Fekete-Szegö Problems Involving Certain Integral Operator

Jamal Salah

College of Applied Sciences
A'Sharqiya University
Ibra, A'Sharqiya, Oman
Emails: damous73@yahoo.com

Abstract

In this paper, we obtain Fekete-Szegö inequality for certain normalized analytic function $f(z)$ defined on the open unit disc for which $\frac{z\left(J_{\eta, \lambda} f(z)\right)^{\prime}}{J_{\eta, \lambda} f(z)},(0 \leqslant \eta-1<\lambda<\eta<2)$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product are given.

Keywords: Caputo's differentiation operator;; Hadamard product;Analytic functions; Starlike functions; Fekete-Szegö inequality.

1 Introduction

Let A denote the class of all analytic functions $f(z)$ defined on the unit disk $U=\{z:|z|<1\}$ and A_{o} be the family of function $f(z) \in A$ normalized by the conditions $f(0)=0, f^{\prime}(0)=1$
$f \in A$ has the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},(z \in U) \tag{1.1}
\end{equation*}
$$

Let S be the family of functions $f \in A_{o}$ which are univalent. Let $\phi(z)$ be an analytic function with positive real part on A with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk U onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Let $S^{*}(\phi)$ be the class of functions in $f \in S$ for which $\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z),(z \in U)$ and $C(\phi)$ be the class of functions in $f \in S$ for which $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z),(z \in U)$. Where \prec denotes the subordination between analytic functions. These classes where introduced and studied by Ma and Minda [4]. They obtained the Fekete-Szegö inequality for the functions in the class $C(\phi)$. Since $f \in C(\phi)$ if and only if $z f^{\prime}(z) \in S^{*}(\phi)$, we get the Fekete-Szegö inequality for functions in the class $S^{*}(\phi)$. For a brief history of Fekete-Szegö problem for class of starlike, convex, and close-to convex functions, see [3]. Many authors went through the same investigation by involving certain integral operators,see for example [1, 2].

Salah and Darus have involved Caputo's definition of the fractional-order derivative

$$
D^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{f^{(n)}(\tau)}{(t-\tau)^{\alpha+1-n}} d \tau
$$

$n-1<\operatorname{Re}(\alpha) \leq n, n \in N$, and the parameter α is allowed to be real or even complex, a is the initial value of the function f.Together with the generalization operator of Salagean derivative operator and Libera integral operator

$$
\Omega^{\lambda} f(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n-\lambda+1)} a_{n} z^{n}
$$

for any real λ. They have introduced the integral operator

$$
J_{\eta, \lambda} f(z)=\frac{\Gamma(2+\eta-\lambda)}{\Gamma(\eta-\lambda)} z^{\lambda-\eta} \int_{0}^{z} \frac{\Omega^{\eta} f(\xi)}{(z-\xi)^{\lambda+1-\eta}} d \xi
$$

η (real number) and $(\eta-1<\lambda \leq \eta<2)$. That has the following taylor series expansion

$$
J_{\eta, \lambda} f(z)=z+\sum_{n=2}^{\infty} \frac{(\Gamma(n+1))^{2} \Gamma(2+\eta-\lambda) \Gamma(2-\eta)}{\Gamma(n+\eta-\lambda+1) \Gamma(n-\eta+1)} a_{n} z^{n}
$$

And satisfies $J_{0,0}=f(z), J_{1,1}=z f^{\prime}(z)$. (For further details you may refer to [5]).
Making use of the previous integral operator we can introduce a generalization of the class $S^{*}(\phi)$ by the following definition.
Definition 1.1 Let $\phi(z)$ be a univalent function with respect to 1 which maps the unit disk U onto a region in the right half plane which is symmetric with respect to the real axis, $\phi(0)=1$ and $\phi^{\prime}(0)>0$. A function $f \in A$ is in the class $J_{\lambda}^{\eta}(\phi)$ if

$$
\begin{equation*}
\frac{z\left(J_{\eta}, \lambda f(z)\right)^{\prime}}{J_{\eta}, \lambda f(z)} \prec \phi(z) \tag{1.2}
\end{equation*}
$$

it's obvious that if we put $\eta=\lambda=0$ the class $J_{\lambda}^{\eta}(\phi)$ is reduced to the class $S^{*}(\phi)$.
Next we will follow the same technics of many authors (see for example [1,2,3] in order to solve Fekete-Szegö problem with respect to the class $J_{\lambda}^{\eta}(\phi)$.
To prove our main result, we need the following lemma
Lemma 1.1 See [4]: If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is analytic function with positive real part in U, then
$\left|c_{2}-\nu c_{1}^{2}\right| \leq \begin{cases}-4 \nu+2, & \text { if } \nu \leq 0 \\ 2, & \text { if } 0 \leq \nu \leq 1 \quad \text { When } \nu<0 \text { or } \nu>1, \text { the equality holds if and } \\ 4 \nu-2, & \text { if } \nu \geq 1\end{cases}$ only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<\nu<1$, then equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $\nu=0$, the equality holds if and only if $p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \gamma\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \gamma\right) \frac{1-z}{1+z},(0 \leq \gamma \leq 1)$ or one of its rotations. If $\nu=1$, the equality holds if and only if $p_{1}(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $\nu=0$. Also the above upper bound is sharp,it can be improved as follows when $0<\nu<1:\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2} \leq 2,\left(0<\nu \leq \frac{1}{2}\right)$ and
$\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2} \leq 2,\left(\frac{1}{2}<\nu \leq 1\right)$

2 Fekete-Szegö Problem

Our main result is the following:
Theorem 2.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by (1.1) belongs to $J_{\lambda}^{\eta}(\phi)$, then

$$
\begin{gathered}
\qquad a_{3}-\mu a_{2}^{2} \mid \leq \\
\begin{cases}\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{2}-\frac{(2-\eta)^{2}(2+\eta-\lambda)^{2} \mu}{16} B_{1}^{2}+\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}^{2}, & \text { if } \mu \leq \sigma_{1} ; \\
\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}, & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} ; \\
-\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{2}+\frac{(2-\eta)^{2}(2+\eta-\lambda)^{2} \mu}{16} B_{1}^{2}-\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}^{2}, & \text { if } \mu \geq \sigma_{2},\end{cases}
\end{gathered}
$$

where

$$
\begin{aligned}
& \sigma_{1}:=\frac{2(3-\eta)(3+\eta-\lambda)\left\{\left(B_{2}-B_{1}\right)+B_{1}^{2}\right\}}{9(2-\eta)(2+\eta-\lambda) B_{1}^{2}} \\
& \sigma_{2}:=\frac{2(3-\eta)(3+\eta-\lambda)\left\{\left(B_{2}+B_{1}\right)+B_{1}^{2}\right\}}{9(2-\eta)(2+\eta-\lambda) B_{1}^{2}}
\end{aligned}
$$

the result is sharp.
Proof. For $f(z) \in J_{\lambda}^{\eta}(\phi)$, let

$$
\begin{equation*}
p(z)=\frac{z\left(J_{\eta, \lambda} f(z)\right)^{\prime}}{J_{\eta, \lambda} f(z)}=1+b_{1} z+b_{2} z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

From (2.1), we obtain

$$
a_{2}=\frac{(2-\eta)(2+\eta-\lambda)}{4} b_{1}
$$

and

$$
a_{3}=\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72}\left(b_{2}+b_{1}^{2}\right)
$$

since $\phi(z)$ is univalent and $p \prec \phi$, the function

$$
p_{1}(z)=\frac{1+\phi^{-1}(p(z))}{1-\phi^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

is analytic and has a positive real part in U. Also we have

$$
\begin{equation*}
p(z)=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) . \tag{2.2}
\end{equation*}
$$

And from (2.2), we obtain

$$
b_{1}=\frac{1}{2} B_{1} c_{1}
$$

and

$$
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}
$$

Therefore we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{144} B_{1}\left\{c_{2}-v c_{1}^{2}\right\} \tag{2.3}
\end{equation*}
$$

where

$$
v=\frac{1}{2}\left(1-\frac{B_{2}}{B_{1}}+\frac{9(2-\eta)(2+\eta-\lambda) \mu-4(3-\eta)(3+\eta-\lambda)}{4(3-\eta)(3+\eta-\lambda)} B_{1}\right)
$$

Our result now follows by an application of Lemma 1.1. To show that the bounds are sharp, we define the functions $K_{n}^{\phi}(n=2,3, \ldots)$ by

$$
\begin{aligned}
& \frac{z\left(J_{\eta, \lambda} K_{n}^{\phi}(z)\right)^{\prime}}{J_{\eta, \lambda} K_{n}^{\phi}(z)}=\phi\left(z^{n-1}\right) \\
& K_{n}^{\phi}(0)=0=\left(K_{n}^{\phi}(0)\right)^{\prime}-1
\end{aligned}
$$

and the function F_{γ} and $G_{\gamma},(0 \leq \gamma \leq 1)$ by

$$
\begin{gathered}
\frac{z\left(J_{\eta, \lambda} F_{\gamma}(z)\right)^{\prime}}{J_{\eta, \lambda} F_{\gamma}(z)}=\phi\left(\frac{z(z+\gamma)}{1+\gamma z}\right) \\
F_{\gamma}(0)=0=\left(F_{\gamma}(0)\right)^{\prime}-1
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{z\left(J_{\eta, \lambda} G_{\gamma}(z)\right)^{\prime}}{J_{\eta, \lambda} G_{\gamma}(z)}=\phi\left(-\frac{z(z+\gamma)}{1+\gamma z}\right) \\
G_{\gamma}(0)=0=\left(G_{\gamma}(0)\right)^{\prime}-1
\end{gathered}
$$

Clearly the functions $K_{n}^{\phi}, F_{\gamma}, G_{\gamma} \in J_{\lambda}^{\eta}(\phi)$. Also we write $K^{\phi}:=K_{2}^{\phi}$. If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if f is K^{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, the equality holds if and only if f is K_{3}^{ϕ} or one of its rotations. If $\mu=\sigma_{1}$ then the equality holds if and only if f is F_{γ} or one of its rotations. If $\mu=\sigma_{2}$ then the equality holds if and only if f is G_{γ} or one of its rotations.

Remark 2.2. If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then, in view of Lemma 1.1, Theorem 2.1.can be improved. Let σ_{3} be given by

$$
\sigma_{3}:=\frac{2(3-\eta)(3+\eta-\lambda)\left(B_{1}^{2}+B_{2}\right)}{9(2-\eta)(2+\eta-\lambda) B_{1}^{2}}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2(3-\eta)(3+\eta-\lambda)}{9(2-\eta)(2+\eta-\lambda)}\left[B_{1}-B_{2}+\frac{9(2-\eta)(2+\eta-\lambda) \mu-2(3-\eta)(3+\eta-\lambda)}{2(3-\eta)(3+\eta-\lambda)} B_{1}^{2}\right]\left|a_{2}^{2}\right| \\
\leq \frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}
\end{gathered}
$$

If $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2(3-\eta)(3+\eta-\lambda)}{9(2-\eta)(2+\eta-\lambda)}\left[B_{1}+B_{2}-\frac{9(2-\eta)(2+\eta-\lambda) \mu-2(3-\eta)(3+\eta-\lambda)}{2(3-\eta)(3+\eta-\lambda)} B_{1}^{2}\right]\left|a_{2}^{2}\right| \\
\leq \frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}
\end{gathered}
$$

3 Applications to functions defined by fractional derivatives.

For two analytic functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, their convolution is defined to be the function $(f * g)(z)$ given by $(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}$. For fixed $g \in A_{o}$, let $J_{\lambda}^{\eta, g}(\phi)$ be the class of functions $f \in A_{o}$ for which $(f * g) \in J_{\lambda}^{\eta}(\phi)$.

Definition 3.1.Let $f(z)$ be analytic function in a simply connected region of the z-plane containing the origin. The fractional derivative of order γ is defined by

$$
D_{z}^{\gamma} f(z)=\frac{1}{\Gamma(1-\gamma)} \frac{d}{d z} \int_{0}^{z} \frac{f(\xi)}{(z-\xi)^{\gamma}} d \xi,(0 \leq \gamma<1)
$$

Where the multiplicity of $(z-\xi)^{\gamma}$ is removed by requiring that $\log (z-\xi)$ is real for $(z-\xi)>0$. Using the above definition and its known extensions involving fractional derivative and fractional integrals, Owa and Srivastava [6] introduced the operator $\Omega^{\gamma}: A_{o} \rightarrow A_{o}$ defined by

$$
\Omega^{\gamma} f(z)=\Gamma(2-\gamma) z^{\gamma} D_{z}^{\gamma} f(z),(\gamma \neq 2,3,4, \ldots)
$$

The class $J_{\delta}^{\eta, \gamma}(\phi)$ consists of functions $f \in A_{o}$ for which $\Omega^{\gamma} f \in J_{\delta}^{\eta}(\phi)$. Note that $J_{\delta}^{\eta, \gamma}(\phi)$ is the special case of the class $J_{\lambda}^{\eta, g}(\phi)$ when

$$
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\gamma)}{\Gamma(n+1-\gamma)} z^{n}
$$

Let

$$
g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n},\left(g_{n}>0\right)
$$

Since $J_{\eta, \lambda} f(z) \in J_{\lambda}^{\eta, g}(\phi)$ if and only if $J_{\eta, \lambda} f(z) * g(z) \in J_{\lambda}^{\eta}(\phi)$, we obtain the coefficient estimate for functions in the class $J_{\lambda}^{\eta, g}(\phi)$, from the corresponding estimate for functions in the class $J_{\lambda}^{\eta}(\phi)$.

Applying Theorem 2.1. for the function $J_{\eta, \lambda} f(z) * g(z)$ we get the following Theorem 3.2 after obvious change of the parameter μ

Theorem 3.2.Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n},\left(g_{n}>0\right)$, and let the function $\phi(z)$ be given by $\phi(z)=1+\sum_{k=1}^{\infty} B_{k} z^{k}$. If $J_{\eta, \lambda} f(z)$ given by (1.3) belongs to $J_{\lambda}^{\eta, g}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq
$$

$$
\begin{cases}\frac{1}{g_{3}}\left[\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{2}-\frac{(2-\eta)^{2}(2+\eta-\lambda)^{2} \mu g_{3}}{16 g_{2}^{2}} B_{1}^{2}+\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}^{2}\right], & \text { if } \mu \leq \sigma_{1} \\ \frac{1}{g_{3}}\left[\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}\right], & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{1}{g_{3}}\left[-\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{2}+\frac{(2-\eta)^{2}(2+\eta-\lambda)^{2} \mu g_{3}}{16 g_{2}^{2}} B_{1}^{2}-\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}^{2}\right], & \text { if } \mu \geq \sigma_{2}\end{cases}
$$

Where

$$
\begin{aligned}
& \sigma_{1}:=\frac{2 g_{2}^{2}(3-\eta)(3+\eta-\lambda)\left\{\left(B_{2}-B_{1}\right)+B_{1}^{2}\right\}}{9 g_{3}(2-\eta)(2+\eta-\lambda) B_{1}^{2}} \\
& \sigma_{1}:=\frac{2 g_{2}^{2}(3-\eta)(3+\eta-\lambda)\left\{\left(B_{2}+B_{1}\right)+B_{1}^{2}\right\}}{9 g_{3}(2-\eta)(2+\eta-\lambda) B_{1}^{2}} .
\end{aligned}
$$

The result is sharp.
Since

$$
\left(\Omega^{\gamma} J_{\eta, \lambda} f\right)(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\gamma)}{\Gamma(n+1-\gamma)} \theta(n) a_{n} z^{n}
$$

,and

$$
\left(\theta(n)=\frac{(\Gamma(n+1))^{2} \Gamma(2+\eta-\lambda) \Gamma(2-\eta)}{\Gamma(n+\eta-\lambda+1) \Gamma(n-\eta+1)}\right)
$$

We have

$$
\begin{gather*}
g_{2}:=\frac{\Gamma(3) \Gamma(2-\gamma)}{\Gamma(3-\gamma)}=\frac{2}{2-\gamma} \tag{3.1}\\
g_{3}:=\frac{\Gamma(4) \Gamma(3-\gamma)}{\Gamma(4-\gamma)}=\frac{6}{(2-\gamma)(3-\gamma)} \tag{3.2}
\end{gather*}
$$

Using (3.1) and (3.2), Theorem 3.2. reduces to the following
Theorem 3.3.Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n},\left(g_{n}>0\right)$, and let the function $\phi(z)$ be given by $\phi(z)=1+\sum_{k=1}^{\infty} B_{k} z^{k}$. If $J_{\eta, \lambda} f(z)$ given by (1.3) belongs to $J_{\lambda}^{\eta, g}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq
$$

$$
\left\{\begin{array}{l}
\frac{(2-\gamma)(3-\gamma)}{6}\left[\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{2}-\frac{3(2-\gamma)(2-\eta)^{2}(2+\eta-\lambda)^{2} \mu}{32(3-\gamma)} B_{1}^{2}+\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}^{2}\right], \text { if } \mu \leq \sigma_{1} ; \\
\frac{(2-\gamma)(3-\gamma)}{6}\left[\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}\right], \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} ; \\
\frac{(2-\gamma)(3-\gamma)}{6}\left[-\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{2}+\frac{3(2-\gamma)(2-\eta)^{2}(2+\eta-\lambda)^{2} \mu}{32(3-\gamma)} B_{1}^{2}-\frac{(2-\eta)(3-\eta)(2+\eta-\lambda)(3+\eta-\lambda)}{72} B_{1}^{2}\right], \text { if } \mu \geq \sigma_{2},
\end{array}\right.
$$

Where

$$
\begin{aligned}
& \sigma_{1}:=\frac{4(3-\gamma)(3-\eta)(3+\eta-\lambda)\left\{\left(B_{2}-B_{1}\right)+B_{1}^{2}\right\}}{27(2-\gamma)(2-\eta)(2+\eta-\lambda) B_{1}^{2}} \\
& \sigma_{2}:=\frac{4(3-\gamma)(3-\eta)(3+\eta-\lambda)\left\{\left(B_{2}+B_{1}\right)+B_{1}^{2}\right\}}{27(2-\gamma)(2-\eta)(2+\eta-\lambda) B_{1}^{2}}
\end{aligned}
$$

The result is sharp.

References

[1] K. Al-Shaqsi and M.Darus, On Fekete-Szegö Problem For Certain Subclasses of Analytic Functions,Appl.Math.Sc,Vol. 2, 2008, no. 9,431-441.
[2] T.N.Shanmugam and S.Sivasubramanian, On Fekete-Szegö Problem For Certain Subclasses of Analytic Functions, J.Ineq.Pure and Appl.Math. 6(3) Art.71.2005.
[3] H.M.SRISTAVA and A.K.MISHRA and M.K.DAS, The Fekete-Szegöproblem for a subclass of close-to-convex functions, Comples Variables, Theory Appl., 44(2001),145-163.
[4] W.MA and D.MINDA,A unified treatment of some special classes of univalent functions,in: Proceedings of Conference on Complex Analysis,Z.Li,F.Ren,L.Yang,and S.Zhang(Eds),Int.Press(1994),157-169.
[5] Salah. J Darus, M. Certain subclass of analytic functions associated with fractional calculus operator. Trans. J. Math. Mecha. 3(2011) 35-42.
[6] S.Owa and H.M.Srivastava, Univalent and starlike generalized hypergeometric functions, Canad.J.Math.39(5) (1987),1057-1077.

