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Abstract - In this paper we present a deterministic nonlinear model which provides mathematical and epidemiological insights 

to the influence of availability and efficacy of control on the transmission dynamics of Schistosomiasis. Schistosomiasis is second 

only to Malaria in terms of impact as the most brutal parasitic disease. There is also presently no vaccine in commercial quantity 

against the parasite, Schistosoma spp. Thus, the need to explore other control measures. The disease free equilibrium of the 

model was shown to be locally asymptotically stable if ℛ𝑐 < 1, and unstable and if ℛ𝑐 > 1. Again, the endemic equilibrium as 

also shown to be globally asymtotically stable for the special case when there is permanent immunity upon recovery.  

Keywords - Schistosomiasis, Reproduction Number, Availability, Efficacy, Control. 

1. Introduction 
Schistosomiasis popularly called snail fever is an acute and chronic disease caused by a parasitic worm (Schistosomatidae) 

(CDC, 2012; Inobaya et al., 2014). The parasite (Schistosoma hematobium) was identified in Egypt by Theodore Bilharz in 1851 

(Inobaya et al., 2014). Other names for Schistosomiasis include Bilharza (named after Theodor Bilharz), Snail fever and 

Katayama fever (Chitsulo et al., 2000; Mushayabasa and Bhunu, 2011; Zou and Ruan, 2015; CDC, 2012). When Schistosomiasis 

affects the intestine, it is called Intestinal Schistosomiasis and this is caused by the parasite Schistosoma mansoni (discovered in 

1907), and when it affects the urinary system it is referred to as Urinary Schistosomiasis which is caused by the parasitic worm 

Schistosoma Haematobium (discovered in 1852) (CDC, 2012; Inobaya et al., 2014). Schistosomiasis is second only to Malaria 

in terms of impact as the most brutal parasitic disease (CDC, 2012; Inobaya et al., 2014). The parasitic worm Schistosoma spp 

which causes the disease gains access to humans by appending and penetrating the skin, after which, the parasites migrate to the 

portal veins through the venous system, where the parasites produce eggs (Adenowo et al., 2015; Chiyaka et al., 2010; Yang, 

2003). At this stage, symptoms such as abdominal irritation, fever, Hematochezia; blood in stools are experienced (Adenowo et 

al., 2015; Chiyaka et al., 2010; Yang, 2003). The disease is mostly common in Africa, South America, the Middle East, Asia, 

and the Caribbean (Hotez and Kamath, 2009; Hotez et al., 2012). It is worthy of note that the various forms of the infection are 

caused by different snail species serving as their intermediate hosts (Feasey et al., 2010). The snail specie Biomphalaria is 

responsible for S. Mansoni, Oncomelania is responsible for S. Japonicum, while the snail specie Tricula (Neotricula aperta) is in 

turn responsible for 𝑆. Mekongi and Bulinus is responsible for 𝑆. Haematobium and S. Intercalatum (Feasey et al., 2010). Humans 

by their activities around water bodies get into freshwater bodies that harbour snails that house Schistosoma sporocysts which 

evolve into cercariae (Yang, 2003). Cercariae then glue to and pierce the human skin and eventually reach the portal blood or 

bladder after migrating via the lung and blood capillaries to blood vessels (Adenowo et al., 2015; Yang, 2003). Within a period 

of about 6 weeks, the cercariae metamorphoses into male and female adult worms from schistosomula (Adenowo et al., 2015; 

Yang, 2003). Human proteins are absorbed by the worms into their structures, so there is little or no immune response by most 

infected humans (Chiyaka et al., 2010; Yang, 2003). After the adult worms mate in the portal or bladder, egg are produced 

(Adenowo et al., 2015; Chiyaka et al., 2010; Yang, 2003). 

The eggs however stimulate a strong immune response in most humans (Adenowo et al., 2015; Chiyaka et al., 2010; Yang, 

2003). There is so much uncertainty surrounding the lifespan of the adult worms; it ranges from 5-10 years and sometimes longer 

than 30 years (Yang, 2003). Less than 50% of the eggs produced move via the bladder tissue or bowel and are released into 

freshwater via feces or urine, while the remaining eggs which were not passed out as feces or urinary become trapped in 
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neighbouring tissues or are transported by the circulatory or lymphatic structure and can become placed in almost any organ of 

the body (Adenowo et al., 2015; Chiyaka et al., 2010; Yang, 2003). The eggs shed via urine or feces discard their shells and 

breed into a fringe of hairlike free-swimming larva (Miracidium), which locates a particular specie of snail, penetrates and infects 

it and within 4-6 weeks, the snail produces thousands of Cercariae (Adenowo et al., 2015; Chiyaka et al., 2010; Yang, 2003). 

The life cycle is much more compounded by S. Japonicum species (responsible for Intestinal Schistosomiasis) that sometimes 

infect domestic and wild animals which now become another host system (by implication having three host) and it is endemic in 

certain regions in the Philippines and some specific locations in China (Adenowo et al., 2015; Chitsulo et al., 2000; Chiyaka et 

al., 2010; Hotez et al., 2006; Yang, 2003). 

Schistosomiasis can be prevented if humans can avoid any possible contact with cercariae laden fresh water and boiling of 

fresh water suspected to infected with Schistosoma spp before possible usage for domestic purposes and consumption (CDC, 

2012; Inobaya et al., 2014). Exposing fresh water suspected to be infected with Schistosoma spp for at least a day before using 

it for domestic purposes and using thin netting sifts for isolating cercariae from fresh water can also help in reducing the spread 

of Schistosomiasis (CDC, 2012; Inobaya et al., 2014). Precautionary chemotherapy can be used as a measure for regulating the 

condition of being infected and can result in decline in the incidence, range, and seriousness of the effects of Schistosomiasis 

(WHO, 2013). Mass drug administration programmes can also help to bring down the incidence and burden of the disease (CDC, 

2012; Inobaya et al., 2014). Snail elimination from some freshwater sources using a chemical substance (repeated treatment is 

required) known as molluscicides (snail bait) have been delineated to reduce the incidence of Schistosomiasis (CDC, 2012; 

Inobaya et al., 2014). Sadly, individuals who have been cured and exhibit no symptoms of Schistosomiasis can easily get tainted 

again if they come into contact with cercariae laden fresh water; as the human immune response to Schistosomiasis is unable to 

thwart a reinfection. Meaning that recovery from disease does not confer permanent immunity (CDC, 2012; Inobaya et al., 2014). 

Presently, no vaccine in commercial quantity is available against the parasite, Schistosoma spp., but scientific experimentation 

is in progress and hopefully in the near future, a vaccine may become available (CDC, 2012; Inobaya et al., 2014). The drug used 

in most patient is Praziquantel (which is a derivative of Pyrazinosoquinolone) and it is strictly potent against mature worms and 

not potent against the eggs or not fully developed worms (CDC, 2012; WHO, 1993; WHO, 2017a). However, Praziquantel causes 

speedy breakdown of the worms which subsequently empowers the human immune system to fight the parasite (CDC, 2012). 

Numerous mathematical models have been used to study the dynamics of Schistosomiasis at population level. Feng et al. 

(2002) formulated a mathematical model for Schistosomiasis which depended on density and the age of the infection in snail 

dynamics. Their model incorporated practical attributes like treatment of human using drugs, infection age in snail host, 

Schistosomiasis distribution within the human host and infection related death in the human and snail subpopulations to study 

Schistosomiasis dynamics. They were also able to scrutinize numerous control strategies to ascertain the cost advantage of 

treatment programs. Allen and Victory (2003) formulated a model for Schistosomiasis which involved the definitive human host, 

transitional snail hosts, another natural host and a snail species which is a competitor as well as resistant to the infection. Results 

of the simulations showed that the competitor snail species can affect the Schistosomiasis dynamics. Chiyaka and Garira (2009) 

developed a unique model that mathematically studied the host-parasite dynamics of Schistosomiasis. They constructed a 

deterministic mathematical model which incorporated miracidia and cercariae concentrations to studied the dynamics of 

Schistosomiasis. Their simulation results showed that control strategies aimed at disease transmission from snail to man were 

more productive than those aimed at transmission from man to snail. Longxing et al.(2014) built a model which mathematically 

investigated the effect of flooding on the basic reproduction number and the Schistosomiasis transmission dynamics in Anhui 

Province of China. Their result showed that the system can be destabilize by flooding giving rise to a Hopf bifurcation. 

Ngarakana-Gwasira et al. (2016) extended the work of Chiyaka and Garira (2009) and investigated the impact of aquatic 

environment (taken in circumstances of rain fall arrangements) and temperature from 1950 to 2000 on the dynamics of 

Schistosomiasis in Zimbabwe. Their results suggested that Schistosomiasis can best be transmitted at a temperature of about 23 

degrees celsius and that high threshold number which implied high disease incidence was recorded in Zambezi valley and lower 

downs of the country. Olowu, et al (2021a) investigated a two patch metapopulation Schistosomiasis model with sixteen 

deterministic ordinary differential equations where the thresholds for effective control of Schistosomiasis were established. 

Olowu, et al (2021b) investigated the quantitative analysis of a two patch metapopulation model. Their findings showed effective 

control of Schistosomiasis in one patch can result to a drastic reduction in another patch. Bada et al (2021) developed a 

mathematical model to examine the effect of case detection on the transmission dynamics of schistosomiasis and established that 

a significant decrease in the schistosomiasis cases could be achieved in the population if there is an increase in the proportion of 

the detected human cases of schistosomiasis which are set for treatment immediately. They further established that 

schistosomiasis can be controlled in a population if the public health control programmes provide and implement strategies for 

detection as well as the timely treatment of a very large number of persons infected with schistosomiasis. Ako, et al (2021) 

developed a mathematical model to theoretically investigate the role of the impact of reduced re-infection on the population 

dynamics for schistosomiasis disease burden in the presence of intermediate stages of development of the pathogen responsible 
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for the disease in a given population. The model was shown to undergo the backward bifurcation phenomenon due to the presence 

of the reduced re-infection parameter which implied that as long as there is re-infection of the population with schistosomiasis, 

the disease will remain endemic in the given population. They also established a unique threshold for the reduced rate of re-

infection and a special case of their model showed that the disease-free equilibrium was locally asymptotic stable in the absence 

of the reduced rate of re-infection. 

These models have brought a lot of insight into the transmission dynamics of Schistosomiasis but they have had relatively 

little or no impact on investigating the impact of control parameters that seeks to curtail the interactions between humans and 

cercariae and between snails and miracidia. Therefore, we propose a mathematical model for Schistosomiasis which will be used 

to investigate the impact of the availability and efficacy of control measures on the transmission dynamics of Schistosomiasis. 

Given that Schistosomiasis is mostly endemic in poor countries. The focus is on how the availability and efficacy of control 

measures will impact on the dynamics of the infection in such a population. 

2. Model Formulation 

In formulating the model, we assume that the entire population is homogeneous, well-mixed and all individuals have equal 

chances of being infected and that the number of effective contacts (resulting in an infection) is assumed to depend on the 

frequency of contacts between susceptible humans and Cercariae infected water (Hethcote, 2000; Mishra, 2010). The total human 

population for the Schistosomiasis model is partitioned into Susceptible humans (𝑆ℎ), Latently infected or Exposed humans (𝐸ℎ) 
and Infected humans (𝐼ℎ). The non-human compartments are divided into Miracidia concentration (M), population of uninfected 

Snails (𝑈), Latently-infected snails (𝐿), patent infected Snails (not yet releasing cercariae) (𝐼𝑠) and free swimming Cercariae 

ready to enter human skin (𝐶), From the above, the total human population and non-human population at any time 𝑡, are given 

by 

𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡)  and  𝑁𝑛(𝑡) = 𝑀(𝑡) + 𝑈(𝑡) + 𝐿(𝑡) + 𝐼𝑠(𝑡) + 𝐶(𝑡). 

𝑑𝑆ℎ
𝑑𝑡

 = Λℎ − 𝜆ℎ𝑆ℎ + 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑆ℎ

𝑑𝐸ℎ
𝑑𝑡

 = 𝜆ℎ𝑆ℎ − (𝜅ℎ + 𝜇ℎ)𝐸ℎ

𝑑𝐼ℎ
𝑑𝑡

 = 𝜅ℎ𝐸ℎ − (𝛾ℎ + 𝛿ℎ + 𝜇ℎ)𝐼ℎ

𝑑𝑀

𝑑𝑡
 = 𝜃𝑀𝐼ℎ − 𝜇𝑀𝑀

𝑑𝑈

𝑑𝑡
 = Λ𝑠 − 𝜆𝑠𝑈 − 𝜇𝑠𝑈

𝑑𝐿

𝑑𝑡
 = 𝜆𝑠𝑈 − (𝜅𝑠 + 𝜇𝑠)𝐿

𝑑𝐼𝑠
𝑑𝑡

 = 𝜅𝑠𝐿 − (𝛿𝑠 + 𝜇𝑠)𝐼𝑠

𝑑𝐶

𝑑𝑡
 = 𝜃𝐶𝐼𝑠 − 𝜇𝐶𝐶.

 

Where 

𝜆ℎ = 𝛽ℎ
(1 − 𝜙𝜉)𝐶

𝐶0 + 𝜀𝐶
  and  𝜆𝑠 = 𝛽𝑠

(1 − 𝜋𝜈)𝑀

𝑀0 + 𝜀𝑀
 

are the forces of infection. A schematic representation/description (which is a graphic description of the movement of individuals 

between the various compartments of the system) is given in Figure 1. The state variables as well as the parameters used in the 

mathematical formulation are given in Tables 1 and 2, respectively. 
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Fig. 1 Schematic representation of the transmission dynamics of the Schistosomiasis model 

Table 1. State variables of the model 

Variable Description 

𝑆ℎ(𝑡) Susceptible individuals 

𝐸ℎ(𝑡) Latently tainted individuals 

𝐼ℎ(𝑡) Infected individuals 

𝑀(𝑡) Miracidia concentration 

𝑈(𝑡) Uninfected snails 

𝐿(𝑡) Latently-infected snails 

𝐼𝑠(𝑡) Tainted snails not yet releasing cercariae 

𝐶(𝑡) Free swimming Cercariae ready to enter human skin 
 

Table 2. Parameters of the model 

Parameter Description 

µk (k = h, s) Natural death rate for the kth sub population. 

Λk (k=h, s) Recruitment rate for the kth sub population. 

βk (k=h, s) Cercariae and Miracidia infectious rate respectively for the kth sub population. 

C0 Saturation constant for Cercariae. 

M0 Saturation constant for Miracidia. 

ɛ Limitation of growth velocity of Cercariae and Miracidia. 

Kk (k = h, s) progression rate from latent class to infectious classes in the kth sub population. 

δk (k = h, s) Disease and parasite induced death respectively for humans and snails the kth sub population. 

γh Recovery rate for humans. 

θM Rate at which egg produced by adult Schistosome hatch and develop to free swimming Miracidia. 

θC Rate at which patent infected snails release cercariae. 

ϕ Efficacy of control in the human population. 

ξ Availability of control in the human population. 

π Efficacy of control in the aquatic (Snail) environment. 

ν Availability of control in the aquatic environment 

µM Natural death rate for miracidia 

µC Natural death rate for cercariae 
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3. Analysis of the Model 
The qualitative properties of the model will be explored in this section. 

3.1. Basic Properties of the Model 

In this section, we show that the state variables of the model are always non-negative and bounded for all time, 𝑡, since the 

model describes Human and Snail populations, Miracidia and Cercariae concentrations which cannot be non-positive. We also 

showed that the orbits generated by the model are positively invariant for all time, 𝑡. 

Theorem 3.1: Let the initial data of the availability and efficacy of control Schistosomiasis model be given as 𝑋(0) ≥ 0, 

where: 𝑋(𝑡) = (𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡),𝑀(𝑡), 𝑈(𝑡), 𝐿(𝑡), 𝐼𝑠(𝑡), 𝐶(𝑡)). Then the orbits 𝑋(𝑡) of the availability and efficacy of control 

Schistosomiasis model with non-negative initial conditions will always be non-negative for all time 𝑡 > 0. 

Proof: 

Let 𝑡1 = sup{𝑡 > 0: 𝑋(𝑡) ≥ 0 ∈ [0, 𝑡]}. Thus for 𝑡1 > 0, from the first equation of model, it follows 

𝑑𝑆ℎ(𝑡)

𝑑𝑡
= Λℎ − (𝜆ℎ + 𝜇ℎ)𝑆ℎ + 𝛾ℎ𝐼ℎ(𝑡) 

which can be rewritten as 

[
𝑑

𝑑𝑡
+ (𝜆ℎ + 𝜇ℎ)] 𝑆ℎ(𝑡) ≥ Λℎ 

which implies 

𝑑

𝑑𝑡
[𝑆ℎ(𝑡)exp {(𝜇ℎ)𝑡 + ∫  

𝑡

0

  𝜆ℎ(𝜏)𝑑𝜏}] ≥ Λℎexp {(𝜇ℎ)𝑡 + ∫  
𝑡

0

  𝜆ℎ(𝜏)𝑑𝜏} 

as a result, 

𝑆ℎ(𝑡1)exp {(𝜇ℎ)𝑡1 +∫  
𝑡1

0

 𝜆ℎ(𝜏)𝑑𝜏} − 𝑆ℎ(0) ≥ ∫  
𝑡1

0

  Λℎ[e x p {(𝜇ℎ)𝑦 +

∫  
𝑦

0

  𝜆ℎ(𝜏)𝑑𝜏}] 𝑑𝑦,

 

hence, 

𝑆ℎ(𝑡1) ≥ 𝑆ℎ(0)exp [−(𝜇ℎ)𝑡1 −∫  
𝑡1

0

 𝜆ℎ(𝜏)𝑑𝜏] + [e x p {−(𝜇ℎ)𝑡1 −

∫  
𝑡1

0

 𝜆ℎ(𝜏)𝑑𝜏}]∫  
𝑡1

0

 Λℎ [exp {(𝜇ℎ)𝑦 + ∫  
𝑦

0

  𝜆ℎ(𝜏)𝑑𝜏}] 𝑑𝑦 ≥ 0.

 

Hence 𝑆ℎ(𝑡) ≥ 0, ∀𝑡 > 0.  

Considering equation 2 of model: 

𝑑𝐸ℎ
𝑑𝑡

= 𝜆ℎ𝑆ℎ − (𝜅ℎ + 𝜇ℎ)𝐸ℎ 

𝑑𝐸ℎ
𝑑𝑡

≥ −(𝜅ℎ + 𝜇ℎ)𝐸ℎ1  
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Integrating with respect to 𝑡 in [0, 𝑡1], yields 

𝐸ℎ(𝑡1) ≥ 𝐸ℎ(0)exp {−(𝜅ℎ + 𝜇ℎ)𝑡1} > 0. 

Hence 𝐸ℎ(𝑡) > 0 for all 𝑡 > 0.  

Following the procedure above for equation (3) – (8) of the model, it can be shown that 𝐼ℎ(𝑡) > 0, 𝑀(𝑡) > 0, 𝑈(𝑡) > 0, 

𝐿(𝑡) > 0, 𝐼𝑠(𝑡) > 0 and 𝐶1(𝑡) > 0 for all 𝑡 > 0. 

Hence the trajectories X(t), where 𝑋(𝑡) = (𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡),𝑀(𝑡), 𝑈(𝑡), 𝐿(𝑡), 𝐼𝑠(𝑡), 𝐶(𝑡)  generated by the availability 

and efficacy of control Schistosomiasis model with non-negative initial data/conditions will always be non-negative for all time 

𝑡 > 0. 

Next, we need to prove that each of the subpopulations: Humans, Miracidia, Snails and Cercariae (since we cannot lump all 

the subpopulations in one invariant set) are bounded and also determine the bound and finally show that the domains of these 

subpopulations are positively-invariant and attracts all the positive trajectories (there exist a unique solution to the initial value 

problem, and solution exists for all time) of the model 

Lemma 3.1: Let 𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡),𝑀(𝑡), 𝑈(𝑡), 𝐿(𝑡), 𝐼𝑠(𝑡), 𝐶(𝑡) be trajectories of the model with initial conditions and the 

biological feasible region given by the set 𝒟 = 𝒟ℎ × 𝒟𝑀 × 𝒟𝑆 × 𝒟𝐶 ⊂ ℝ+
3 × ℝ+

1 × ℝ+
3 × ℝ+

1 ⊂ ℝ+
8  where: 

𝒟ℎ = {(𝑆ℎ , 𝐸ℎ , 𝐼ℎ) ∈ ℝ+
3 : 𝑁ℎ ≤

Λℎ
𝜇ℎ
}

𝒟𝑀 = {(𝑀) ∈ ℝ+
1 : 𝑀 ≤

𝜃𝑀Λℎ
𝜇𝑀𝜇ℎ

}

𝒟𝑆 = {(𝑈, 𝐿, 𝐼𝑠) ∈ ℝ+
3 : 𝑁𝑆 ≤

Λ𝑠
𝜇𝑠
}

𝒟𝐶 = {(𝐶) ∈ ℝ+
1 : 𝐶 ≤

𝜃𝐶Λ𝑠
𝜇𝐶𝜇𝑠

}

 

is positively-invariant and attracts all the non-negative trajectories of model. 

Proof: 

(a) To determine the bound for the human subpopulation, we add up the right hand side of the vector field for the human 

population in the model, which is the rate of change of the total population described by the model and it is given by: 

𝑑𝑁ℎ
𝑑𝑡

= Λℎ − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ 

𝑑𝑁ℎ
𝑑𝑡

= Λℎ − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ 

𝑑𝑁ℎ
𝑑𝑡

≤ Λℎ − 𝜇ℎ𝑁ℎ 

which is a linear first order ODE with integrating factor given as 𝑒𝜇ℎ𝑡. Thus, we obtain 

𝑑𝑁ℎ
𝑑𝑡

𝑒𝜇ℎ𝑡 + 𝜇ℎ𝑁ℎ𝑒
𝜇ℎ𝑡 ≤ Λℎ𝑒

𝜇ℎ𝑡 

which can be rewritten as 
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∫  
𝑡

0

𝑑𝑁ℎ
𝑑𝜏

𝑒𝜇ℎ𝜏𝑑𝜏 ≤ Λℎ∫  
𝑡

0

𝑒𝜇ℎ𝜏𝑑𝜏 

Integrating and using the starting condition 𝑁ℎ(𝑡) = 𝑁ℎ(0), we obtain 

𝑁ℎ(𝑡)𝑒
𝜇ℎ𝑡 − 𝑁ℎ(0) ≤

Λℎ
𝜇ℎ
(𝑒𝜇ℎ𝑡 − 1). 

Solving for 𝑁ℎ(𝑡) gives 

𝑁ℎ(𝑡) ≤ 𝑁ℎ(0)𝑒
𝜇ℎ𝑡 +

Λℎ
𝜇ℎ
(1 − 𝑒𝜇ℎ𝑡). 

If 𝑁ℎ(0) ≤
Λℎ

𝜇ℎ
, then 𝑁ℎ(𝑡) ≤

Λℎ

𝜇ℎ
. Hence, the domain 𝒟ℎ is positively invariant under the flows of the model. Moreover, if 𝑁ℎ(0) >

Λℎ

𝜇ℎ
, then either the orbits enters the domain 𝒟ℎ in finite time or 𝑁ℎ(𝑡) asymptotically approaches 

Λℎ

𝜇ℎ
 as 𝑡 → ∞. Thus, the domain 

𝒟ℎ attracts all trajectories and no trajectory goes out of any boundary of 𝒟ℎ in ℝ+
3 .  

(b) To determine the bound for the concentration of the Miracidia in the model 

𝑑𝑀

𝑑𝑡
= 𝜃𝑀𝐼ℎ − 𝜇𝑀𝑀 

𝑑𝑀

𝑑𝑡
≤ 𝜃𝑀

Λℎ

𝜇ℎ
− 𝜇𝑀𝑀, since 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ ≤

Λℎ

𝜇ℎ
⟹ 𝐼ℎ ≤

Λℎ

𝜇ℎ
. 

which is a linear equation with integrating factor given as 𝑒𝜇𝑀𝑡. Thus, we obtain 

𝑑𝑀

𝑑𝑡
𝑒𝜇𝑀𝑡 + 𝜇𝑀𝑀𝑒

𝜇𝑀𝑡 ≤ 𝜃𝑀
Λℎ
𝜇ℎ
𝑒𝜇𝑀𝑡 . 

Which can be re-written as 

∫  
𝑡

0

𝑑𝑀

𝑑𝜏
𝑒𝜇𝑀𝜏𝑑𝜏 ≤ 𝜃𝑀

Λℎ
𝜇ℎ
∫  
𝑡

0

𝑒𝜇𝑀𝜏𝑑𝜏 

Integrating and using the initial condition, 𝑀(𝑡) = 𝑀(0), we obtain 

𝑀(𝑡)𝑒𝜇𝑀𝑡 −𝑀(0) ≤
Λℎ𝜃𝑀
𝜇ℎ𝜇𝑀

(𝑒𝜇𝑀𝑡 − 1). 

Solving for 𝑀(𝑡) gives 

𝑀(𝑡) ≤ 𝑀(0)𝑒𝜇𝑀𝑡 +
Λℎ𝜃𝑀
𝜇ℎ𝜇𝑀

(1 − 𝑒𝜇𝑀𝑡). 

If 𝑀(0) ≤
Λℎ𝜃𝑀

𝜇ℎ𝜇𝑀
, then 𝑀(𝑡) ≤

Λℎ𝜃𝑀

𝜇ℎ𝜇𝑀
. Hence, the domain 𝒟𝑀 is positively invariant under the flow of the model. Moreover, if 

𝑀(0) >
Λℎ𝜃𝑀

𝜇ℎ𝜇𝑀
, then either the orbits enters the domain 𝒟𝑀 in finite time or 𝑀(𝑡) asymptotically approaches 

Λℎ𝜃𝑀

𝜇ℎ𝜇𝑀
 as 𝑡 → ∞. 

Thus, the domain 𝒟𝑀 attracts all trajectories and no trajectory goes out of any boundary of 𝒟𝑀 in ℝ+
1 .  

(c) For the bound of the Snail population, we add up the right hand side of the vector field of the Snail population in the 

model and this yields 
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𝑑𝑁𝑠
𝑑𝑡

= Λ𝑠 + (𝑈 + 𝐿 + 𝐼𝑠)𝜇𝑠 − 𝛿𝑠𝐼𝑠 

𝑑𝑁𝑠
𝑑𝑡

= Λ𝑠 − 𝜇ℎ𝑁𝑠 − 𝛿𝑠𝐼𝑠 

it follows that 

𝑑𝑁𝑠
𝑑𝑡

≤ Λ𝑠 − 𝜇𝑠𝑁𝑠 

which is a linear equation with integrating factor given as 𝑒𝜇𝑠𝑡. Thus, we obtain 

𝑑𝑁𝑠
𝑑𝑡

𝑒𝜇𝑠𝑡 + 𝜇𝑠𝑁𝑠𝑒
𝜇𝑠𝑡 ≤ Λ𝑠𝑒

𝜇𝑠𝑡 

which can be rewritten as 

∫  
𝑡

0

𝑑𝑁𝑠
𝑑𝜏

𝑒𝜇𝑠𝜏𝑑𝜏 ≤ Λ𝑠 ∫  
𝑡

0

𝑒𝜇𝑠𝜏𝑑𝜏 

Integrating and using the initial condition 𝑁𝑠(𝑡) = 𝑁𝑠(0), we obtain 

𝑁𝑠(𝑡)𝑒
𝜇𝑠𝑡 − 𝑁𝑠(0) ≤

Λ𝑠
𝜇𝑠
(𝑒𝜇𝑠𝑡 − 1) 

Solving for 𝑁𝑠(𝑡) gives 

𝑁𝑠(𝑡) ≤ 𝑁𝑠(0)𝑒
−𝜇𝑠𝑡 +

Λ𝑠
𝜇𝑠
(1 − 𝑒−𝜇𝑠𝑡) 

If 𝑁𝑠(0) ≤
Λ𝑠

𝜇𝑠
, then 𝑁𝑠(𝑡) ≤

Λ𝑠

𝜇𝑠
. Hence, the domain 𝒟𝑠 is positively invariant under the flow of the model. Moreover, if 𝑁𝑠(0) >

Λ𝑠

𝜇𝑠
, then either the orbits enters the domain 𝒟𝑠 in finite time or 𝑁𝑠(𝑡) asymptotically approaches 

Λ𝑠

𝜇𝑠
 as 𝑡 → ∞. Thus, the domain 

𝒟𝑠 attracts all trajectories and no trajectory goes out of any boundary of 𝒟𝑠 in ℝ+
3 . 

(d) To determine the bound for the concentration of the Cercariae in the model and it yields 

𝑑𝐶

𝑑𝑡
= 𝜃𝐶𝐼𝑠 − 𝜇𝐶𝐶 

𝑑𝐶

𝑑𝑡
= 𝜃𝐶𝐼𝑠 − 𝜇𝐶𝐶 

it follows that, 

𝑑𝐶

𝑑𝑡
≤ 𝜃𝐶

Λ𝑠

𝜇𝑠
− 𝜇𝐶𝐶, since 𝑁𝑠 = 𝑈 + 𝐿 + 𝐼𝑠 ≤

Λ𝑠

𝜇𝑠
⟹ 𝐼𝑠 ≤

Λ𝑠

𝜇𝑠
. 

which is a linear equation with integrating factor given as 𝑒𝜇𝐶𝑡. Thus, we obtain 

𝑑𝐶

𝑑𝑡
𝑒𝜇𝐶𝑡 + 𝜇𝐶𝐶𝑒

𝜇𝐶𝑡 ≤ 𝜃𝐶
Λ𝑠
𝜇𝐶
𝑒𝜇𝐶𝑡 
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which can be rewritten as 

∫  
𝑡

0

𝑑𝐶

𝑑𝜏
𝑒𝜇𝐶𝜏𝑑𝜏 ≤ 𝜃𝐶

Λ𝑠
𝜇𝑠
∫  
𝑡

0

𝑒𝜇𝐶𝜏𝑑𝜏 

Integrating and using the initial condition 𝐶(𝑡) = 𝐶(0), we obtain 

𝐶(𝑡)𝑒𝜇𝐶𝑡 − 𝐶(0) ≤
Λ𝑠𝜃𝐶
𝜇𝑠𝜇𝐶

(𝑒𝜇𝐶𝑡 − 1). 

Solving for 𝐶(𝑡) gives 

𝐶(𝑡) ≤ 𝐶(0)𝑒−𝜇𝐶𝑡 +
Λ𝑠𝜃𝐶
𝜇𝑠𝜇𝐶

(1 − 𝑒−𝜇𝐶𝑡) 

If 𝐶(0) ≤
Λ𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
, then 𝐶(𝑡) ≤

Λ𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
. Hence, the domain 𝒟𝐶  is positively invariant under the flow of the model. Moreover, if 𝐶(0) >

Λ𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
, then either the orbits enters the domain 𝒟𝐶  in finite time or 𝐶(𝑡) asymptotically approaches 

Λ𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
 as 𝑡 → ∞. Thus, the domain 

𝒟𝐶  attracts all trajectories and no trajectory goes out of any boundary of 𝒟𝐶  in ℝ+
1 . 

From the above, we have shown that 𝒟ℎ , 𝒟𝑀 , 𝒟𝑠 and 𝒟𝐶  are positively invariant and since 𝒟 = 𝒟ℎ × 𝒟𝑀 × 𝒟𝑠 × 𝒟𝐶 , it implies 

that the domain 𝒟 is positively-invariant and an attractor, so that no trajectory leaves via any boundary of 𝒟. 

𝒟 =

{
 
 
 
 

 
 
 
 (𝑆ℎ, 𝐸ℎ , 𝐼ℎ , ) ∈ ℝ+

3 : 𝑁ℎ ≤
Λℎ
𝜇ℎ

(𝑀) ∈ ℝ+
1 : 𝑀 ≤

𝜃𝑀Λℎ
𝜇𝑀𝜇ℎ

(𝑈, 𝐿, 𝐼𝑠) ∈ ℝ+
3 : 𝑁𝑆 ≤

Λ𝑠
𝜇𝑠

(𝐶) ∈ ℝ+
1 : 𝐶 ≤

𝜃𝐶Λ𝑠
𝜇𝐶𝜇𝑠

 

It implies that the right hand side of the model is smooth, hence there exist a unique solution to the initial value problem, and 

solution exists for all time. Hence the model is well posed when considered from both mathematical and epidemiological point 

of views and it is therefore sufficient to study the dynamics of the flows generated by the model in 𝒟. 

3.2. Local Asymptotic Stability of the Disease Free Equilibrium 

The Disease Free Equilibrium (DFE) of the model is obtained by Setting the right-hand side of the equations in the model 

as well as the infected compartments (i.e., state variables of the infected classes) to zero and solving the resulting system. The 

DFE for the model is given by: 

ℰ0
𝑝
= (𝑆ℎ

0, 𝐸ℎ
0, 𝐼ℎ

0, 𝑀0, 𝑈0, 𝐿0, 𝐼𝑠
0, 𝐶0) = (

Λℎ
𝜇ℎ
, 0,0,0,

Λ𝑠
𝜇𝑠
, 0,0,0). 

The method of next generation matrix operator proposed by van den Driessche and Watmough (2002) is used to investigate 

whether the DFE of the system is Local Asymptotic Stability (LAS). Using notations similar to the ones used in van den Driessche 

and Watmough (2002), the matrices 𝐹 and 𝑉, of new infection terms as well as the remaining transfer terms, are respectively, 

given by: 
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F =

(

 
 
 
 
 
 
0 0 0 0

𝐴1𝛽𝑠Λ𝑠
𝑀0𝜇𝑠

0

0 0 0 0 0
𝐴2𝛽ℎΛℎ
𝐶0𝜇ℎ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 
 

 

and 

V =

(

 
 
 

𝑇3 0 0 0 0 0
0 𝑇1 0 0 0 0
−𝜅𝑠 0 𝑇4 0 0 0
0 −𝜅ℎ 0 𝑇2 0 0
0 0 0 −𝜃𝑀 𝜇𝑀 0
0 0 −𝜃𝐶 0 0 𝜇𝐶)

 
 
 

 

The reproduction number, ℛ𝑐 = 𝜌(𝐹𝑉
−1), with 𝜌(⋅) being the largest eigenvalue associated with matrix 𝐹𝑉−1, is given by 

ℛ𝑐 = √
𝐴1𝐴2𝛽ℎ𝛽𝑠ΛℎΛ𝑠𝜅ℎ𝜅𝑠𝜃𝑀𝜃𝐶
𝑇1𝑇2𝑇3𝑇4𝐶0𝑀0𝜇ℎ𝜇𝑀𝜇𝑠𝜇𝐶

, 

where: 𝐴1 = (1 − 𝜋𝜈), 𝐴2 = (1 − 𝜙𝜉), 𝑇1 = (𝜅ℎ + 𝜇ℎ), 𝑇2 = (𝛾ℎ + 𝛿ℎ + 𝜇ℎ), 𝑇3 = (𝜅𝑠 + 𝜇𝑠), 𝑇4 = (𝛿𝑠 + 𝜇𝑠). 

The result in Lemma 3.2 is deduce from Theorem 2 of van den Driessche and Watmough (2002):  

Lemma 3.2: The DFE of the availability and efficacy of control model is LAS in 𝒟 if ℛ𝑐 < 1, and unstable if ℛ𝑐 > 1. 

In Epidemiological sense, Lemma 3.2 implies that Schistosomiasis can be eradicated from the population with the availability 

and efficacy of control when ℛ𝑐 < 1, if the starting sizes of the sub-populations of the model lie in the basin of attraction of the 

DFE and that a little inflow of sick humans with Schistosomiasis into the population where control is available would not result 

to large outbreaks and Schistosomiasis will become endemic in the population where control is available if ℛ𝑐 > 1. 

3.3. Analysis of the Reproduction Number (ℛ𝑐) 
The sensitivity of ℛ𝑐 to some key parameters (𝜙, 𝜉, 𝜋, 𝜈, 𝛾ℎ) is investigated by considering the partial derivatives of ℛ𝑐 with 

respect to these parameters. 

(a) If we consider how ℛ𝑐 changes with respect to the product of availability (𝜉) and the efficacy (𝜙) of the control measures in 

the human subpopulation, we obtain: 

∂ℛ𝑐
2

∂𝜙𝜉
= −

(1 − 𝜋𝜈)𝛽ℎ𝛽𝑠𝜃𝐶𝜃𝑀𝜅ℎ𝜅𝑠ΛℎΛ𝑠
𝐶0𝑀0𝜇ℎ𝜇𝑀𝜇𝑠𝜇𝐶𝑇1𝑇2𝑇3𝑇4

 

Clearly, it follows that 
∂ℛ𝑐

2

∂𝜙𝜉
< 0 unconditionally. This implies that increasing the availability of the control measures (𝜉) and 

sustaining the efficacy (𝜙) in the human subpopulation such that their combination will be close to a 𝟏𝟎𝟎% will always result 

to a decrease in the incidence of Schistosomiasis in the population irrespective of other parameter values in ℛ𝑐. 

(b) Considering how ℛ𝑐 changes with respect to the product of availability of the control measures (𝜈) and the efficacy (𝜋) of 

the control measures in the aquatic environment, we obtain: 
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∂ℛ𝑐
2

∂𝜋𝜈
= −

(1 − 𝜙𝜉)𝛽ℎ𝛽𝑠𝜃𝐶𝜃𝑀𝜅ℎ𝜅𝑠ΛℎΛ𝑠
𝐶0𝑀0𝜇ℎ𝜇𝑀𝜇𝑠𝜇𝐶𝑇1𝑇2𝑇3𝑇4

 

Obviously, it follows that 
∂ℛ𝑐

2

∂𝜋𝜈
< 0 unconditionally. This implies that increasing the availability of the control measures (𝜈) and 

sustaining the efficacy (𝜋) in the aquatic environment such that their combination is close to a 𝟏𝟎𝟎% will always result to a 

decrease in the incidence of Schistosomiasis in the population irrespective of other parameter values in ℛ𝑐. 

(c) Considering how ℛ𝑐 changes with respect to the treatment/recovery rate (𝛾ℎ) in the human subpopulation, we obtain: 

∂ℛ𝑐
2

∂𝛾ℎ
= −

(1 − 𝜙𝜉)(1 − 𝜋𝜈)𝛽ℎ𝛽𝑠𝜃𝐶𝜃𝑀𝜅ℎ𝜅𝑠ΛℎΛ𝑠

𝐶0𝑀0𝜇ℎ𝜇𝑀𝜇𝑠𝜇𝐶𝑇1𝑇2
2𝑇3𝑇4

 

Clearly, it follows that  
∂ℛ𝑐

2

∂𝛾ℎ
< 0 unconditionally. This implies that increasing the treatment rate (𝛾ℎ) in the human population 

will always result to a decrease in the incidence of Schistosomiasis in the population irrespective of other parameter values in 

ℛ𝑐. 

We further investigate the sensitivity of ℛ𝑐 with respect to its sensitivity to some key parameters (𝜙, 𝜉, 𝜋, 𝜈, 𝛾) that describes the 

effect of the control parameters and recovery on the availability and efficacy of control  Schistosomiasis dynamics by considering 

the limiting values of ℛ𝑐 as extremely large values are assigned to these parameters.  

(a) Considering the limiting value of ℛ𝑐 as 𝜙𝜉 → 1, we have 

lim
𝜙𝜉→1

 ℛ𝑐 = lim
𝜙𝜉→1

 √
𝐴1𝐴2𝛽ℎ𝛽𝑠ΛℎΛ𝑠𝜅ℎ𝜅𝑠𝜃𝑀𝜃𝐶
𝑇1𝑇2𝑇3𝑇4𝐶0𝑀0𝜇ℎ𝜇𝑀𝜇𝑠𝜇𝐶

= 0 

The limiting value suggests that increasing the availability of the control measures (𝜉) and sustaining the efficacy (𝜙) in the 

human subpopulation such that their combination is a 𝟏𝟎𝟎% can help in effective Schistosomiasis control in the population and 

significant decrease in the reproduction number to a value below unity. 

(b) Considering the limiting value of ℛ𝑐 as 𝜋𝜈 → 1, we obtain 

lim
𝜋𝜈→1

 ℛ𝑐 = lim
𝜋𝜈→1

 √
𝐴1𝐴2𝛽ℎ𝛽𝑠ΛℎΛ𝑠𝜅ℎ𝜅𝑠𝜃𝑀𝜃𝐶
𝑇1𝑇2𝑇3𝑇4𝐶0𝑀0𝜇ℎ𝜇𝑀𝜇𝑠𝜇𝐶

= 0 

The limiting value suggests that increasing the availability of the control measures (𝜈) and sustaining the efficacy (𝜋) in the 

aquatic environment such that their combination is a 𝟏𝟎𝟎% can help in effective control and eradication of Schistosomiasis in 

the population and significant decrease in the value of the reproduction number to a value below unity. 

(c) Considering the limiting value of ℛ𝑐 as 𝛾ℎ → ∞, we obtain 

lim
𝛾ℎ→∞

 ℛ𝑐 = lim
𝛾ℎ→∞

 √
𝐴1𝐴2𝛽ℎ𝛽𝑠ΛℎΛ𝑠𝜅ℎ𝜅𝑠𝜃𝑀𝜃𝐶
𝑇1𝑇2𝑇3𝑇4𝐶0𝑀0𝜇ℎ𝜇𝑀𝜇𝑠𝜇𝐶

= 0 

The limiting value indicates that at a very high treatment/ recovery rate (𝛾ℎ → ∞), Schistosomiasis can be be completely 

eradicated from the population and bringing the value of the corresponding reproduction number to a value below unity.  

In conclusion, these analysis showed that both the availability and efficacy of control measures in the human population and the 

aquatic environment will go a long way in controlling the spread of human Schistosomiasis. 
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3.4. Existence of Endemic Equilibrium Point 

The existence of Endemic Equilibrium Point (EEP) of the model. This is the equilibrium for which the disease persist in the 

population.  

Let  ℰ1
𝑝
= (𝑆ℎ

∗∗, 𝐸ℎ
∗∗, 𝐼ℎ

∗∗, 𝑀∗∗, 𝑈∗∗, 𝐿∗∗, 𝐼𝑠
∗∗, 𝐶∗∗) be an EEP for the model. 

The EEP of the model is obtained by solving the right hand side of the equations in the model in terms of the forces of infection 

at the EEP. 

𝑆ℎ
∗∗  =

Λℎ𝑇1𝑇2
𝑇5𝜆𝐶

∗∗ + 𝜇ℎ𝑇1𝑇2
,  𝐸ℎ

∗∗ =
Λℎ𝜆𝐶

∗∗𝑇2
𝑇5𝜆𝐶

∗∗ + 𝜇ℎ𝑇1𝑇2
,  𝐼ℎ

∗∗ =
Λℎ𝜆𝐶

∗∗𝜅ℎ
𝑇5𝜆𝐶

∗∗ + 𝜇ℎ𝑇1𝑇2

𝑀∗∗  =
𝜃𝑀𝜅ℎ + 𝜆𝐶

∗∗Λℎ
𝜇𝑀(𝑇5𝜆𝐶

∗∗ + 𝜇ℎ𝑇1𝑇2)
,  𝑈∗∗ =

Λ𝑠
𝜆𝑠
∗∗ + 𝜇𝑠

,  𝐿∗∗ =
Λ𝑠𝜆𝑠

𝑇3(𝜆𝑠
∗∗ + 𝜇𝑠)

𝐼𝑠
∗∗  =

Λ𝑠𝜆𝑠𝜅𝑠
𝑇3𝑇4(𝜆𝑠

∗∗ + 𝜇𝑠)
,  𝐶∗∗ =

Λ𝑠𝜆𝑠𝜅𝑠𝜃𝐶
𝑇3𝑇4𝜇𝑠(𝜆𝑠

∗∗ + 𝜇𝑠)

 

where: 𝑇1 = (𝜅ℎ + 𝜇ℎ), 𝑇2 = (𝛾ℎ + 𝛿ℎ + 𝜇ℎ), 𝑇3 = (𝜅𝑠 + 𝜇𝑠), 𝑇4 = (𝛿𝑠 + 𝜇𝑠), 𝑇5 = 𝑇1𝑇2 − 𝛾ℎ𝜅ℎ > 0, 𝑇6 = 𝐶0𝜇𝐶𝑇3𝑇4 +
𝜀Λ𝑠𝜅𝑠𝜃𝑠, 𝑇7 = 𝑀0𝜇𝑀𝑇5 + 𝜀𝜃𝑀𝜅ℎΛℎ. 

Substituting these equations into the force of infection and after several algebraic simplifications, the EEP of the model satisfies 

the following polynomial at the steady state: 

𝜆𝑠
∗∗𝐾1 + 𝐾0 = 0 

Where 
𝐾1 = 𝐴1𝛽ℎΛ𝑠𝜅𝑠𝜃𝐶𝑇7 +𝑀0𝜇𝑀𝜇ℎ𝑇1𝑇2 𝑎𝑛𝑑 𝐾0 = 𝐶0𝑀0𝜇𝑀𝜇𝐶𝜇𝑠𝜇ℎ𝑇1𝑇2𝑇3𝑇4(1 − ℛ𝑐

2)
 

From the above analysis, we have thus established the results in the Lemma 3.3 

Lemma 3.3: The model, has a unique EEP given by ℰ1
𝑝

, whenever ℛ𝑐
2 > 1 and no EEP when ℛ𝑐

2 < 1.  

The epidemiological interpretation of the unique EEP is that, in a population, the long established necessity of having the 

reproduction number below one is both necessary and sufficient for the effective control of Schistosomiasis in the population. 

3.5. Global Asymptotic Stability of the DFE 

In this subsection, we prove that the Disease Free equilibrium (DFE) of the model is Global Asymptotic Stability (GAS). 

Theorem 3.2: The DFE of the model is GAS in 𝒟 whenever ℛ𝑐 ≤ 1 and not stable if ℛ𝑐 > 1. 

Proof: Consider the following Lyapunov function given by 

𝒬 = 𝐵1𝐸ℎ + 𝐵2𝐼ℎ + 𝐵3𝑀 + 𝐵4𝐿 + 𝐵5𝐼𝑠 + 𝐵6𝐶, 

where 

𝐵1 =
𝐴1𝛽𝑠

∗𝜅𝑠𝜃𝐶𝜅ℎ𝜃𝑀𝑈
∗

𝑀0𝜇𝐶𝜇𝑀𝑇1𝑇2𝑇3𝑇4
,  𝐵2 =

𝐴1𝛽𝑠𝜅𝑠𝜃𝐶𝜃𝑀𝑈
∗

𝑀0𝜇𝐶𝜇𝑀𝑇2𝑇3𝑇4
,  𝐵3 =

𝐴1𝛽𝑠𝜅𝑠𝜃𝐶𝑈
∗

𝑀0𝑇3𝑇4𝜇𝐶𝜇𝑀)
,

𝐵4 =
𝜅𝑠𝜃𝐶ℛ𝑐
𝜇𝐶𝑇3𝑇4

,  𝐵5 =
𝜃𝐶ℛ𝑐
𝜇𝐶𝑇4

,  𝐵6 =
ℛ𝑐
𝜇𝐶
.

 

The Lyapunov function has time derivative given by 

𝒬̇ = 𝐵1𝐸̇ℎ + 𝐵2𝐼ℎ + 𝐵3𝑀̇ + 𝐵4𝐿̇ + 𝐵5𝐼𝑠 + 𝐵6𝐶̇ 
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Substituting the right hand side of model gives 

𝒬̇ = 𝐵1(𝜆𝑠
∗𝑆ℎ

∗ − 𝑇1𝐸ℎ
∗)𝐵2(𝜅ℎ𝐸ℎ

∗ − 𝑇2𝐼ℎ
∗) + 𝐵3(𝜃𝑀𝐼ℎ

∗ − 𝜇𝑀𝑀
∗)

 −𝐵4(𝜆𝑠
∗𝑈 ∗ −𝑇3𝐿

∗) + 𝐵5(𝜅𝑠𝐿
∗ − 𝑇4𝐼𝑠

∗) + 𝐵6(𝜃𝐶𝐼𝑠
∗ − 𝜇𝐶𝐶

∗),

=
𝐴1𝐴2𝛽ℎ𝛽𝑠𝜅𝑠𝜃𝐶𝜅ℎ𝜃𝑀𝐶

∗𝑈∗𝑆ℎ
∗

𝑀0𝑇1𝑇2𝑇3𝑇4𝜇𝑐𝜇𝑀(𝐶0 + 𝜀𝐶
∗)
+
𝐴1𝜅𝑠𝜃𝐶ℛ𝑐𝛽𝑠𝑀

∗𝑈∗

𝑇3𝑇4𝜇𝐶(𝑀0 + 𝜀𝑀
∗)
−
𝐴1𝛽𝑠𝜅𝑠𝜃𝐶𝑈

∗𝑀∗

𝑀0𝑇3𝑇4𝜇𝐶
−

ℛ𝑐𝐶
∗,

= ℛ𝑐𝐶
∗ [

𝐶0𝑆ℎ
∗

𝑆ℎ
∗(𝐶0 + 𝜀𝐶

∗
ℛ𝑐 − 1] +

𝐴1𝛽𝑠𝑀
∗𝜅𝑠𝜃𝐶𝑈

∗

𝑇3𝑇4𝜇𝐶𝑀0

[
𝑀0𝑈

∗

𝑈∗(𝑀0 + 𝜀𝑀
∗)
ℛ𝑐 − 1] ,

≤ ℛ𝑐𝐶
∗[ℛ𝑐 − 1] +

𝐴1𝛽𝑠𝑀
∗𝜅𝑠𝜃𝐶𝑈

∗

𝑇3𝑇4𝜇𝐶𝑀0

[ℛ𝑐 − 1]

 

Hence, 𝒬̇ ≤ 0 whenever ℛ𝑐 ≤ 1 with 𝒬̇ = 0 if and only if 𝐼ℎ = 𝐼𝑠 = 𝑀 = 𝐶 = 0. Since 𝒬̇ ≤ 0 then 𝒬 is a Lyapunov function in 

the domain 𝒟. From LaSalle's Invariance Principle (LaSalle and Lefschetz, 1976), it follows that: 

(𝐸ℎ(𝑡), 𝐼ℎ(𝑡),𝑀(𝑡), 𝐿𝑠(𝑡), 𝐼𝑠(𝑡), 𝐶(𝑡)) → (0,0,0,0,0,0)  as  𝑡 → ∞. 

Consequently, every orbits of the equations of the model tends to the DFE of model, as 𝑡 → ∞ for ℛ𝑐 ≤ 1. 

The result from the analysis showed that in the population, the DFE of the model is GAS whenever ℛ𝑐 ≤ 1 since a unique EEP 

exist for all time. Hence, Schistosomiasis will be eliminated from the population whenever ℛ𝑐 ≤ 1. It is worthy to note that, in 

this case, having ℛ𝑐 ≤ 1 is both a necessary and sufficient condition for effective Schistosomiasis control, irrespective of the 

starting sizes of the sub-populations. 

3.6. Global Asymptotic Stability of the Endemic Equilibrium Point 

In establishing the Global Asymptotic Stability (GAS) of the Endemic Equilibrium Point (EEP), we consider a particular 

case of the model when recovery for infected humans is negligible (i.e., 𝛾ℎ = 0 ). 

Let 𝒟0 be the stable manifold of the DFE of the model and be given as 𝒟0 = {(𝑆ℎ , 𝐸ℎ, 𝐼ℎ , 𝑀, 𝑈, 𝐿, 𝐼𝑠 , 𝐶) ∈ 𝒟: 𝐸ℎ = 𝐼ℎ = 𝑀 =
𝐿 = 𝐼𝑠 = 𝐶 = 0}. The following result established the GAS of the EEP. 

Theorem 3.3: The unique EEP, ℰ1𝑝 corresponding to the special case of the model (when 𝛾ℎ = 0 ) is GAS in the domain 𝒟 ∖ 𝒟0 

whenever ℛ𝑐 > 1. 

Proof: Consider the following nonlinear Lyapunov function 

𝒬  = 𝑆ℎ − 𝑆ℎ
∗∗ln (

𝑆ℎ
𝑆ℎ
∗∗) + 𝐸ℎ − 𝐸ℎ

∗∗ln (
𝐸ℎ
𝐸ℎ
∗∗) + 𝑅1 (𝐼ℎ − 𝐼ℎ

∗∗ln 
𝐼ℎ
𝐼ℎ
∗∗)

 +𝑅2 (𝑀 −𝑀∗∗ln 
𝑀

𝑀∗∗
) + 𝑈 − 𝑈∗∗ln (

𝑈

𝑈∗∗
) + 𝐿 − 𝐿∗∗ln (

𝐿

𝐿∗∗
)

 +𝑅3 (𝐼𝑠 − 𝐼𝑠
∗∗ln 

𝐼𝑠
𝐼𝑠
∗∗
) + 𝑅4 (𝐶 − 𝐶

∗∗ln 
𝐶

𝐶∗∗
) ,

 

where:  𝑅1 =
𝑇‾1

𝜅ℎ
,  𝑅2 =

𝑇1𝑇2

𝜅ℎ𝜃𝑀
,  𝑅3 =

𝑇3

𝜅𝑠
,  𝑅4 =

𝑇3𝑇4

𝜅𝑠𝜃𝐶
. and time derivatives of the Lyapunov functional 𝒬 given by 

𝒬̇ = (1 −
𝑆ℎ
∗∗

𝑆ℎ
) 𝑆̇ℎ + (1 −

𝐸ℎ
∗∗

𝐸ℎ
) 𝐸̇ℎ + 𝑅1 (1 −

𝐼ℎ
∗∗

𝐼ℎ
) 𝐼ℎ + 𝑅2 (1 −

𝑀∗∗

𝑀
) 𝑀̇

(1 −
𝑈∗∗

𝑈
) 𝑈̇ + (1 −

𝐿∗∗

𝐿
) 𝐿̇ + 𝑅3 (1 −

𝐼𝑠
∗∗

𝐼𝑠
) 𝐼𝑠 + 𝑅4 (1 −

𝐶

𝐶∗∗
) 𝐶̇.
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Substituting the right hand sides of the equations in the model corresponding to 𝑆̇ℎ, 𝐸̇ℎ, 𝐼ℎ , 𝑀̇, 𝑈̇, 𝐿̇, 𝐼𝑠, 𝐶̇ into the above and after 

several algebraic calculations gives: 

𝒬̇  ≤ 𝜇ℎ𝑆ℎ
∗∗ (2 −

𝑆ℎ
∗∗

𝑆ℎ
−
𝑆ℎ
𝑆ℎ
∗∗)

 +𝜆∗∗𝑆ℎ
∗∗ (5 −

𝑆ℎ
∗∗

𝑆ℎ
−
𝑆ℎ𝐸ℎ ∗∗

𝑆ℎ
∗∗𝐸ℎ

−
𝐼ℎ
∗∗𝐸ℎ
𝐼ℎ𝐸ℎ

∗∗ −
𝐼ℎ𝑀

∗∗

𝐼ℎ
∗∗𝑀

−
𝑀

𝑀∗∗
)

 +𝜇𝑠𝑈
∗∗ (2 −

𝑈∗∗

𝑈
−
𝑈

𝑈∗∗
)

 +𝜆𝑠
∗∗𝑈∗∗ (5 −

𝑈∗∗

𝑈
−
𝐿𝐼𝑠

∗∗

𝐿∗∗𝐼𝑠
−
𝐶∗∗𝐼𝑠
𝐼𝑠
∗∗𝐶∗∗

−
𝑈𝐿∗∗

𝑈∗∗𝐿
−
𝐶

𝐶∗∗
) .

 

Because the arithmetic mean is greater than the geometric mean, the following inequalities holds 

2 −
𝑆ℎ
∗∗

𝑆ℎ
−
𝑆ℎ
𝑆ℎ
∗∗ ≤ 0,  2 −

𝑈∗∗

𝑈
−
𝑈

𝑈∗∗
≤ 0,

5 −
𝑆ℎ
∗∗

𝑆ℎ
−
𝑆ℎ𝐸ℎ ∗∗

𝑆ℎ
∗∗𝐸ℎ

−
𝐼ℎ
∗∗𝐸ℎ
𝐼ℎ𝐸ℎ

∗∗ −
𝐼ℎ𝑀

∗∗

𝐼ℎ
∗∗𝑀

−
𝑀

𝑀∗∗
≤ 0,

5 −
𝑈∗∗

𝑈
−
𝐿𝐼𝑠

∗∗

𝐿∗∗𝐼𝑠
−
𝐶∗∗𝐼𝑠
𝐼𝑠
∗∗𝐶∗∗

−
𝑈𝐿∗∗

𝑈∗∗𝐿
−
𝐶

𝐶∗∗
≤ 0

 

Thus, 𝒬̇ ≤ 0 whenever ℛ𝑐 > 1. Since the relevant state variables in the equation of 𝐼ℎ is at the endemic steady state, these can 

be substituted into the equations for 𝐼ℎ in the model so that 

𝐼ℎ(𝑡) → 𝐼ℎ
∗∗  as  𝑡 → ∞. 

Since 𝒬̇ ≤ 0 then 𝒬 is a Lyapunov function in 𝒟 ∖ 𝒟0. 

The result showed that in the Schistosomiasis population, whenever 𝛾ℎ = 0, the endemic steady state will be GAS whenever 

ℛ𝑐 > 1. Hence, Schistosomiasis will persist in the population regardless of the initial sizes of the subpopulation whenever ℛ𝑐 >
1. 

4. Conclusion 
In this paper, we formulated a novel deterministic mathematical model which investigated the impact of availability and 

efficacy of control on the transmission dynamics of Schistosomiasis in a population. The eight state variables of the model were 

shown to be non-negative and bounded for all time, 𝑡 and that the trajectories generated by the availability and efficacy of control 

Schistosomiasis model with non-negative starting conditions will always be non-negative for all time,  𝑡 > 0. We also showed 

that the trajectories generated by the model are non-negatively invariant for all time, 𝑡. The DFE of the formulated availability 

and efficacy of control Schistosomiasis model was derived and shown to be LAS whenever the corresponding reproduction 

number is below one (ℛ𝑐 < 1), which suggested that Schistosomiasis can be eradicated from the entire population in the 

availability and efficacy of control model if the initial sizes of the sub-populations of the model lie in the basin of attraction of 

the DFE and that a little influx of infected humans with Schistosomiasis into a population where control measures are available 

would not generate large outbreaks, and unstable and if ℛ𝑐 > 1, which implied that Schistosomiasis will become endemic in 

the population. Analyzing the reproduction number (ℛ𝑐), by taking the partial derivative of ℛ𝑐 with respect to some parameters 

such as the efficacy and availability of controls that prevents transmission from humans to snails and snails to humans show that 

increasing the availability and efficacy of these controls will significantly reduce the burden of schistosomiasis in the 

population.The Endemic Equilibrium Point (EEP) was derived and shown to be unique whenever ℛ𝑐
2 > 1 and no EEP when 

ℛ𝑐
2 < 1. The DFE of the model was shown to be GAS in 𝒟 whenever ℛ𝑐 ≤ 1 and not stable if ℛ𝑐 > 1. The Global Asymptotic 

Stability for the Endemic Equilibrium Point of the model was establish for a special case of the model whenever 𝛾ℎ = 0. The 

endemic steady state was shown to be GAS whenever ℛ𝑐 > 1. Hence, Schistosomiasis will persist in the population regardless 

of the initial sizes of the subpopulation whenever ℛ𝑐 > 1. 
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