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Abstract - In this paper, we introduce the concept of common neighbourhood eccentric domination in graphs. An eccentric 

dominating set 𝐷 is called a common neighbourhood eccentric dominating set (CNED-set) if for all 𝑣𝑗 ∈ 𝑉 − 𝐷, there exists a 

vertex 𝑣𝑖 ∈ 𝐷 such that (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸(𝐺) and Γ(𝑣𝑖 , 𝑣𝑗) ≥ 1. We calculate the common neighbourhood eccentric domination 

number for some standard graphs, and some results are stated and proved. The minimum common neighbourhood eccentric 

dominating energy 𝕄𝑐𝑛𝑒𝑑(𝐺) is the sum of the eigenvalues obtained from the minimum common neighbourhood eccentric 

dominating 𝑛 × 𝑛 matrix 𝕄𝑐𝑛𝑒𝑑(𝐺) = (𝑚𝑖𝑗). 𝕄𝑐𝑛𝑒𝑑(𝐺) of standard graphs are computed. New properties, upper and lower 

bounds for 𝕄𝑐𝑛𝑒𝑑(𝐺) are established.  

Keywords - Common neighbourhood, Eccentricity, Domination, Minimum common neighbourhood eccentric dominating set, 

Eigenvalues, Energy. 

1. Introduction  
Spectral graph theory finds vast application in molecular biology and chemistry. Ore introduced the terms “dominating 

set” and “domination number” in his book on graph theory, which was published in 1962. There are numerous concepts of 

domination which have always intrigued mathematicians and have led to advances in the field of domination. Alwardi et 

al.[1] introduced the concept of common neighbourhood domination in 2011. Let 𝐺 = (𝑉, 𝐸) be a graph. For any two 

vertices, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺), the common neighbourhood denoted by Γ(𝑣𝑖 , 𝑣𝑗) is the set of vertices different from 𝑣𝑖 and 𝑣𝑗, which 

are adjacent to both 𝑣𝑖 and 𝑣𝑗. A subset 𝐷 of 𝑉 is called a common neighbourhood dominating set (CN-dominating set) if, for 

every 𝑣 ∈ 𝑉 − 𝐷, there exists a vertex 𝑢 ∈ 𝐷 such that 𝑢𝑣 ∈ 𝐸(𝐺) and |Γ(𝑢, 𝑣)| ≥ 1, where |Γ(𝑢, 𝑣)| is the number of 

elements in the common neighbourhood of the vertices 𝑢 and 𝑣. Janakiraman et al.[6] introduced the concept of eccentric 

domination in graphs in 2010. The eccentricity 𝑒(𝑣) of 𝑣 is the distance to a vertex farthest from 𝑣. Thus, 𝑒(𝑣) =
max⁡{𝑑(𝑢, 𝑣): 𝑢 ∈ 𝑉}. For a vertex 𝑣, each vertex at a distance 𝑒(𝑣) from 𝑣 is an eccentric vertex. The eccentric set of a 

vertex 𝑣 is defined as 𝐸(𝑣) = {𝑢 ∈ 𝑉(𝐺): 𝑑(𝑢, 𝑣) = 𝑒(𝑣)}. A set 𝑑 ⊆ 𝑉(𝐺) is an eccentric dominating set if 𝐷 is a 

dominating set of 𝐺, and for every 𝑣 ∈ 𝑉 − 𝐷, there exists at least one eccentric vertex of 𝑣 in 𝐷. The eccentric domination 

number 𝛾𝑒𝑑(𝐺) of a graph, 𝐺 equals the minimum cardinality of an eccentric dominating set. That is, 𝛾𝑒𝑑(𝐺) = min⁡ |𝐷|, 
where the minimum is taken over 𝐷 in the set of all minimal eccentric dominating sets of 𝐺. Inspired by the above concepts, 

in this paper, we introduce a common neighbourhood eccentric dominating set, and we discuss and prove results related to 

this concept. In 1978, Gutman[4] introduced the concept of the energy of a graph. Inspired by Gutman, many authors have 

introduced and explored different types of energy in graph theory by means of different matrices. Kanna et al.[7] found the 

minimum dominating energy of a graph. For a graph 𝐺 = (𝑉, 𝐸), let 𝐴 = (𝑎𝑖𝑗) be the minimum dominating matrix defined 

by 

𝑎𝑖𝑗 = {

1, 𝑖𝑓⁡𝑣𝑖𝑣𝑗 ∈ 𝐸,

1, 𝑖𝑓⁡𝑖 = 𝑗⁡𝑎𝑛𝑑⁡𝑣𝑖 ∈ 𝐷,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

and 𝜆1, 𝜆2, … , 𝜆𝑛 are the eigenvalues of 𝐴. The minimum dominating energy is defined by 𝐸𝐷(𝐺) = ∑ |𝜆𝑖|
𝑛
𝑖=1 . In 2023, 

Tejaskumar R, A Mohamed Ismayil and Ivan Gutman introduced ‘Minimum eccentric dominating energy of graphs’. 

Inspired by Tejaskumar et al., we introduce minimum common neighbourhood eccentric dominating energy 𝔼𝑐𝑛𝑒𝑑(𝐺) of 
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graphs. In this paper, we find 𝔼𝑐𝑛𝑒𝑑(𝐺) of some standard graphs. For undefined terminologies related to graphs, we refer to 

[5]. 

 

2. Common Neighbourhood Eccentric Domination in Graphs 
We begin with some necessary notions: 

 

Definition 2.1: For a graph 𝐺 = (𝑉, 𝐸), a dominating set 𝑆 is called a common neighbourhood eccentric dominating set 

(CNED-set) if, for every vertex 𝑣 ∈ 𝑉 − 𝑆, there exists an eccentric vertex 𝑢 ∈ 𝑆 such that 𝐸(𝑣) = 𝑢 and (𝑣, 𝑥) ∈ 𝐸(𝐺) 
where 𝑥 ∈ 𝑆 such that |Γ(𝑣, 𝑥)| ≥ 1. 

 

Definition 2.2: A CNED-set 𝑆 is called a minimal CNED-set if no proper subset of 𝑆 is a CNED-set. 

 

Definition 2.3: The CNED number 𝛾𝑐𝑛𝑒𝑑(𝐺) of a graph, 𝐺 is the minimum cardinality among the minimal CNED sets of 𝐺. 

 

Definition 2.4: The upper CNED number Γ𝑐𝑛𝑒𝑑(𝐺) of a graph, 𝐺 is the maximum cardinality among the minimal CNED sets 

of 𝐺. 

 

Example 2.1: Consider the graph 𝐺 in Fig.1 consisting of 6 vertices. Here, the dominating set is {𝑣1, 𝑣4}, but it is not an 

eccentric dominating set. An eccentric dominating set is {𝑣1, 𝑣6}, but it is not a CNED set. A CNED-set is {𝑣1, 𝑣2, 𝑣4}. 

 
Fig. 1 The graph G in Example 2.1 

 

Theorem 2.1: For complete graph 𝐾𝑛, 𝛾𝑐𝑛𝑒𝑑(𝐾𝑛) = 1 for all 𝑛 ≥ 3. 

Proof: For a complete graph 𝐾𝑛, the eccentric vertices of any vertex 𝑣𝑖 ∈ 𝑉(𝐾𝑛) are given by 𝐸(𝑣𝑖) ∈ 𝑉(𝐾𝑛) − {𝑣𝑖} and 

every single vertex dominates all other vertices. For any set 𝐷 = {𝑣𝑖}⁡∃⁡|Γ(𝑣𝑖 , 𝑣𝑚)| = 𝑛 − 2⁡for all 𝑣𝑚 ∈ 𝑉 − 𝐷, and there 

exists an edge between every 𝑣𝑖 and 𝑣𝑚 for all⁡𝑣𝑚 ∈ 𝑉 − 𝐷. Hence 𝛾𝑐𝑛𝑒𝑑(𝐾𝑛) = 1. 

 

Theorem 2.2: If a graph 𝐺 does not contain at least one cycle 𝐶3, then 𝛾𝑐𝑛𝑒𝑑(𝐺) = 0. 

Proof: If a graph 𝐺 does not contain at least one cycle 𝐶3, then there is not exit a set 𝐷 where we can find two vertices 

𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺) such that |Γ(𝑣𝑖 , 𝑣𝑗)| ≥ 1 and (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸(𝐺). To find a common adjacent vertex between them is not possible. 

 

Remark 2.1: 

(i) The 𝛾𝑐𝑛𝑒𝑑(𝐺) = 0 for star 𝑆𝑛, path 𝑃𝑛 and tree graphs 𝑇𝑛. 

(ii) Due to the fact that 𝐶3 = 𝐾3, 𝛾𝑐𝑛𝑒𝑑(𝐶3) = 1. 

(iii) The 𝛾𝑐𝑛𝑒𝑑(𝐶𝑛) = 0 for 𝑛 > 3. 

 

Theorem 2.3: For the wheel graph 𝑊𝑛 with 𝑛 ≥ 5, we have 

𝛾𝑐𝑛𝑒𝑑(𝑊𝑛) = {
2, 𝑖𝑓⁡𝑛 = 5,7
3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Proof:  Case(i): Let 𝑛 = 5,7. For 𝑊5, any two non-central vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝐷 forms a CNED-set since 𝑉 − 𝐷 contains two 

non-central vertices and a central vertex, which satisfies the condition of a CNED-set. Similarly for 𝑊7, choose any two non-
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central vertices 𝑣𝑖 , 𝑣𝑗 such that 𝑑(𝑣𝑖 , 𝑣𝑗) = 3 and the path between 𝑣𝑖 and 𝑣𝑗 should not pass through the central vertex. They 

form a CNED-set 𝐷 = {𝑣𝑖 , 𝑣𝑗} such that for any vertex 𝑣𝑘 ∈ 𝑉 − 𝐷, the condition that |Γ(𝑣𝑖 , 𝑣𝑘)| ≥ 1 holds and (𝑣𝑖 , 𝑣𝑘) ∈

𝐸(𝐺). 
 

Case(ii): For 𝑊𝑛, where 𝑛 ≠ 5,7. A set 𝐷 = {𝑣𝑖 , 𝑣𝑗 , 𝑣𝑐} such that 𝑣𝑐 is a central vertex and 𝑣𝑖 , 𝑣𝑗 are non-central adjacent 

vertices forms CNED-set since |Γ(𝑣𝑖 , 𝑣𝑘)| ≥ 1 and (𝑣𝑖 , 𝑣𝑘) ∈ 𝐸(𝐺) for any vertex 𝑣𝑘 ∈ 𝑉 − 𝐷. 

 

Remark 2.2: (i) For the wheel graph 𝑊4, 𝛾𝑐𝑛𝑒𝑑(𝑊4) = 1 = 𝛾𝑐𝑛𝑒𝑑(𝐾4). 
 

Theorem 2.4: Every CNED set contains all the pendant vertices of the graph. 

Proof: To form a CNED set, we need a 𝐶3 in the graph by theorem-2.2. A pendant vertex can not satisfy the 𝐶3 property, i.e., 

a pendant vertex 𝑢 does not have a common neighbour 𝑣 such that (𝑢, 𝑣) ∈ 𝐸(𝐺) and |Γ(𝑢, 𝑣)| ≥ 1 where 𝑣 ∈ 𝑉 − 𝐷 and 

𝑢 ∈ 𝐷. 

 

Theorem 2.5: A CNED-set 𝐷 is a minimal CNED-set if one of the following conditions holds: 

1. For every vertex 𝑢 in 𝑉 − 𝐷, there does not exist a vertex 𝑣 in 𝐷 such that 𝐸(𝑢) = {𝑣}, i.e., 𝑢 has no eccentric vertex in 

𝐷. 

2. There exists some 𝑢 ∈ 𝑉 − 𝐷 such that 𝑁(𝑢) ∩ 𝐷 = {𝑣} and 𝑁(𝑢) ∩ 𝑁(𝑣) ≠ ∅, i.e., |Γ(𝑢, 𝑣)| ≥ 1 where (𝑢, 𝑣) ∈ 𝐸(𝐺). 
 

Proof: Suppose 𝐷 is a minimal CNED set of 𝐺. Then, for every vertex 𝑣 in 𝐷, 𝐷 − {𝑣} is not a CNED-set. Thus there exists 

some vertex 𝑢 in 𝑉 − 𝐷 ∪ {𝑣} which is not dominated by any vertex in 𝐷 − {𝑣} or there exists 𝑢 ∈ 𝑉 − 𝐷 ∪ {𝑣} such that 𝑢 

does not have an eccentric vertex in 𝐷 − {𝑣}, i.e., 𝐸(𝑢) ≠ 𝐷 − {𝑣} or 𝑁(𝑢) ∩ 𝑁(𝑣) = ∅, i.e. |Γ(𝑢, 𝑣)| = ∅ where (𝑢, 𝑣) ∈
𝐸(𝐺), since the intersection of the open neighbourhoods of 𝑢 and 𝑣 is empty, |Γ(𝑢, 𝑣)| ≱ 1. Therefore, the common 

neighbourhood does not exist. 

 

Case(i) If 𝑣 = 𝑢, then 𝑢 does not have an eccentric vertex in 𝐷, i.e., 𝐸(𝑢) ≠ 𝐷. 

Case(ii) (a) If 𝑢 ∈ 𝑉 − 𝐷 and 𝑢 are not dominated by 𝐷 − {𝑣}, but dominated by 𝐷, then 𝑢 is adjacent to only 𝑣 in 𝐷, i.e., 

𝑁(𝑢) ∩ 𝐷 = {𝑣}. 
(b) If 𝑢 ∈ 𝑉 − 𝐷 and 𝑢 does not have an eccentric vertex in 𝐷 − {𝑣} but 𝑢 has an eccentric vertex in 𝐷, then 𝑣 is the only 

eccentric vertex of 𝑢 in 𝐷, i.e. 𝐸(𝑢) ∩ 𝐷 = {𝑣}. 
(c) If 𝑢 ∈ 𝑉 − 𝐷 and 𝑁(𝑢) ∩ 𝑁(𝑥) = ∅ where 𝑥 ∈ 𝐷 − {𝑣} but 𝑁(𝑢) ∩ 𝑁(𝑣) ≠ ∅, i.e. |Γ(𝑢, 𝑣)| ≥ 1 where (𝑢, 𝑣) ∈ 𝐸(𝐺). 
 

Conversely, suppose 𝐷 is a CNED-set, and for each 𝑣 ∈ 𝐷, one of the two conditions holds. Now, we show that 𝐷 is a 

minimal CNED set. Suppose 𝐷 is not a minimal CNED-set, i.e. there exists a vertex 𝑣 ∈ 𝐷 such that 𝐷 − {𝑣} is a CNED-set. 

Hence 𝑣 is adjacent to at least one vertex 𝑥 in 𝐷 − {𝑣}, 𝑣 has an eccentric vertex in 𝐷 − {𝑣} i.e. 𝐸(𝑣) ∈ 𝐷 − {𝑣} and 𝑁(𝑣) ∩
𝑁(𝑥) ≠ ∅. Hence |Γ(𝑣, 𝑥)| ≥ 1 where (𝑣, 𝑥) ∈ 𝐸(𝐺). Therefore, a CNED set exists. Therefore, condition-(1) does not hold. 

Also, if 𝐷 − {𝑣} is a CNED-set, then every vertex 𝑢 in 𝑉 − 𝐷 is adjacent to at least one vertex 𝑥 in 𝐷 − {𝑣}, 𝑢 has an 

eccentric vertex in 𝐷 − {𝑣} i.e. 𝐸(𝑢) ∈ 𝐷 − {𝑣} and 𝑁(𝑢) ∩ 𝑁(𝑥) ≠ ∅ i.e. |Γ(𝑢, 𝑥)| ≥ 1 where (𝑢, 𝑥) ∈ 𝐸(𝐺). Therefore, 

condition-(2) does not hold. Hence, neither condition-(1) nor (2) holds, which is a contradiction to our assumption that for 

each 𝑣 ∈ 𝐷, one of the conditions holds. This proves the theorem. 

 
Table 1. The common neighbourhood eccentric dominating set, 𝜸𝒄𝒏𝒆𝒅(𝑮), upper common neighbourhood eccentric dominating set and 𝚪𝒄𝒏𝒆𝒅(𝑮) of 

standard graphs are tabulated 

Graph Figure 

D – Minimum 

CNED-set. 

|𝑫| = 𝜸𝒄𝒏𝒆𝒅(𝑮) 
𝜸𝒄𝒏𝒆𝒅(𝑮) 

S – Upper CNED-

set. 

|𝑺| = 𝚪𝒄𝒏𝒆𝒅(𝑮) 
𝚪𝒄𝒏𝒆𝒅(𝑮) 

Diamond 

graph 

 

 

 
{𝑣1, 𝑣2}, 
{𝑣1, 𝑣3}, 
{𝑣2, 𝑣3}, 
{𝑣2, 𝑣4}, 
{𝑣3, 𝑣4}. 

 

 

2 
{𝑣1, 𝑣2, 𝑣4}, 
{𝑣1, 𝑣3, 𝑣4}. 

3 
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Tetrahedral 

graph 

 

 
 

{𝑣1}, 
{𝑣2}, 
{𝑣3}, 
{𝑣4}. 

1 

{𝑣1}, 
{𝑣2}, 
{𝑣3}, 
{𝑣4}. 

1 

Claw 

graph 

 

Does not exist. 0 Does not exist. 0 

Paw 

graph 

 

{𝑣1, 𝑣3}, 
{𝑣2, 𝑣3}, 
{𝑣3, 𝑣4}. 

2 {𝑣1, 𝑣2, 𝑣3, 𝑣4}. 4 

Bull 

graph 

 

{𝑣1, 𝑣2, 𝑣3}, 
{𝑣1, 𝑣2, 𝑣4}, 
{𝑣1, 𝑣2, 𝑣5}. 

3 {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. 5 

Butterfly 

graph 

 

{𝑣1, 𝑣2}, 
{𝑣1, 𝑣5}, 
{𝑣2, 𝑣4}, 
{𝑣4, 𝑣5}. 

2 

{𝑣1, 𝑣2, 𝑣3}, 
{𝑣1, 𝑣2, 𝑣4}, 
{𝑣1, 𝑣2, 𝑣5}, 
{𝑣1, 𝑣3, 𝑣4}, 
{𝑣1, 𝑣3, 𝑣5}, 
{𝑣1, 𝑣4, 𝑣5}, 
{𝑣2, 𝑣3, 𝑣4}, 
{𝑣2, 𝑣3, 𝑣5}, 
{𝑣2, 𝑣4, 𝑣5}, 
{𝑣3, 𝑣4, 𝑣5}. 

3 

Banner graph 

 

Does not exist. 0 Does not exist. 0 

Fork 

graph 

 

Does not exist. 0 Does not exist. 0 
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(3,2)-

Tadpole 

graph 

 

{𝑣1, 𝑣3, 𝑣4}, 
{𝑣2, 𝑣3, 𝑣4}, 
{𝑣3, 𝑣4, 𝑣5}. 

 

 

3 {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. 5 

Kite 

graph 

 

{𝑣1, 𝑣2, 𝑣4}, 
{𝑣1, 𝑣3, 𝑣4}, 
{𝑣2, 𝑣3, 𝑣4}, 
{𝑣2, 𝑣4, 𝑣5}, 
{𝑣3, 𝑣4, 𝑣5}. 

 

3 {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. 5 

(4,1)-

Lollipop 

graph 

 

{𝑣1, 𝑣4}, 
{𝑣2, 𝑣4}, 
{𝑣3, 𝑣4}, 
{𝑣4, 𝑣5}. 

2 {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. 5 

House graph 

 

{𝑣1, 𝑣4, 𝑣5}, 
{𝑣2, 𝑣4, 𝑣5}, 
{𝑣3, 𝑣4, 𝑣5}. 

3 {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. 5 

House X 

graph 

 

{𝑣1, 𝑣2}, 
{𝑣1, 𝑣3}, 
{𝑣1, 𝑣4}, 
{𝑣1, 𝑣5}. 

2 

{𝑣1, 𝑣2, 𝑣3, 𝑣4}, 
{𝑣1, 𝑣2, 𝑣3, 𝑣5}, 
{𝑣2, 𝑣3, 𝑣4, 𝑣5}. 

4 

Gem graph 

 

{𝑣1, 𝑣2}, 
{𝑣3, 𝑣4}. 

2 

{𝑣1, 𝑣2, 𝑣3, 𝑣5}, 
{𝑣1, 𝑣2, 𝑣4, 𝑣5}, 
{𝑣1, 𝑣3, 𝑣4, 𝑣5}, 
{𝑣2, 𝑣3, 𝑣4, 𝑣5}. 

4 

Dart 

graph 

 

 
 

{𝑣2, 𝑣3}, 
{𝑣2, 𝑣4}. 

2 {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. 5 

Cricket 

graph 

 

 
 

 

{𝑣1, 𝑣3, 𝑣5}, 
{𝑣2, 𝑣3, 𝑣5}, 
{𝑣3, 𝑣4, 𝑣5}. 

3 {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. 5 
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Pentatope 

graph 

 

 
 

{𝑣1}, 
{𝑣2}, 
{𝑣3}, 
{𝑣4}. 

 

 

1 

{𝑣1}, 
{𝑣2}, 
{𝑣3}, 
{𝑣4}. 

1 

Johnson 

solid 

skeleton 12 

graph 

 

 
 

{𝑣1, 𝑣2}, 
{𝑣1, 𝑣3}, 
{𝑣1, 𝑣4}, 
{𝑣1, 𝑣5}, 
{𝑣2, 𝑣3}. 

 

2 
{𝑣1, 𝑣2, 𝑣4, 𝑣5}, 
{𝑣2, 𝑣3, 𝑣4, 𝑣5}. 

4 

Cross graph 

 

 
 

Does not exist. 0 Does not exist. 0 

Net graph 

 

{𝑣1, 𝑣2, 𝑣3, 𝑣6}, 
{𝑣1, 𝑣2, 𝑣4, 𝑣6}, 
{𝑣1, 𝑣2, 𝑣5, 𝑣6}. 

4 

{𝑣1, 𝑣2, 𝑣3, 𝑣6}, 
{𝑣1, 𝑣2, 𝑣4, 𝑣6}, 
{𝑣1, 𝑣2, 𝑣5, 𝑣6}. 

4 

Fish graph 

 

{𝑣1, 𝑣2, 𝑣3, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣4, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣5, 𝑣6}. 

4 

{𝑣1, 𝑣2, 𝑣3, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣4, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣5, 𝑣6}. 

4 

A graph 

 

Does not exist. 0 Does not exist. 0 

R graph 

 

Does not exist. 0 Does not exist. 0 
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4-polynomial 

graph 

 

{𝑣3, 𝑣4}. 2 
{𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6}. 

5 

(2,3)-King 

graph 

 

 
 

{𝑣1, 𝑣3}, 
{𝑣1, 𝑣6}, 
{𝑣3, 𝑣4}, 
{𝑣4, 𝑣6}. 

2 
{𝑣1, 𝑣2, 𝑣4, 𝑣5}, 
{𝑣2, 𝑣3, 𝑣5, 𝑣6}. 

4 

Antenna 

graph 

 

 
 

{𝑣1, 𝑣2, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣4, 𝑣5, 𝑣6}. 

4 

{𝑣1, 𝑣2, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣4, 𝑣5, 𝑣6}. 

4 

3-prism 

graph 

 

 
 

{𝑣1, 𝑣2, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣4, 𝑣5, 𝑣6}. 

4 

{𝑣1, 𝑣2, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣3, 𝑣5, 𝑣6}, 
{𝑣1, 𝑣4, 𝑣5, 𝑣6}. 

4 

Octahedral 

graph 

 

{𝑣1, 𝑣2, 𝑣3}, 
{𝑣1, 𝑣2, 𝑣5}, 
{𝑣1, 𝑣3, 𝑣6}, 
{𝑣1, 𝑣5, 𝑣6}, 
{𝑣2, 𝑣3, 𝑣4}, 
{𝑣2, 𝑣4, 𝑣5}, 
{𝑣3, 𝑣4, 𝑣6}, 
{𝑣4, 𝑣5, 𝑣6}. 

3 

{𝑣1, 𝑣2, 𝑣3}, 
{𝑣1, 𝑣2, 𝑣5}, 
{𝑣1, 𝑣3, 𝑣6}, 
{𝑣1, 𝑣5, 𝑣6}, 
{𝑣2, 𝑣3, 𝑣4}, 
{𝑣2, 𝑣4, 𝑣5}, 
{𝑣3, 𝑣4, 𝑣6}, 
{𝑣4, 𝑣5, 𝑣6}. 

3 

 

3. The Minimum Common Neighbourhood Eccentric Dominating Energy-𝔼𝒄𝒏𝒆𝒅(𝑮) 
In this section, the minimum common neighbourhood eccentric dominating matrix and its energy are defined. Minimum 

common neighbourhood eccentric dominating energy of some standard graphs is obtained. 

Definition 3.1: Let 𝐺 = (𝑉, 𝐸) be a simple graph where 𝑉(𝐺) = {𝑣1, 𝑣2, … 𝑣𝑛: 𝑛 ∈ ℕ} is the set of vertices, and 𝐸 is the set of 

edges. Let 𝐷 be a minimum CNED set of 𝐺. Then, the minimum CNED matrix of 𝐺 is a 𝑛 × 𝑛 matrix defined by 

𝕄𝑐𝑛𝑒𝑑(𝐺) = (𝑚𝑖𝑗), where 

𝑚𝑖𝑗 = {
1, ⁡𝑖𝑓⁡|Γ(𝑣𝑖 , 𝑣𝑗)| ≥ 1, (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸(𝐺)⁡𝑎𝑛𝑑⁡𝑣𝑖 ∈ 𝐸(𝑣𝑗)⁡𝑜𝑟⁡𝑣𝑗 ∈ 𝐸(𝑣𝑖),

1, 𝑖𝑓⁡𝑖 = 𝑗⁡𝑎𝑛𝑑⁡𝑣𝑖 ∈ 𝐷,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Definition 3.2: The characteristic polynomial of 𝕄𝑐𝑛𝑒𝑑(𝐺) is defined by 𝒬𝑛(𝐺, 𝛽) = det⁡(𝕄𝑐𝑛𝑒𝑑(𝐺) − 𝛽𝐼). 
 

Definition 3.3: The minimum CNED eigenvalues of 𝐺 are the eigenvalues of 𝕄𝑐𝑛𝑒𝑑(𝐺). Since 𝕄𝑐𝑛𝑒𝑑(𝐺) is symmetric and 
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real, the eigenvalues are real. We label the eigenvalues in non-increasing order 𝛽1 ≥ 𝛽2 ≥ ⋯ ≥ 𝛽𝑛. 

 

Definition 3.4: The minimum CNED energy of 𝐺 is defined by 𝔼𝑐𝑛𝑒𝑑(𝐺) = ∑ |𝛽𝑖|
𝑛
𝑖=1 . 

 

Remark 3.1: The trace of 𝕄𝑐𝑛𝑒𝑑(𝐺)= CNED number. 

Example 3.1: 

 
Fig. 3.1. Dart graph 

 

Vertex Eccentricity 𝑒(𝑣) Eccentric vertex 𝐸(𝑣) 

𝑣1 2 𝑣2, 𝑣5 

𝑣2 2 𝑣1, 𝑣4, 𝑣5 

𝑣3 1 𝑣1, 𝑣2, 𝑣4, 𝑣5 

𝑣4 2 𝑣2 

𝑣5 2 𝑣1, 𝑣2 

 

The minimum CNED sets of dart graphs are 𝐷1 = {𝑣2, 𝑣3}, and 𝐷2 = {𝑣2, 𝑣4}. 
1. 𝐷1 = {𝑣2, 𝑣3}, 

𝕄𝑐𝑛𝑒𝑑(𝐺) =

(

 
 

0 0 1 0 0
0
1
0

1
0
0

0
1
1

0
1
0

0
1
0

0 0 1 0 0)

 
 

 

 

Hence, the characteristic polynomial is 𝒬𝑛(𝐺, 𝛽) = −5𝛽
5 + 2𝛽4 + 2𝛽3 − 3𝛽2. The minimum CNED eigenvalues are 𝛽1 

≈ 2.3028, 𝛽2 ≈ 1, 𝛽3 ≈ 0, 𝛽4 ≈ 0.618, 𝛽5 ≈-1.618. Minimum CNED energy 𝔼𝑐𝑛𝑒𝑑(𝐺) ≈ 4.6056. 

 

2. 𝐷2 = {𝑣2, 𝑣4}, 

𝕄𝑐𝑛𝑒𝑑(𝐺) =

(

 
 

0 0 1 0 0
0
1
0

1
0
0

0
0
1

0
1
1

0
1
0

0 0 1 0 0)

 
 

 

 

The characteristic polynomial is 𝒬𝑛(𝐺, 𝛽) = −5𝛽
5 + 2𝛽4 + 2𝛽3 − 5𝛽2 + 2𝛽. Hence, the minimum CNED eigenvalues 

are 𝛽1 ≈ 2, 𝛽2 ≈ 1, 𝛽3 ≈ 0, 𝛽4 ≈ 0.618, 𝛽5 ≈-1.618, implying that the minimum CNED energy is 𝔼𝑐𝑛𝑒𝑑(𝐺) ≈ 5.236. 

 

Remark 3.2: The minimum CNED energy depends on the CNED set. 

 

Theorem 3.1: For a complete graph 𝐾𝑛 where 𝑛 > 2, the minimum CNED energy of a complete graph is 

𝔼𝑐𝑛𝑒𝑑(𝐾𝑛) = (𝑛 − 2) + |
(𝑛−1)+√(𝑛−1)2+4

2
| + |

(𝑛−1)−√(𝑛−1)2+4

2
|. 

 

Proof: Let 𝐾𝑛 be a complete graph with the vertex set 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛}. The minimum CNED set is 𝐷 = {𝑣1}. Then 
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𝕄𝑐𝑛𝑒𝑑(𝐾𝑛) =

(

 
 
 
 

1 1 1
1 0 1
1 1 0

⋯
1 1 1
1 1 1
1 1 1

⋮ ⋱ ⋮
1 1 1
1 1 1
1 1 1

⋯
0 1 1
1 0 1
1 1 0)

 
 
 
 

𝑛×𝑛

 

 

Its characteristic polynomial is 𝒬𝑛(𝐾𝑛 , 𝛽) = det(𝕄𝑐𝑛𝑒𝑑(𝐾𝑛) − 𝛽𝐼) = 

=

|

|

1 − 𝛽 1 1
1 −𝛽 1
1 1 −𝛽

⋯
1 1 1
1 1 1
1 1 1

⋮ ⋱ ⋮
1 1 1
1 1 1
1 1 1

⋯

−𝛽 1 1
1 −𝛽 1
1 1 −𝛽

|

|

 

 

The characteristic equation is 𝒬𝑛(𝐾𝑛 , 𝛽) = (−1)
𝑛−2(𝛽 + 1)𝑛−2(𝛽2 − (𝑛 − 1)𝛽 − 1). Then, the minimum CNED 

eigenvalues are 

𝛽 = −1⁡(𝑛 − 2⁡𝑡𝑖𝑚𝑒𝑠), 

𝛽 =
(𝑛−1)+√(𝑛−1)2+4

2
 and 

𝛽 =
(𝑛−1)−√(𝑛−1)2+4

2
. 

 

The minimum CNED energy of the complete graph 𝐾𝑛 is given by  

𝔼𝑐𝑛𝑒𝑑(𝐾𝑛) = |(−1)|(𝑛 − 2) + |
(𝑛 − 1) + √(𝑛 − 1)2 + 4

2
| + |

(𝑛 − 1) − √(𝑛 − 1)2 + 4

2
|. 

𝔼𝑐𝑛𝑒𝑑(𝐾𝑛) = (𝑛 − 2) + |
(𝑛−1)+√(𝑛−1)2+4

2
| + |

(𝑛−1)−√(𝑛−1)2+4

2
|. 

 

Theorem 3.2: For cocktail party graph 𝐺 where 𝑛 ≥ 4, the minimum CNED energy of the cocktail party graph is 

𝔼𝑐𝑛𝑒𝑑(𝐺) =
𝑛

2
. 

Proof: Let 𝐺 be a cocktail party graph with the vertex set 𝑉 = {𝑣1, 𝑣2. … 𝑣𝑛}. The minimum CNED set is 𝐷 = {𝑣1, 𝑣2, … 𝑣𝑛
2
⁡} 

so that |𝐷| =
𝑛

2
, then  

𝕄𝑐𝑛𝑒𝑑(𝐺) =

(

 
 
 
 

1 0 0
0 1 0
0 0 1

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
0 0 0
0 0 0
0 0 0)

 
 
 
 

𝑛×𝑛

 

 

Then, the characteristic polynomial is 𝒬𝑛(𝐺, 𝛽) = det(𝕄𝑐𝑛𝑒𝑑(𝐺) − 𝛽𝐼) = 

=

|

|

1 − 𝛽 0 0
0 1 − 𝛽 0
0 0 1 − 𝛽

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯

−𝛽 0 0
0 −𝛽 0
0 0 𝛽

|

|

 

 

Hence, the characteristic equation is 𝒬𝑛(𝐺, 𝛽) = (𝛽)
𝑛

2(𝛽 − 1)
𝑛

2  and therefore, the minimum CNED eigenvalues are 

𝛽 = 0, 
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𝛽 = 1⁡ (
𝑛

2
⁡𝑡𝑖𝑚𝑒𝑠). 

 

The minimum CNED energy of the cocktail party graph 𝐺 is given by 𝔼𝑐𝑛𝑒𝑑(𝐺) = 0 + |1|
𝑛

2
=
𝑛

2
. 

 

4. Properties of Minimum Common Neighbourhood Eccentric Dominating Eigenvalues 
         In this section, we discuss the properties of eigenvalues of 𝕄𝑐𝑛𝑒𝑑(𝐺) for complete and cocktail party graphs. 

Bounds for the energy of common neighbourhood eccentric dominating energy of some standard graphs are obtained. 

 

Theorem 4.1: If 𝐷 is the minimum CNED set and 𝛽1, 𝛽2, … 𝛽𝑛 are the eigenvalues of the minimum CNED matrix 𝕄𝑐𝑛𝑒𝑑(𝐺), 
then 

1. For any graph 𝐺, ∑ 𝛽𝑖
𝑛
𝑖=1 = |𝐷|, 

2. For a complete graph 𝐾𝑛, ∑ 𝛽𝑖
2𝑛

𝑖=1 = |𝐷| + (𝑛)(𝑛 − 1), 
3. For a cocktail party graph 𝐺, ∑ 𝛽𝑖

2𝑛
𝑖=1 = |𝐷|. 

Proof: 

1. We know that the sum of eigenvalues of 𝕄𝑐𝑛𝑒𝑑(𝐺) is the trace of 𝕄𝑐𝑛𝑒𝑑(𝐺). Hence 

∑ 𝛽𝑖
𝑛
𝑖=1 = ∑ 𝑚𝑖𝑖

𝑛
𝑖=1 = |𝐷|. 

 

2. Similarly, for a complete graph 𝐾𝑛, the sum of the square of eigenvalues of 𝕄𝑐𝑛𝑒𝑑(𝐾𝑛) is trace of [𝕄𝑐𝑛𝑒𝑑(𝐾𝑛)]
2  

Now ∑ 𝛽𝑖
2𝑛

𝑖=1 = ∑ ∑ 𝑚𝑖𝑗𝑚𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

∑ 𝛽𝑖
2𝑛

𝑖=1 =∑ (𝑚𝑖𝑖)
2𝑛

𝑖=1 + ∑ 𝑚𝑖𝑗𝑚𝑖𝑗𝑖≠𝑗  

∑𝛽𝑖
2

𝑛

𝑖=1

=∑(𝑚𝑖𝑖)
2

𝑛

𝑖=1

+ 2∑(𝑚𝑖𝑗)
2

𝑖<𝑗

 

∑𝛽𝑖
2

𝑛

𝑖=1

= |𝐷| + (𝑛)(𝑛 − 1) 

since for a complete graph 𝐾𝑛, 2∑ (𝑚𝑖𝑗)
2

𝑖<𝑗 = (𝑛)(𝑛 − 1). 

 

3. Similarly, for a cocktail party graph 𝐺 sum of the square of eigenvalues of 𝕄𝑐𝑛𝑒𝑑(𝐺) is trace of [𝕄𝑐𝑛𝑒𝑑(𝐺)]
2  

Now ∑ 𝛽𝑖
2𝑛

𝑖=1 = ∑ ∑ 𝑚𝑖𝑗𝑚𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

∑ 𝛽𝑖
2𝑛

𝑖=1 =∑ (𝑚𝑖𝑖)
2𝑛

𝑖=1 + ∑ 𝑚𝑖𝑗𝑚𝑖𝑗𝑖≠𝑗  

∑𝛽𝑖
2

𝑛

𝑖=1

=∑(𝑚𝑖𝑖)
2

𝑛

𝑖=1

+ 2∑(𝑚𝑖𝑗)
2

𝑖<𝑗

 

∑𝛽𝑖
2

𝑛

𝑖=1

= |𝐷| + 0 

since for a cocktail party graph 𝐺, 2∑ (𝑚𝑖𝑗)
2

𝑖<𝑗 = 0. 

 

Theorem 4.2: For cocktail party graph 𝐺 where 𝑛 ≥ 6, if 𝐷 be the minimum CNED-set and 𝑊 = | det𝕄𝑐𝑛𝑒𝑑(𝐺) |, then 

√|𝐷| + 𝑛(𝑛 − 1)𝑊2/𝑛⁡ ≤ 𝔼𝑐𝑛𝑒𝑑(𝐺) ≤ √𝑛(|𝐷|). 
Proof: By Cauchy Schwarz inequality, we have 

(∑ 𝑔𝑖ℎ𝑖
𝑛
𝑖=1 )2 ≤ (∑ 𝑔𝑖

2𝑛
𝑖=1 )(∑ ℎ𝑖

2𝑛
𝑖=1 ). 

If 𝑔𝑖 = 1 and ℎ𝑖 = 𝛽𝑖 then 

(∑|𝛽𝑖|

𝑛

𝑖=1

)

2

≤ (∑1

𝑛

𝑖=1

)(∑𝛽𝑖
2

𝑛

𝑖=1

) 

(𝔼𝑐𝑛𝑒𝑑(𝐺))
2 ≤ 𝑛(|𝐷|) 

⇒ 𝔼𝑐𝑛𝑒𝑑(𝐺) ≤ √𝑛(|𝐷|) 
 

Since the arithmetic mean is not smaller than the geometric mean, we have 
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1

𝑛(𝑛 − 1)
∑|𝛽𝑖||𝛽𝑗| ≥ [∏|𝛽𝑖||𝛽𝑗|

𝑖≠𝑗

]

1
𝑛(𝑛−1)

𝑖≠𝑗

 

1

𝑛(𝑛 − 1)
∑|𝛽𝑖||𝛽𝑗| =

𝑖≠𝑗

[∏|𝛽𝑖|
2(𝑛−1)

𝑛

𝑖=1

]

1
𝑛(𝑛−1)

 

1

𝑛(𝑛 − 1)
∑|𝛽𝑖||𝛽𝑗| =

𝑖≠𝑗

[∏|𝛽𝑖|

𝑛

𝑖=1

]

2
𝑛

 

1

𝑛(𝑛 − 1)
∑|𝛽𝑖||𝛽𝑗| =

𝑖≠𝑗

[∏𝛽𝑖

𝑛

𝑖=1

]

2
𝑛

 

1

𝑛(𝑛 − 1)
∑|𝛽𝑖||𝛽𝑗| =

𝑖≠𝑗

|det𝕄𝑐𝑛𝑒𝑑(𝐺)|
2
𝑛 = 𝑊

2
𝑛 

∑|𝛽𝑖||𝛽𝑗| ≥ 𝑛(𝑛 − 1)𝑊
2
𝑛

𝑖≠𝑗

 

Now consider 

(𝔼𝑐𝑛𝑒𝑑(𝐺))
2 = (∑|𝛽𝑖|

𝑛

𝑖=1

)

2

 

(𝔼𝑐𝑛𝑒𝑑(𝐺))
2 = (∑|𝛽𝑖|

𝑛

𝑖=1

)

2

+∑|𝛽𝑖||𝛽𝑗|

𝑖≠𝑗

 

(𝔼𝑐𝑛𝑒𝑑(𝐺))
2 = |𝐷| + 𝑛(𝑛 − 1)𝑊

2
𝑛 

𝔼𝑐𝑛𝑒𝑑(𝐺) ≥
√(|𝐷|) + 𝑛(𝑛 − 1)𝑊

2
𝑛 

 

Theorem 4.3: For a complete graph 𝐾𝑛 where 𝑛 > 2, if 𝐷 be the minimum CNED-set and 𝑊 = |det𝕄𝑐𝑛𝑒𝑑(𝐾𝑛) | then 

√|𝐷| + 𝑛(𝑛 − 1) + 𝑛(𝑛 − 1)𝑊2/𝑛 ≤ 𝔼𝑐𝑛𝑒𝑑(𝐾𝑛) ≤ √𝑛(𝑛(𝑛 − 1) + |𝐷|). 
Proof: The proof follows the similar lines of Theorem-4.2. 

 

Theorem 4.4: If 𝛽1(𝐺) is the largest minimum CNED eigenvalue of 𝕄𝑐𝑛𝑒𝑑(𝐺) then 

1. For a complete graph 𝐾𝑛, 𝛽1(𝐾𝑛) ≥
|𝐷|+𝑛(𝑛−1)

𝑛
, 

2. For a cocktail party 𝐺, 𝛽1(𝐺) ≥
|𝐷|

𝑛
. 

Proof: 

1. Let 𝑌 be a non-zero vector, then by [2], we have 

𝛽1(𝕄𝑐𝑛𝑒𝑑(𝐺)) =𝑌≠0
𝑚𝑎𝑥 𝑌

𝑇𝕄𝑐𝑛𝑒𝑑(𝐺)𝑌

𝑌𝑇𝑌
. 

𝛽1(𝕄𝑐𝑛𝑒𝑑(𝐺)) ≥
𝑈𝑇𝕄𝑐𝑛𝑒𝑑(𝐺)𝑈

𝑈𝑇𝑈
=
|𝐷| + 𝑛(𝑛 − 1)

𝑛
 

where 𝑈 is the unit matrix. 

 

2. Let 𝑌 be a non-zero vector, then by [2], we have 

𝛽1(𝕄𝑐𝑛𝑒𝑑(𝐺)) =𝑌≠0
𝑚𝑎𝑥 𝑌

𝑇𝕄𝑐𝑛𝑒𝑑(𝐺)𝑌

𝑌𝑇𝑌
. 

𝛽1(𝕄𝑐𝑛𝑒𝑑(𝐺)) ≥
𝑈𝑇𝕄𝑐𝑛𝑒𝑑(𝐺)𝑈

𝑈𝑇𝑈
=
|𝐷|

𝑛
 

where 𝑈 is the unit matrix. 
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Table 2. Characteristic equation 𝓠𝒏(𝑮,𝜷), roots 𝜷(𝑮) and energy 𝔼𝒄𝒏𝒆𝒅(𝑮) of minimum CNED sets of various standard graphs are tabulated 

Graph Minimum CNED set Characteristic equation 𝓠𝒏(𝑮, 𝜷) Roots 𝜷(𝑮) Energy 𝔼𝒊𝒏𝒆𝒅(𝑮) 
 

 

 

 

 

 

Paw 

 

{𝑣1, 𝑣3} 
 

 

 

 

{𝑣2, 𝑣3} 
 

 

 

 

{𝑣3, 𝑣4} 
 

 

𝛽4 − 2𝛽3 − 𝛽2 + 3𝛽 − 1 

 

 

 

 

𝛽4 − 2𝛽3 − 𝛽2 + 2𝛽 

 

 

 

 

𝛽4 − 2𝛽3 − 𝛽2 + 3𝛽 − 1 

 

𝛽1 = 1.8019,⁡ 
𝛽2 = 1, 

𝛽3 = 0.445, 
𝛽4 = −1.247. 

 

𝛽1 = 2,⁡ 
𝛽2 = 1, 
𝛽3 = 0, 
𝛽4 = −1. 

 

𝛽1 = 1.8019,⁡ 
𝛽2 = 1, 

𝛽3 = 0.445, 
𝛽4 = −1.247. 

 

4.4939 

 

 

 

 

4 

 

 

 

 

4.4939 

 

 

 

 

 

 

 

Bull 

 

{𝑣1, 𝑣2, 𝑣3} 
 

 

 

 

{𝑣1, 𝑣2, 𝑣4} 
 

 

 

 

{𝑣1, 𝑣2, 𝑣5} 
 

 

−𝛽5 + 3𝛽4 − 3𝛽3 + 𝛽2 

 

 

 

 

−𝛽5 + 3𝛽4 − 3𝛽3 + 𝛽2 

 

 

 

 

−𝛽5 + 3𝛽4 − 3𝛽3 + 𝛽2 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 0. 

 

4 

 

 

 

 

4 

 

 

 

 

4 

 

 

 

 

 

 

 

(3,2)Tadpole 

 

{𝑣1, 𝑣3, 𝑣4} 
 

 

 

 

 

{𝑣2, 𝑣3, 𝑣4} 
 

 

 

 

 

{𝑣3, 𝑣4, 𝑣5} 
 

 

−𝛽5 + 3𝛽4 + 𝛽3 − 5𝛽2 + 2𝛽 

 

 

 

 

 

−𝛽5 + 3𝛽4 + 𝛽3 − 5𝛽2 + 2𝛽 

 

 

 

 

 

−𝛽5 + 3𝛽4 + 𝛽3 − 5𝛽2 + 2𝛽 

 

 

𝛽1 = 2.8136, 
𝛽2 = 1, 

𝛽3 = 0.5293, 
𝛽4 = 0, 

𝛽5 = −1.3429. 
 

𝛽1 = 2.8136, 
𝛽2 = 1, 

𝛽3 = 0.5293, 
𝛽4 = 0, 

𝛽5 = −1.3429. 
 

𝛽1 = 2.8136, 
𝛽2 = 1, 

𝛽3 = 0.5293, 
𝛽4 = 0, 

𝛽5 = −1.3429. 
 

 

5.6858 

 

 

 

 

 

5.6858 

 

 

 

 

 

5.6858 

 

 

 

 

 

 

House 

 

{𝑣1, 𝑣4, 𝑣5} 
 

 

 

 

{𝑣2, 𝑣4, 𝑣5} 

 

−𝛽5 + 3𝛽4 − 3𝛽3 + 𝛽2 + 3𝛽 − 1 

 

 

 

 

−𝛽5 + 3𝛽4 − 3𝛽3 + 𝛽2 + 3𝛽 − 1 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 

 

3 

 

 

 

 

3 
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{𝑣3, 𝑣4, 𝑣5} 
 

 

 

 

 

−𝛽5 + 3𝛽4 − 3𝛽3 + 𝛽2 + 3𝛽 − 1 

 

 

𝛽3 = 1, 
𝛽4 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 0. 

 

 

 

 

3 

 

 

 

 

 

Gem 

 

{𝑣1, 𝑣2} 
 

 

 

 

 

{𝑣3, 𝑣4} 
 

 

 

−𝛽5 + 2𝛽4 + 3𝛽3 − 6𝛽2 + 2𝛽 

 

 

 

 

 

−𝛽5 + 2𝛽4 + 3𝛽3 − 6𝛽2 + 2𝛽 

𝛽1 = 2.3429, 
𝛽2 = 1, 

𝛽3 = 0.4707, 
𝛽4 = 0, 

𝛽5 = −1.8136. 
 

𝛽1 = 2.3429, 
𝛽2 = 1, 

𝛽3 = 0.4707, 
𝛽4 = 0, 

𝛽5 = −1.8136. 
 

 

5.6272 

 

 

 

 

 

5.6272 

 

 

 

 

 

 

Dart 

 

{𝑣2, 𝑣3} 
 

 

 

 

{𝑣2, 𝑣4} 
 

 

−𝛽5 + 2𝛽4 + 2𝛽3 − 3𝛽2 

 

 

 

 

−𝛽5 + 2𝛽4 + 2𝛽3 − 5𝛽2 + 2𝛽 

𝛽1 = 2.3028, 
𝛽2 = 1, 
𝛽3 = 0, 

𝛽4 = −1.3028. 
 

𝛽1 = 2, 
𝛽2 = 1, 

𝛽3 = 0.618, 
𝛽4 = 0, 

𝛽5 = −1.618. 

 

4.6056 

 

 

 

 

5.236 

 

 

 

 

 

 

 

Cricket 

 

{𝑣1, 𝑣3, 𝑣5} 
 

 

 

 

 

{𝑣2, 𝑣3, 𝑣5} 
 

 

 

 

 

{𝑣3, 𝑣4, 𝑣5} 
 

 

 

−𝛽5 + 3𝛽4 − 𝛽3 − 4𝛽2 + 4𝛽 − 1 

 

 

 

 

 

−𝛽5 + 3𝛽4 − 𝛽3 − 4𝛽2 + 4𝛽 − 1 

 

 

 

 

 

−𝛽5 + 3𝛽4 − 𝛽3 − 4𝛽2 + 4𝛽 − 1 

𝛽1 = 1.8019, 
𝛽2 = 1, 
𝛽3 = 1, 

𝛽4 = 0.445, 
𝛽5 = −1.247. 

 

𝛽1 = 1.8019, 
𝛽2 = 1, 
𝛽3 = 1, 

𝛽4 = 0.445, 
𝛽5 = −1.247. 

 

𝛽1 = 1.8019, 
𝛽2 = 1, 
𝛽3 = 1, 

𝛽4 = 0.445, 
𝛽5 = −1.247. 

 

 

5.4939 

 

 

 

 

 

5.4939 

 

 

 

 

 

5.4939 

 

 

 

 

 

 

 

Net 

 

{𝑣1, 𝑣2, 𝑣3, 𝑣6} 
 

 

 

 

 

{𝑣1, 𝑣2, 𝑣4, 𝑣6} 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 

 

4 

 

 

 

 

 

4 
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{𝑣1, 𝑣2, 𝑣5, 𝑣6} 
 

 

 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

 

 

 

 

 

4 

 

 

 

 

 

 

 

Fish 

 

{𝑣1, 𝑣2, 𝑣3, 𝑣6} 
 

 

 

 

 

{𝑣1, 𝑣3, 𝑣4, 𝑣6} 
 

 

 

 

 

{𝑣1, 𝑣3, 𝑣5, 𝑣6} 
 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

 

4 

 

 

 

 

 

4 

 

 

 

 

 

4 

 

4-

polynomial 

 

{𝑣3, 𝑣4} 
 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

4 

 

 

 

 

 

 

 

Antenna 

 

{𝑣1, 𝑣2, 𝑣5, 𝑣6} 
 

 

 

 

 

{𝑣1, 𝑣3, 𝑣5, 𝑣6} 
 

 

 

 

 

{𝑣1, 𝑣4, 𝑣5, 𝑣6} 
 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

4 

 

 

 

 

 

4 

 

 

 

 

 

4 

 

 

 

 

 

 

{𝑣1, 𝑣2, 𝑣5, 𝑣6} 
 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

4 
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3-prism 

 

 

{𝑣1, 𝑣3, 𝑣5, 𝑣6} 
 

 

 

 

 

{𝑣1, 𝑣4, 𝑣5, 𝑣6} 
 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

 

 

 

 

𝛽6 − 4𝛽5 + 6𝛽4 − 4𝛽3 + 𝛽2 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

𝛽1 = 1, 
𝛽2 = 1, 
𝛽3 = 1, 
𝛽4 = 1, 
𝛽5 = 0. 

 

 

4 

 

 

 

 

 

4 

 

5. Conclusion  
 We have introduced the concept of CNED-set. CNED-number of standard graphs is calculated. The minimum CNED 

energy 𝔼𝑐𝑛𝑒𝑑(𝐺) of family of graphs and their properties are stated and proved. The concept can be extended to other 

distances. 
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