
                    International Journal of Mathematics Trends and Technology – Volume 7  Number 1 – March 2014 
 

         ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 61 
 

Boolean Algebras of Pre A*-Algebra 
Vijayabarathi.S#1, Srinivasa Rao.K*2 

#Assistant Professor,  Department of Mathematics, SCSVMV  University, Kanchipuram, India 
*Associate Professor, Department of Mathematics, SCSVMV University, Kanchipuram,India 
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1. INTRODUCTION 

    In a draft paper [2], E.G.Maines introduced the concept of Ada (Algebra of disjoint alternatives)  , , , (-) ,(-) ,0,1,2A    
which is however differ from the definition of the Ada of his later paper[9]. While the Ada of the earlier draft seems to be based 
on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras 
( , , , )A    introduced by Fernando Guzman and Craig C. Squir [1]. In [3], introduced the concept of A*-algebra 

    , , , ,   - ,0,1,2A


      and studied the equivalence with Ada, C-algebra, Ada’s connection with 3-Ring, Stone type 

representation also introduced the concept of A*-clone, the If-Then-Else structure over A*-algebra and Ideals of A*-algebra. In 
[4], introduced the concept Pre A*-algebra    , , ,  A      analogous to C-algebra.  In [5], defined partial ordering on Pre-A* 

algebra by x y  if and only if x y y x x     and studied the properties of this partial ordering. Given necessary and 
sufficient conditions for Pre A*-algebra to become a lattice. In[6], defined congruence relation on Pre A*-algebra by 

{( , ) | }x p q A A x p x q       and studied the subdirectly irreducible representation of Pre A*-algebra. In [7], 
defined ternary operation of Pre A*-algebra , and established Cayley’s theorem on Centre of Pre A*-algebra. In [8], proved that 
if A  is a Pre A*-algebra, x A , then xM  { / }s A s x  is a Pre A*-algebra under the induced operations, where the 

complementation is defined by *  s x s    the  relation defined on Pre A* algebra A  by s x  if s x x s s     and the 
mapping :x xA M  defined by ( )x s x s    for all s A  is a homomorphism of A  onto xM  with kernel x and 

hence / x xA M  also studied the decomposition of Pre A*-algebra. In this paper we prove that three Boolean algebras 

( )( ), P AB A   and M(A) are isomorphic to each other. 

2. PRELIMANARIES 
 

In this section we recall the definition of Pre A*-algebra and some results from [5,6] which will be required later. 

2.1. Definition:  

An algebra ( , , , ( ) )A    where A is non-empty set with 1,  ,   are binary operations and ( )    is a unary operation 
satisfying  
(a)   = ,     x x x A   
(b) ,      x x x x A     
(c) ,      ,x y y x x y A       
(d) ( )  y ,     ,x y x x y A             
(e) ( ) ( ) ,     , ,x y z x y z x y z A         
(f) ( ) ( ) ( ),     , ,x y z x y x z x y z A           
(g) (  ),     ,x y x x y x y A      .   is called a Pre A*-algebra 
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2.2. Example: 
 

3 = {0, 1, 2} with operations  , , ( )   defined below is a Pre A*-algebra. 
 
 
 
 
 
 
 
 
 
 
 
It can be observed that 2.1(a) and 2.1(b) imply that the varieties of Pre A*-algebras satisfies all dual statements of 2.1(b) to 
2.1(g). 
 
Lemma2.3: Every Pre A*-algebra satisfies the following laws[5,6] 
(a)   ~1 xxx   and   ~0 xxx   
(c)  (  ) = (  ) x x x x x x x          
(d) (  ) y (x y) (x y)x x         
(e)  ( ) ( ) (  y z)x y z x z x        
(f)   0x y  , 1,x y   then    y x   
(g) If  0,x y    then 0x y   and  If  1,x y     then  1x x   

Definition 2.4. [5]: Let A  be a Pre A*-algebra. An element x A  is called central element of A  if  =1x x   and the set 
{ /  =1x A x x   } of all central elements of A  is called the centre of A and it is denoted by ( )B A . 

Theorem 2.5. [5]: Let A  be a Pre A*-algebra with 1, then ( )B A is a Boolean algebra with the induced operations  ~(-) ,  ,   

Lemma2.6. [5]: Let A  be a Pre A*-algebra with 1 , 

(a) If ( )y B A then  y=  , Ax x x x x      (b) If , (A)x y B  then ( ) ( )x x y x x y x         
 
 Lemma 2.7. [6] : Let ( , , , ( ) )A      be a Pre A*-algebra and let Aa  .Then the relation 

{( , ) /  }a x y A A a x a y        is    (a) a congruence  relation (b)   a a a a                      

(c) ba b a      (d)   a a a a       

Lemma 2.8 [6]: Let A be a Pre A*-algebra and ,a b ( )B A , then ba b a      

Lemma 2.9 [6]:  Let A  be a Pre A*-algebra,  let A  denote the trivial congruence on A: {( , ) / }A x x x A    then (a) 

a A    if and only if   , Aa x x x    (b) a A A    if and only if  , Aa x a x                      (c) 

( , ) ,a ba b    then a b (d) If  ( )a B A  then  a a A     

Theorem 2.10. [6] :Let A be a Pre A*-algebra, then /A   = }/{ Aaa   is a Pre A*-algebra, is called quotient Pre A*-

Algebra, whose operations are defined as baba   , baba    an  ( )  a a    

Definition 2.11.[6]:An algebra A  is called subdirectly irreducible provided there is a congruence  on A such that A , 
and if A  is a congruence on A , then    
 

   0 1 2      0 1 2  x   x  

0 0 0 2  0 0 1 2  0 1 

1 0 1 2  1 1 1 2  1 0 

 2 2 2 2  2 2 2 2  2 2 
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Theorem 2.12. [6] : 2 and 3 are the only sub-directly irreducible Pre A*-algebras. 

Corollary 2.13. [6]: Every Pre A*-algebra is a sub algebra of a product of copies of 3. 

Lemma 2.14. [6]:  Let A  be Pre A*-algebra with 1 and , ( )a b B A then(a)  o  =a b a b    (b)  o  =  o a b b a    (c) 

   a b  if and only if = b a b  (d)   o  =A Aa a    

Definition 2.15.[6]:A congruence   on an algebra A  is called a factor congruence on A  if  there is a congruence   on A  

such that  and  o .A A A         

Theorem 2.16.[6]:  Let A  be a Pre A*-algebra  with 1 and   be congruence on A. If  x   for some  ( )x B A , then x is 

a factor congruence on A . 

Now we  prove some important properties of Pre A*-algebra 

Theorem 2.17: Let A be a Pre A*-Algebra and ,x y A , then ~ ~x x y x y y      

Proof: ~ ~( )x x y x y x       

       ~ ~{ ( )}x y y x      

       ~ ~( ) { ( )}x y x y x       

       ~ ~( ) { ( )}x y x x y       

       ~( ) ( )x y x y      

       ~x y y     

Theorem.2.18:Let A be a Pre A*-Algebra and ,x y A , ~ ~ ~{ ( )} { ( )}x x y x x y x x y          

Proof:  ~ ~ ~ ~{ ( )} { ( )} ( ) ( )x x y x x y x x y x x y            

                     ~ ~{ ( )} { ( )}x x y x x y       

     ~x y x y      

     ~x x y     

     ~x x y     

Theorem.2.19: Let A be a Pre A*-algebra with 1 and ,x y A  such that ( )x y B A   then ( )x B A  

Proof: Let a Pre A*-algebra with 1 and ,x y A  such that ( )x y B A   then 

 1= ~( ) ( )x y x y    

  ~ ~( ) ( )x y x y      

 ~ ~( ) ( )x y x x y y        

 ~ ~( ) ( )x x y x y y       

 ~ ~( ) ( )x y y x y y         (Theorem 2.17) 

 ~x y y    

Therefore 1= ~x y y  -----(a) 

Now   ~ ~( ) 1x x x x      

  ~ ~( ) ( )x x x y y       

  ~ ~ ~[ ( )] [ ( )]x x y y x x y y          
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  ~ ~ ~[ ( )] [ ( )]x x x y x x x y            Theorem 2.17 

  ~ ~ ~[ { ( )}] [ { ( )}]x x x y x x x y         

  ~ ~[ ( )] [ ( y)]x x y x x           Property 2.1(g) 

  ~ ~[ ( )] [ ( )]x x y x x y           

  ~( ) ( )x y x y      

  = ~x x y     

  = ~x y y   Theorem 2.17 
  =1 
This shows that ( )x B A  
The converse of the above theorem need not be true. For example, in the Pre-A* Algebra A, we know 0 ( )B A  but 
0 2 2 ( )B A   . We have the following consequence of the above theorem. 

Lemma.2.20:  Let A be a Pre-A* Algebra with 1, ,a b A  and ( )a b B A  , then ( )a B A  

Proof:  Let ( )a b B A  , then we have ~( ) ( )a b B A  ~ ~ ( )a b B A             

           ~ ( )a B A         
                                ( )a B A   
 

3. The Pre A*-Algebra 
 

    We prove that, for each x A , { / }xP x t t A    is itself a Pre-A* algebra under induced operations ,   and unary 

operation  is defined by * ~( )x t x t   . We observe that xP  need not be a sub-algebra of A because the unary operation in 

xP is not the restriction of the unary operation on A. Also for each x A , the set xM  { / }s A s x  is a Pre A*-algebra 

under the induced operations, where the complementation is defined by *  s x s   .We prove that 

P( ) { | ( )}A aP a B A    and M( ) { | ( )}A aM a B A    is a Boolean algebras under set, also we establish that 

( )( ), P AB A   and M(A) are isomorphic to each other 

Theorem 3.1: Let ~, , ,  A     be a Pre -A* algebra, x A  and { / }xP x t t A   , then , , ,  *xP     is a Pre-A* 

algebra with x  as the identity for   , where and   are the operations in A restricted to xP  and for any xx t P  , here 
* ~( )x t x t    

Proof:   
Let , ,a b c A .Then ( ) ( ) ( ) xx a x b x a b P         and ( ) ( ) ( ) xx a x b x a b P       . Thus ,   are 

closed in xP   Consider ( )** {( )*}*x a x a    = ~( )*x a = ~~( )x a = ( )x a  . Therefore ( )** ( )x a x a   . 

 Now [( ) ( )]* [ ( )]*x a x b x a b      = ~( )x a b   = ~ ~( )x a b   = ( )* ( )*x a x b    

( ) {( )* ( )}x a x a x b      = ~( ) {( ) ( )}x a x a x b      

             = ~( ) {( ( )}x a x a b      

             = ~( ( )x a a b    
             ( )x a b    . 

The remaining identities of Pre A*-algebra also hold in xP because they hold in A. Hence xP is itself a Pre A*-algebra. Here x  
is the identity for   because x x a x a x x a       and  
 ~x x  is the identity for   because ~( ) ( )x x x a   = ~( )x x a   = x a   
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Theorem 3.2: Let A be a Pre A*-algebra. Then the following holds. 

(i)  x yP P  if and only if x y   

(ii) x y x yP P P    

 (iii) ( )x x y x yP P   

Proof: Suppose x yP P . Since x yx x x P P     and y xy y y P P    . Therefore x y a   and y x b  for 

some ,a b A . Now, ( ) ( )x y a y a y y y a         = ( ) ( )x y y x    = ( ) ( )x x b x b x      = x b  
= y . The converse is trivial 

(ii) Suppose  x ya P P  . Then  a x b y c     for some ,b c A .  

Now a x x b   x a   x y c    x yP   . Therefore x y x yP P P    

Let x ya P   , then a x y b    for some b A   

Now a x y b   = xx t P  , where t y b    

Again a x y b   = a y x b    = y s yP  , where s x b  . So x ya P P  .  

Therefore x y x yP P P    

Hence  x y x yP P P    

 (iii) ( ) { / }x x y xP x y a a P     ={ | }x y x b b A    ={ | }x y b b A   = x yP    

Theorem 3.3:   Let A be a Pre A*-algebra with 1 and x A  , then the mapping :x xA P   defined by ( )x t x a    for 

all a A  is a homomorphism of A to xP  with kernel ~x
  and hence ~| xx

A P    

Proof : Let ,a b A , then ( )x a b x a b     = x a x b   = ( ) ( )x xa b  and ~ ~( )x a x a    =  

( )* ( ( ))*xx a a   . Clearly  ( ) ( )x a b x a b       ( ) ( )x a x b     = ( ) ( )x xa b  . 

Also ~(1) 1x x x x     , which is the identity for in  xP . Therefore x  is a homomorphism. Hence by the fundamental 

theorem of homomorphism | x xA Ker P   and     

xKer ={( , ) | ( ) ( )}x xa b A A a b        

 ={( , ) | }a b A A x a y b      

 = ~ ~{( , ) | }a b A A x a y b     = ~x
  and hence ~| xx

A P  . 

Theorem 3.4: Let A be a Pre A*-algebra with 1 and (A)a B , then ~a a
A P P  . 

Proof: Define ~: a a
A P P    by ~( ) ( ( ), ( ))a a

x x x    for all x A  . Then by Theorem 3.3,   is well-defined and 
 is a homogenous. Now we prove that  is one-one.  
Let ,x y A  and             ( ) ( )x y   

     ~ ~( ( ), ( )) ( ( ), ( ))a aa a
x x y y      

  ~ ~( , ) ( , )a x a x a y a y       a x a y     and ~ ~a x a y    
Now 1x x   = ~ ~( ) ( ) ( )a a x a x a x       = ~( ) ( )a y a y   y  . 
Finally, we prove that   is onto.  
Let    ~( , ) a a

x y P P  , then x a t   and ~y a r   for some ,t r A . Therefore , a x a a t a t x        , 
~ 1 1a y a a r r        and ~ ~ 1 1a x a a t t       , ~ ~ ~ ~a y a a r a r y       .  

Now  ~( ) ( ( ), ( ))a a
x y x y x y     
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~( ( ), ( ))a x y a x y    

   

  
~ ~(( ) ( ), ( ) ( ))a x a y a x a y      

   
( 1,1 )x y  

 
( , )x y

 
Therefore  is onto and is an isomorphism. Therefore ~a a

A P P 
   

Theorem 3.5: Let ~, , ,A      be a Pre A*-algebra with 1, then the set P( ) { | ( )}A aP a B A    is a Boolean algebra 
under set inclusion. 
Proof: Clearly P( )( , )A   is a partially ordered set under inclusion. First we show that a bP   is the infimum of { , }a bP P  and 

a bP   is the supremum of { , }a bP P . 

From the theorem 3.2 of (ii), shows that a bP   is the infimum of { , }a bP P .  

Let at P  , then t a x   for some x A . 

Now ( ( ))t a x a a b x       = ( ) a ba b a x P      . Therefore a a bP P   . Similarly we can prove that 

b a bP P  . Therefore a bP   is an upper bound of aP , bP . Suppose cP  is the upper bound of  aP , bP  and a bt P   , then 

( )t a b x    for some x A .  

Now ~( ) { ( )}t a b x a a b x       = ~( ) ( )a x a b x    = ~( ) ( ) ca x b a x S            

(since a ca x S S    , ~
b cb a x S S    and cS  is closed under   ). Therefore a bP   is the supremum of { , }a bP P . 

Denote supremum of { , }a bP P  by a bP P   and infimum of { , }a bP P  by a bP P . Now 1 1a a aP P P P    and 

0 0 0a aP P P P   . So 1P  is the least element and 0P is the greatest element of P( )( , )A  . Now for any , , (A)a b c B , 

( )( )a b c a b cP P P P      = ( ) ( )a c b cP     = a c b cP P   = ( ) ( )a c b cP P P P    .  

Also ~ ~ 1a a a a
P P P P


    and ~ ~ 0a a a a

P P P P


   .  Therefore P( )( , )A   is a complimented distributive lattice and 
hence it is a Boolean algebra. 
 
Theorem 3.6: Let A be a Pre A*-algebra with 1. Define P(A): ( )B A   by ~( )

a
a P  for all (A)a B . Then   is an 

isomorphism. 
Proof: Let , (A)a b B , then ~( )

( )
a b

a b P


   = ~ ~a b
P P  = ( ) ( )a b   ; ~( )

( )
a b

a b P


   = ~ ~a b
P P  

= ( ) ( )a b   and ~
~ ~ ~( ) ( ) ( ( ))aaa P P a     . Clearly   is both one-one and onto. Hence (A)( ) PB A     

In [5], defined partial ordering on Pre-A* algebra by x y  if and only if x y y x x     and studied the properties of this 
partial ordering. Given necessary and sufficient conditions for Pre A*-algebra to become a lattice. In[5,8], proved that if A  is a 
Pre A*-algebra and x A , then  xM  { / }s A s x  is a Pre A*-algebra under the induced operations, where the 

complementation is defined by *  s x s    the  relation defined on Pre A* algebra A  by s x  if s x x s s     and the 
mapping :x xA M  defined by ( )x s x s    for all s A  is a homomorphism of A  onto xM  with kernel x and 

hence / x xA M  , where {( , ) | }x p q A A x p x q        . We can easily see that the Pre A*-algebras ,x xP A  are 

different in general where x A  .Now, we prove that the set of all aA ’s where ( )a B A  is a Boolean Algebra under set 
inclusion. The following theorem can be proved analogous to theorem 3.5. 
 
Theorem 3.7: Let A be Pre A*-algebra with 1. Then M( ) { | ( )}A aM a B A    is a Boolean algebra under set inclusion in 

which the supremum of { , }a b a bA A A   and the infimum { , }a b a bA A A   
The  Proof of the following theorem is analogous to that of theorem 3.6 
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Theorem 3.8: Let A be a Pre A*-algebra with 1, define M(A): ( )B A   by ( ) aa M   for all ( )a B A . Then   is an 
isomorphism 
The following lemma can be proved directly from 3.6 and 3.8 
 
Lemma 3.9: Let A be a Pre A*-algebra with 1, then ( )( ), P AB A   and M(A) are isomorphic to each other. 
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