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Abstract - In this paper, we consider a class of one-dimensional nonautonomous differential equation. Under certain 

conditions, we construct the general solution and prove that the zero solution x = 0 are unstable. The differential equations of 

mechanics arises from the variational problems of the laws of nature, thus, the study about stability or the unstability  of the 

special solutions, such as the zero solution, attracts many researchers. The novelty of this paper is that the system we consider 

is nonautonimous with the vector field being the polynomial of any order and prove that the zero solution is unstable. Our 

result will throw light on the  research of the dynamics of celestial mechanics and enrich the differential equation theory. 
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1. Introduction  
Differential equations are the mathematical models of various branches, such as Physical, Chemistry, Biology and describe 

the law of the nature. The dynamic behavior of a system refers to the motion or changes that occur in the system over time. 

Studying the dynamic behavior of systems can increase our understanding of natural laws, promote the development of science 

and technology, and improve our standard of living. There are fruitful results about the study about the dynamics of autonomous 

differential equation, we refer the readers to [1–4] and the reference therein for the further study about autonomous differential 

equations. 

 

The research on nonautonomous differential equation is relatively limited, even though in the one-dimensional 

“polynomial” case 

       {
𝑑𝑥

𝑑𝑡
= 𝑎𝑛(𝑡)𝑥

𝑛 + 𝑎𝑛−1(𝑡)𝑥
𝑛−1 +⋯+ 𝑎2(𝑡)𝑥

2 + 𝑎1(𝑡)𝑥,

𝑥(0) = 𝑥0 ∈ 𝑅.
                                   (1) 

In the case 𝑛 = 1, 2, 3, equation (1) is Linear, Riccati and the Abel type first-order differential equation, respectively. 

These three typical differential equations play an very important role in many physical and technical applications, we refer the 

readers to [5–9]. 

 

As for the dynamics of dynamical system, the stability and unstability of the special solution, such as the equilibria, 

invariant tori, limit tori, is a hot topic and attract the interest of the researchers most. At present, there are many research results 

on the stability of low order differential equations, however, as far as we know, few results on unstability [10–11]. For this 

reason, we consider the Lyapunov unstability of equation (1) under suitable hypotheses on the vector fields. 

 

More concretely, we restrict ourselves to the cases 𝑛 > 3and 𝑎𝑖(𝑡)(𝑖 = 1,⋯ , 𝑛)  are continuous functions. We will 

formulate the hypotheses on the coefficients 𝑎𝑖(𝑡) that ensure us construct the general solutions of equation (1), then with more 

hypotheses, we prove that all the solutions approach infinity as 𝑡 goes to infinity, thereby that the zero solutions 𝑥 = 0 is 

unstable. 

2. Unstability of Zero Solution 
In this section, we will prove that the zero solution 𝑥 = 0 of equation (1) is unstable though construct general solution 

under the certain hypotheses. 
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Theorem 2.1. Consider the equation (1), where 𝑎𝑛(𝑡)(≠ 0), 𝑎𝑛−1(𝑡) are first-order differentiable with 𝑡, set 

        𝑑(𝑡) = −
𝑎𝑛−1(𝑡)

𝑛𝑎𝑛(𝑡)
,                                    (2) 

and assume 

(H1) 𝑎𝑛−𝑘(𝑡) = (−1)
𝑘𝐶𝑛

𝑘𝑎𝑛(𝑡)𝑑
𝑘(𝑡), (𝐶𝑛

𝑘 =
𝑛!

𝑘!(𝑛−𝑘)!
) (0 ≤ 𝑘 ≤ 𝑛 − 2); 

(H2) (-1)n-1(1 − 𝑛)𝑎𝑛(𝑡)𝑑
𝑛(𝑡) + 𝑎1(𝑡)𝑑(𝑡) − 𝑑

′(𝑡) = 0; 

hold, then equation (1) possesses general solution and special solution defined by equations (6) and (7), respectively. 

Moreover, if 

 

(H3) 𝑎𝑛(𝑡) ≡ 1, 𝑎𝑛−1(𝑡) = 𝑐̃𝑒∫ (𝜉+𝑔(𝑠))𝑑𝑠
𝑡
0  with 𝜉 > 0, 𝑐̃(> 0) small enough, and |𝑔(𝑡)| ≤ 𝑀1, |∫  g(𝑠)ds

+∞

0
| ≤ 𝑀2 

also hold, then, the zero solution 𝑥 = 0of the equation (1) is unstable provided initial value 𝑥0(> 0) small enough. 

Proof: Under the hypotheses (H1)-(H2), equation (1) is reduced to 

𝑑

𝑑𝑡
(𝑥 − 𝑑(𝑡)) = 𝑎𝑛(𝑡)(𝑥 − 𝑑(𝑡))

𝑛 +𝑚1(𝑡)(𝑥 − 𝑑(𝑡)),                                 (3) 

where 𝑚1(𝑡) = ∑ 𝐶𝑘
𝑘−1𝑎𝑘(𝑡)𝑑

𝑘−1(𝑡)𝑛
𝑘=1 . Set 

𝑥(𝑡) = 𝑦(𝑡) + 𝑑(𝑡), 

where 𝑑(𝑡) is the one defined by (2). Then equation (3) can be transformed to 

                                                                    
𝑑𝑦

𝑑𝑡
= 𝑎𝑛(𝑡)𝑦

𝑛 +𝑚1(𝑡)𝑦,                                 (4) 

which is the Bernoulli equation, whose general solution is given by  

𝑦(𝑡) = [𝑚(𝑡)(𝐶̄ + (1 − 𝑛)∫ 𝑚−1(𝑠)𝑑𝑠
𝑡

0

)]

1
1−𝑛

, 

where 𝑚(𝑡) = 𝑒(1−𝑛) ∫ 𝑚1(𝑠)𝑑𝑠
𝑡
0 , 𝐶̄ is a constant depend on initial value: 

            𝐶̄ = (𝑥0 +
𝑎𝑛−1(𝑡)

𝑛𝑎𝑛(𝑡)
)
1−𝑛

.                                 (5) 

Thus we can get the general solution of (1) 

      𝑥(𝑡) = 𝑑(𝑡) + [𝑚(𝑡)(𝐶̄ + (1 − 𝑛) ∫ 𝑚−1(𝑠)𝑑𝑠
𝑡

0
)]

1

1−𝑛
.                                (6) 

Moreover, equation (4) shows that (1) possesses a special solution 

                                                                𝑥(𝑡) = −𝑑(𝑡).                                                                             (7) 

Once we get the general solution and the special solution defined by (6) and (7), we will investigated the stability of zero 

solution of equation (1). To this end, under the condition (H3), we give the quantities explicitly: 

{
 
 

 
 𝑑(𝑡) = −

1

𝑛
𝑎𝑛−1(𝑡),

𝑚(𝑡) = 𝑒(1−𝑛) ∫ 𝑚1(𝑠)𝑑𝑠
𝑡
0 ,

𝑚1(𝑡) =
𝑎𝑛−1
′ (𝑡)

𝑎𝑛−1(𝑡)
−

1

𝑛𝑛−1
𝑎𝑛−1
𝑛−1(𝑡).

                                  (8) 
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We consider the limit of 𝑑(𝑡),𝑚1(𝑡) and 𝑚(𝑡) as 𝑡 goes to infinity first. By the hypotheses (H3), we get 

             𝑙𝑖𝑚
𝑡→+∞

𝑑(𝑡) = − 𝑙𝑖𝑚
𝑡→+∞

1

𝑛
𝑎𝑛−1(𝑡) = − 𝑙𝑖𝑚

𝑡→+∞

𝑐̃

𝑛
𝑒∫ (𝜉+𝑔(𝑠))𝑑𝑠

𝑡
0 = −∞,                                      (9) 

and 

   𝑙𝑖𝑚
𝑡→+∞

𝑚1(𝑡) = 𝑙𝑖𝑚
𝑡→+∞

(
𝑎𝑛−1
′ (𝑡)

𝑎𝑛−1(𝑡)
−

1

𝑛𝑛−1
𝑎𝑛−1
𝑛−1(𝑡)) 

 

                = 𝑙𝑖𝑚
𝑡→+∞

(𝜉 + 𝑔(𝑡) − (
𝑐̃

𝑛
)
𝑛−1

𝑒(𝑛−1)∫ (𝜉+𝑔(𝑠))𝑑𝑠
𝑡
0 ) 

                = −∞.                                                                                                          (10) 

Thus 

                                                              𝑙𝑖𝑚
𝑡→+∞

𝑚(𝑡) = 𝑙𝑖𝑚
𝑡→+∞

𝑒(1−𝑛) ∫ 𝑚1(𝑠)𝑑𝑠
𝑡
0 = +∞,                                                  (11) 

thus the equation (11) yields 

                                                                          𝑙𝑖𝑚
𝑡→+∞

𝑚
1

1−𝑛(𝑡) = 0.                                                 (12) 

By L’Hospital rule and equation (8) 

   𝑙𝑖𝑚
𝑡→+∞

𝑚−1(𝑡)

𝑡−2
= 𝑙𝑖𝑚

𝑡→+∞

𝑡2

𝑚(𝑡)
= 𝑙𝑖𝑚

𝑡→+∞

2𝑡

(1−𝑛)𝑚1(𝑡)𝑚(𝑡)
 

                  =
2

1 − 𝑛
𝑙𝑖𝑚
𝑡→+∞

1

𝑚1(𝑡)
⋅
𝑡

𝑚(𝑡)
 

                  = 0,                                             (13) 

Where the last equality is by equation (10) and 

𝑙𝑖𝑚
𝑡→+∞

𝑡

𝑚(𝑡)
= 𝑙𝑖𝑚

𝑡→+∞

1

(1 − 𝑛)𝑚1(𝑡) ⋅ 𝑒
(1−𝑛) ∫ 𝑚1(𝑠)𝑑𝑠

𝑡
0

= 0. 

Then we estimate the upper bound of integral of the 𝑚−1(𝑡) as 𝑡 goes to infinity. By the equation (13), there exists 𝑝 ∈ 𝑁+, 

such that for all 𝑡 > 𝑝, 

                                                                           |
𝑚−1(𝑡)

𝑡−1
− 0| <

1

2
.                                             (14) 

We divide the term ∫ 𝑚−1(𝑠)𝑑𝑠
+∞

0
 into two parts as follows 

        ∫ 𝑚−1(𝑠)𝑑𝑠
+∞

0
= ∫ 𝑚−1(𝑠)𝑑𝑠

𝑝

0
+ ∫ 𝑚−1(𝑠)𝑑𝑠

+∞

𝑝
,                                             (15) 

We consider the first term in (15). By equation (8) and (H3), we get 

|𝑚1(𝑡)| = |𝜉 + 𝑔(𝑡) − (
𝑐̃

𝑛
)
𝑛−1

𝑒(𝑛−1)∫ (𝜉+𝑔(𝑠))𝑑𝑠
𝑡
0 | 

         ≤ 𝜉 +𝑀1 +
𝑐̃𝑛−1

𝑛𝑛−1
𝑒(𝑛−1)𝑝(𝜉+𝑀1) 

         : = 𝑀̄, 

which yields 

∫ 𝑚−1(𝑠)𝑑𝑠
𝑝

0

≤ ∫ |𝑚−1(𝑠)|𝑑𝑠 ≤ 𝑀̄𝑝
𝑝

0

. 

Thus 
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∫ 𝑚−1(𝑠)𝑑𝑠
𝑝

0
= ∫ 𝑒(𝑛−1) ∫ 𝑚1(𝑠)𝑑𝑠

𝑡
0 𝑑𝑡 ≤ 𝑒(𝑛−1)𝑀̄𝑝𝑝.

𝑝

0
                                                      

(16) 

As for the second term in equation (15), by equation (14) 

∫ 𝑚−1(𝑠)𝑑𝑠
+∞

𝑝
≤ ∫

1

2
𝑠−2𝑑𝑠 = −

+∞

𝑝

1

2
𝑠−1|

𝑝

+∞

=
1

2𝑝
.                                                 (17) 

Then by the above equations (16) and (17), we have the following estimate 

∫ 𝑚−1(𝑠)𝑑𝑠
+∞

0

= ∫ 𝑚−1(𝑠)𝑑𝑠
𝑝

0

+∫ 𝑚−1(𝑠)𝑑𝑠
+∞

𝑝

≤
1

2𝑝
+ 𝑒(𝑛−1)𝑀̄𝑝𝑝. 

The fact 𝑐̃(> 0) small enough, and definition of 𝐶̄ in (5) enable us to get 

𝐶̄ = (𝑥0 +
𝑐̃

𝑛
)
1−𝑛

>
3(𝑛 − 1)

2
(
1

2𝑝
+ 𝑒(𝑛−1)𝑀̄𝑝𝑝) > 0, 

which yield 

                                    𝐶̄
1

1−𝑛 < [𝐶̄ + (1 − 𝑛)∫ 𝑚−1(𝑠)𝑑𝑠
𝑡

0
]

1

1−𝑛
< [

𝑛−1

2
(
1

2𝑝
+ 𝑒(𝑛−1)𝑀̄𝑝𝑝)]

1

1−𝑛
.                               (18) 

Thus by equations (11) and (18), we get the second term in equation (6) 

𝑙𝑖𝑚
𝑡→+∞

[𝑚(𝑡) (𝐶̄ + (1 − 𝑛)∫ 𝑚−1(𝑠)𝑑𝑠
𝑡

0
)]

1

1−𝑛
= 0.                                                      (19) 

By equations (9) and (19), we get 

𝑙𝑖𝑚
𝑡→+∞

|𝑥(𝑡)| ≥ 𝑙𝑖𝑚
𝑡→+∞

{|𝑑(𝑡)| − |[𝑚(𝑡) (𝐶̄ + (1 − 𝑛)∫ 𝑚−1(𝑠)𝑑𝑠
𝑡

0

)]

1
1−𝑛

|} = +∞. 

the zero solution 𝑥 = 0 is unstable. This completes the proof. 

3. Conclusion  
In this article, we obtain the general solution and a special solution for a class of first-order nonautonmous polynomial 

differential equation under the coefficient functions satisfy certain specific relationship. And most importantly, we proved that 

the zero olution of the equation (1) is unstable under more conditions. 
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