phi((nx)_p) = ((nx)e)_p = n_p(xe)_p = n_p\phi(x_p)$. $\therefore \frac{N_P}{ker\phi} \cong E_P$. Since ker ϕ is an ideal, taking ker $\phi = I_p$ we get, $\frac{N_P}{I_P} \cong E_P$, where I_p is an ideal of N_P .

3. Multiplication N-groups

Definition 3.1 N is referred to be arithmetical if N considered as N-group is a DN-group or $N_P = (N \setminus P)^{-1}N$ is Uniserial, $\forall P \in Max(N)$.

Example 3.1	If $E = N = \{$	$\{0, s, b, m\}$	is the Klein's 4-grou	ps given by	the following table-
-------------	-----------------	------------------	-----------------------	-------------	----------------------

	0	s	b	m
0	0	0	0	0
s	0	0	S	S
b	0	S	b	b
m	0	S	m	m
+	0	S	b	m
0	0	S	b	m
S	s	0	m	b
b	b	m	0	S
m	m	b	S	0

Then (E, +,.) is a near ring and N-group over itself.

$$\begin{split} P &= \{0\}, L = \{0, s\}, \ E \leq_N E \ \text{as } NP = P, NL = L \ \text{and } NN = N \ \text{such that } P \subset L \subset N. \\ \text{We have, } P + L = L + P = L, P + E = E + P = E, L + E = E + L = E, P + P = P. \\ \text{and} \ (P + L) \cap E = L = (P \cap E) + (L \cap E), (P + E) \cap L = L = (P \cap L) + (E \cap L), (L + E) \cap P = P = (L \cap P) + (E \cap P), (L + P) \cap E = L = (L \cap E) + (P \cap E), ((E + P) \cap L = L = (E \cap L) + (P \cap L), (E + L) \cap P = P = (E \cap P) + (L \cap P). \\ \text{Thus } E \ \text{is a DN-group and hence } E \ \text{is arithmetical.} \end{split}$$

Definition 3.2 If an N-subgroup A of E has the form IE for some $I \triangleleft N$, it is referred to be multiplication.

Definition 3.3 E is referred to as a multiplication N-group if A is multiplication $\forall A \leq_N E$.

Example 3.2 Example of a multiplication N-group.

Let $N = (E, +, .) = \{0, s, b, k\}$ be the Klein's 4-groups under the operations given below-

•	0	s	b	k
0	0	0	0	0
S	0	0	s	S
b	0	S	k	b
k	0	S	b	k
+	0	S	b	k
0	0	S	b	k
s	s	0	k	b
b	b	k	0	S
k	k	b	S	0

Then (N, +, .) is a near ring as well as N-group over itself. $D = \{0\}, K = \{0, s\}, E \leq_N E$. Also, D, K, N \triangleleft N such that D = DE, K = KE and E = NE. Thus E is a multiplication N-group.

Theorem 3.1 If $K \triangleleft N$ such that $K \subseteq J(N)$ and E is multiplication N-group, then KE = 0 implies E = 0.

Proof. Let $x \in E$. Since E is a multiplication N-group, therefore by definition of multiplication N-group, Nx = JE, for some J \triangleleft N[since Nx is a principal N-subgroup]. Now, KE = $0 \Rightarrow$ JKE = $0 \Rightarrow$ KJE = 0[since N is commutative] \Rightarrow KNx = 0. Since $x \in Nx$, $ax = 0 \forall a \in K \Rightarrow a^{-1}ax = 0$ [since $a \in K \subseteq J(N)$] $\Rightarrow x = 0$ [since E is unitary] $\Rightarrow E = 0$.

Definition 3.4 $(A_P: E_P) = \{n_P \in N_P: n_P E_P \subseteq A_P\}$, for any $A_P \leq_N E_P$.

Definition 3.5 An $I_P \leq_N N_P$ is called an ideal of N_P if $x_P - y_P \in I_P$, $n_P + x_P - n_P \in I_P$, $n_P(n'_P + y_P) - n_Pn'_P \in I_P$, $\forall x_P, y_P \in I_P$, $n_P, n'_P \in N_P$.

Definition 3.6 E_P is referred to as a multiplication N-group if for every $A_P \leq_N E_P$, $A_P = I_P E_P$, for some $I_P \lhd N_P$.

Theorem 3.2 Every cyclic localized N-group is a localized multiplication N-group.

Proof. Let E_p be cyclic generated by e_p , for some $e \in E$. Let $A_p \leq_N E_p$. Now, $(A_p: E_p) = \{n_p \in N_p: n_p E_p \subseteq A_p\}$. So, $(A_p: E_p)E_p \subseteq A_p$. Let $a_p \in A_p \subseteq E_p \Rightarrow a_p = n_p e_p$, for some $n \in N$. Now, for any $m_p \in E_p$ we have, $n_p m_p = n_p n'_p e_p$, for some $n' \in N = n'_p(n_p e_p)$ [since N is commutative] $= n'_p a_p \in N_p A_p \subseteq A_p$ [since $A_p \leq_N E_p$]. $\therefore n_p E_p \subseteq A_p \Rightarrow n_p \in (A_p: E_p) = a_p \in (A_p: E_p)E_p \Rightarrow A_p \subseteq (A_p: E_p)E_p$. $\therefore A_p = (A_p: E_p)E_p$. Let $x_p, y_p \in (A_p: E_p)$ and $n_p, n'_p \in N_p$. Since $A_p \leq_N E_p$, for any $e \in E$, $(x_p - y_p)e_p = x_p e_p - y_p e_p \in A_p$. $\therefore (x_p - y_p)E_p \subseteq A_p \Rightarrow x_p - y_p \in (A_p: E_p)$. Since N is commutative $n_p + x_p - n_p = x_p \in (A_p: E_p)$ and $n_p(n'_p + y_p) - n_p n'_p = n_p y_p$. But for any $e \in E, (n_p y_p)e_p = (y_p n_p)e_p = y_p(n_p e_p) \in y_p E_p \subseteq A_p$. $\therefore n_p y_p \in (A_p: E_p)$. Thus $(A_p: E_p)$ is an ideal of N_p and hence E_p is a multiplication N-group.

Theorem 3.3 Every localized multiplication N-group over local N is cyclic.

Proof. Let E_p be multiplication N-group over local N. $\therefore E_p = I_p E_p$, for some $I_p \triangleleft N_p \Rightarrow E_p = I_p E_p \subseteq N_p E_p \subseteq E_p$. $\therefore E_p = N_p E_p$. So, for any $e \in E$, $N_p e_p \subseteq N_p E_p = E_p \Rightarrow N_p e_p \subseteq E_p$. Let $e_p \in E_p$ and $a \in N$. Since N is local, a or 1 - a is invertible in it. If a is invertible, then $a_p e_p \in N_p E_p \Rightarrow a_p e_p = n_p e_p$, for some $n \in N$. $\Rightarrow (s_1^{-1}a)(s_2^{-1}e) = (s_3^{-1}n)(s_4^{-1}e)$, for some $s_1, s_2, s_3, s_4 \in S, n \in N \Rightarrow (s_1 s_2)^{-1}(ae) = (s_3 s_4)^{-1}(ne) \Rightarrow a^{-1}(s_1 s_2)^{-1}(ae) = a^{-1}(s_3 s_4)^{-1}(ne) \Rightarrow (s_1 s_2)^{-1}(a^{-1}(ae)) = (s_3 s_4)^{-1}(a^{-1}(ne))$ [since N is commutative] $\Rightarrow (s_1 s_2)^{-1}(e) = (s_3 s_4)^{-1}((a^{-1}n)e) \Rightarrow (s_1 s_2)^{-1}(e) = (s_3^{-1}(a^{-1}n))(s_4^{-1}e) \Rightarrow e_p \in N_p e_p$. Thus $E_p = N_p e_p$ and hence E_p is cyclic.

Theorem 3.4 Localized multiplication N-group is also multiplication N-group.

Proof. Let $M' \leq_N S^{-1}E = E_P$. Then $\exists M \leq_N E$ such that $M' = S^{-1}M$. Since E is a multiplication N-group, M = IE, for some $I \triangleleft N$. Then $M' = S^{-1}(IE) = (SS)^{-1}(IE)$ [using lemma 2.1]. So, $M' = (S^{-1}I)(S^{-1}E)$. Also, by lemma 2.2, $S^{-1}I$ is an ideal of $S^{-1}N$. Thus the result.

Corollary 3.1 Since Every multiplication N-group over local N is cyclic and localized N-group of a multiplication N-group is also multiplication N-group, every localized multiplication N-group over local N is cyclic.

Theorem 3.5 If E is a generated finitely, then E is multiplication if and only if E_P is multiplication N-group, $\forall P \in Max(N)$. Proof. Let E be multiplication. So, by theorem 3.4, E_P is a multiplication N-group. Conversely, let E_P be multiplication N-group. Let $X \leq_N E$. Then $X_P = I_P$. E_P , for some ideal I_P of N_P . $\therefore X_P = S^{-1}I$. $S^{-1}E = (SS)^{-1}(IE) = S^{-1}(IE) = (IE)_P$ [since SS = S]. So, by corollary 2.1, X = IE. Hence E is a multiplication N-group.

Theorem 3.6 If Ann(E) \subseteq P_i only, P_i \in Max(N) such that each principal N-subgroup is an ideal and E_{Pi} is cyclic, then E_P is a multiplication N-group for i = 1,2 ... n.

Proof. Since E_{P_i} is cyclic, $E_{P_i} = (Ne_i)_{P_i}$, where $e_i \in E$, i = 1,2,3,...n. Let us choose $b_i \in (\bigcap_{i \neq j} P_i) \setminus P_i$, $i \neq j$, i = 1,2...n. Let $X \leq_N E$ be cyclic and generated by $x = \sum_{i=1}^n b_i e_i$. Now, $E_{P_1} = (Ne_1)_{P_1} \Rightarrow (N \setminus P_1)^{-1}E = (N \setminus P_1)^{-1}(Ne_1) \Rightarrow (N \setminus P_1)E = Ne_1$ [since $(N \setminus P_1)N \subseteq N$] $\Rightarrow s_i e_i = n_i e_1$, for some $s_i \in N \setminus P_1$, $n_i \in N$. Let $s = s_1 s_2 s_3 ... s_n$ and $s'_i = s_1 s_2 s_3 ... s_{i-1} s_{i+1} ... s_n$ such that $s = s_i s'_i$. \therefore sx = $s(b_1 e_1 + b_2 e_2 + \cdots b_n e_n)$. Now, $s(b_1 e_1 + b_2 e_2 + \cdots b_n e_n) - s(b_2 e_2 + \cdots b_n e_n) \in Sb_1 e_1 \Rightarrow sx - s(b_2 e_2 + \cdots b_n e_n) = s'b_1 e_1$, for some $s' \in S \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = s^{-1}(s'b_1 e_1) \Rightarrow s^{-1}(x) - s^{-1}(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n)] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss)^{-1}[sx - s(b_2 e_2 + \cdots b_n e_n] = (ss)^{-1}(s'b_1 e_1) \Rightarrow (ss$

Definition 3.7 E is called locally cyclic if E_P is cyclic, $\forall P \in Max(N)$.

Theorem 3.7 If E generated finitely on local N, then E is multiplication iff it is locally cyclic N-group.

Proof. If E is a multiplication ideal N-group which generated finitely on local N, then by theorem 3.5, E_P is multiplication N-group, $\forall P \in Max(N)$. Since N is local, E_P is cyclic N-group $\forall P \in Max(N)$ [by theorem3.3]. So, by definition E is locally cyclic N-group. Conversely, suppose E is locally cyclic N-group. Then E_P is cyclic, $\forall P \in Max(N)$. So, E_P is multiplication

N-group, $\forall P \in Max(N)$ [by theorem 3.2] and so E is multiplication [by theorem 3.5].

Definition 3.8 Every N-subgroup of E is referred to as a principal ideal N-group if it is both principal and ideal.

Theorem 3.8 If E is principal DN-group over local N and every localized DN-group over local N is Uniserial, then E is multiplication N-group.

Proof. Since E is a principal DN-group, every N-subgroup is principal and so generated finitely. Let $M \leq_N E$ generated finitely. Since by lemma 1.2, N-subgroups of a DN-group are also ideal DN-groups, M is a DN-group. \therefore By theorem 2.2, M_P is a DN-group. Since N is a local, M_P is an Uniserial N-group[by hypothesis]. Since M generated finitely, M_P is also generated finitely[by proposition 2.1]. So, for $m_P \in M_p$ we have, $m_P = n_{1P}e_{1P} + n_{2P}e_{2P} + n_{3P}e_{3P} + \dots + n_{nP}e_{nP}$, where $n_{iP} \in N_P, e_{iP} \in M_P \Rightarrow m_P \in N_pe_{1P} + N_pe_{2P} + N_pe_{3P} + \dots + N_pe_{nP}$. Since M_P is Uniserial, so any two of its N-subgroups are comparable, we may assume $N_pe_{1P} \subseteq N_pe_{2P} \subseteq N_pe_{3P} \subseteq \dots \subseteq N_pe_{nP}$. $\therefore m_P \subseteq N_Pe_{nP} \Rightarrow M_P \subseteq N_Pe_{nP}$. Since M_P is N-subgroup and $e_{nP} \in M_P, N_Pe_{nP} \subseteq M_P$. $\therefore M_P = N_Pe_{nP} \Rightarrow M_P$ is cyclic \Rightarrow M is locally cyclic So, by theorem 3.7, M is a multiplication N-group and hence E is multiplication.

Definition 3.9 A local near ring is referred to as convey if it is strongly regular.

Theorem 3.9 If E is an ideal DN-group which generated finitely over a convey N with inverse property and every ideal DN-group over a strongly regular near ring is Bezout, then E is a multiplication N-group.

Proof. Let $M \leq_N E$. Since E generated finitely, M generated finitely. Since N-subgroups of an ideal DN-group are also ideal DN-group, M is an ideal DN-group. So, by theorem 2.2, M_P is also DN-group. Since M generated finitely, M_P is also generated finitely [by proposition 2.1]. Since N is convey, M_P is an ideal DN-group over a strongly regular near ring. By hypothesis, M_P is a Bezout N-group. So, every generated finitely N-subgroup is cyclic. Since M_P generated finitely, M_P is cyclic. So, by definition M is locally cyclic. Thus by theorem 3.7, M is a multiplication N-group. Hence E is multiplication.

Proposition 3.1 If N is an arithmetical, then $\forall Q \in Max(N)$, $\frac{N_Q}{I_Q}$ is an Uniserial N-group.

Proof. Let N be an arithmetical. Then by definition, N_Q is Uniserial, $\forall Q \in Max(N)$. Now, to show for any sub factors (ideals of $\frac{N_Q}{I_Q}$) $\overline{X}_Q = \frac{N_Q}{I_{1p}}$ and $\overline{Y}_Q = \frac{N_Q}{I_{2p}}$, $\overline{X}_Q \subseteq \overline{Y}_Q$ or $\overline{Y}_Q \subseteq \overline{X}_Q$. Since I_{1p} , I_{2p} are ideals of the Uniserial N-group N_Q , $I_{1p} \subseteq I_{2p}$ or $I_{2p} \subseteq I_{1p}$. Let $\overline{a} \in \overline{X}_Q$. Then $a \in I_{1p} \Rightarrow a \in I_{2p} \Rightarrow \overline{a} \in \overline{Y}_Q$. $\therefore \overline{X}_Q \subseteq \overline{Y}_Q$. Thus if $I_{1p} \subseteq I_{2p}$, then $\overline{X}_Q \subseteq \overline{Y}_Q$. Similarly, if $I_{2p} \subseteq I_{1p}$, then $\overline{Y}_Q \subseteq \overline{X}_Q$. This shows the result

Theorem 3.10 If Eis multiplication ideal N-group which generated finitely and N is arithmetical local near ring, then E is a DN-group.

Proof. E_P is also multiplication N-group as E is a multiplication N-group[by theorem 3.4]. Also, by theorem 3.3, E_P is cyclic. So, by lemma 2.6, $\frac{N_P}{I_P} \cong E_P \quad \forall P \in Max(N)$. Since N is a arithmetical local, $\frac{N_P}{I_P}$ is an Uniserial N-group[by proposition 3.1]. So, E_P is an Uniserial N-group $\Rightarrow E_P$ is a DN-group[since Uniserial N-group is DN-group] \Rightarrow E is a DN-group[by theorem 2.2].

4. Conclusion

Near ring theory is a domain of Algebra with many applications. Multiplication N-groups have a wide range to study. By this work this structure will become familiar in near ring theory. This study describes the Uniserial N-groups, Bezout N-groups, multiplication N-groups and their relations under certain conditions. Although, these works will not study their direct application and societal benefit, other science communities may use these structures for their different works.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- [1] A. Barnard, "Multiplication Module," Journal of Algebra, vol. 71, no. 1, pp. 174-178, 1981. [Google Scholar] [Publisher Link]
- K.C. Chowdhury, and H.K. Saikia, "On Quasi Direct Sum and d Property of Near-ring Groups," *Bulletin Calcutta Mathematical Society*, vol. 87, pp. 45-52, 1995.
- [3] Shahabaddin Ebrahimi Atani, "Multiplication Modules and Related Results," *Multiplication Modules and Related Results*, vol. 40, no. 4, pp. 407-414, 2004. [Google Scholar] [Publisher Link]

- [4] V. Erdogdu, "Multiplication Modules which are Distributive," *Journal of Pure and Applied Algebra*, vol. 54, pp. 209-213, 1988. [Google Scholar] [Publisher Link]
- [5] Navalakhi Hazarika, and Helen K. Saikia, "Singular and Semi-simple Character in E-Injective N-Groups with Weakly Descending Chain Conditions," *Afrika Mathematica*, vol. 29, pp. 1065-1072, 2018. [CrossRef] [Google Scholar] [Publisher Link]
- [6] E. Khodadadpour, and T. Roodbarilor, "Valuation Near Ring," Journal of Algebra and Related Topics, vol. 9, no. 2, pp. 95-100, 2021.
- [7] Elahe Khodadadpour, and Tahereh Roodbarilor, "Some types of Multiplication N-Group in Near Rings," *Italian Journal of Pure and applied Mathematics*, pp. 894-902, 2021. [Google Scholar] [Publisher Link]
- [8] A. Oswald, "Near-rings in which Each N-subgroup is Principal," *Proceedings of the London Mathematical Society*, vol. s3-28, no. 1, 1974.
 [CrossRef] [Google Scholar] [Publisher Link]
- [9] G. Pilz, Near Rings, North Holland Publishing Company, Amsterdam, 1983.
- [10] S. Singh, and F. Mehdi, "Multiplication Modules," Canadian Mathematical Bulletin, vol. 22, no. 1, 1979.