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1. INTRODUCTION

In a draft paper [2], E.G.Maines introduced the concept of Ada (Algebra of disjoint alternatives) (A, A,v,(-)',(-),,0,1,2)

which is however differ from the definition of the Ada of his later paper[9]. While the Ada of the earlier draft seems to be based
on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras

(A A,Vv,") introduced by Fernando Guzman and Craig C. Squir [1]. In [3], introduced the concept of A*-algebra
(A,/\,v,*,(—)~(-) 1011,2) and studied the equivalence with Ada, C-algebra, Ada’s connection with 3-Ring, Stone type

representation also introduced the concept of A*-clone, the If-Then-Else structure over A*-algebra and Ideals of A*-algebra. In
[4], introduced the concept Pre A*-algebra ( A, /\,V,(—)~) analogous to C-algebra. In [5], defined partial ordering on Pre-A*

algebra by X <y if and only if XA Y =Y AX =X and studied the properties of this partial ordering. Given necessary and
sufficient conditions for Pre A*-algebra to become a lattice. In[6], defined congruence relation on Pre A*-algebra by

0, ={(p.q) e AXA|XA p=XAQ}and studied the subdirectly irreducible representation of Pre A*-algebra. In [7],
defined ternary operation of Pre A*-algebra , and established Cayley’s theorem on Centre of Pre A*-algebra. In [8], proved that
if A is a Pre A*-algebra, X € A, then M (= {S eAls< X}is a Pre A*-algebra under the induced operationsa,v where the
complementation is defined by S =XAS" the relation defined on Pre A* algebra A by S< X if SAX=XAS=S5 and the
mapping &, : A— M, defined by &, (S) =XAS for all s A is a homomorphism of A onto M, with kernel 6, and
hence A/6, =M also studied the decomposition of Pre A*-algebra. In this paper we prove that three Boolean algebras

B(A), 354 and 3, are isomorphic to each other.
2. PRELIMANARIES

In this section we recall the definition of Pre A*-algebra and some results from [5,6] which will be required later.
2.1. Definition:

An algebra (A,/\,v,(—j ) where A is non-empty set with 1, A,V are binary operations and (=)~ is a unary operation
satisfying

(@ X"=x, VYxeA

(b) XAX=X, VxeA

© XAY=YAX, VXyeA

d (XAy) ' =x"vy, VX, yeA

@XA(YAD)=(XAY)AZ, VXYV, z€eA

A XA(Yyv)=(xXay)v(Xaz), VXy,zeA

@ XAY=XA(X"VY), VX YyeA. iscalledaPre A*-algebra
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2.2. Example:

3 =40, 1, 2} with operations A,V, (—5 defined below is a Pre A*-algebra.

It can be observed that 2.1(a) and 2.1(b) imply that the varieties of Pre A*-algebras satisfies all dual statements of 2.1(b) to
2.1(g).

Lemma2.3: Every Pre A*-algebra satisfies the following laws[5,6]
(@ Xvl=xvXx and XAO=XAX
© XA(X"VvX)=XVvV(X"AX) =X

@ (XvX)Ay=(XAy)v (X AY)

€ (XvY)AZ=(XAZ) V(X AYAZ)

M XAy=0,xvy=1 then y=x"

(@If Xvy=0, then x=y=0and If Xvy=1 then xvx =1

Definition 2.4. [5]: Let A be a Pre A*-algebra. An elementX € A is called central element of A if X v X™=1 and the set
{xe Al xv x"=1} of all central elements of A is called the centre of A and it is denoted by B(A).

Theorem 2.5. [5]: Let A be a Pre A*-algebra with 1, then B(A) is a Boolean algebra with the induced operations A, Vv, (=)~
Lemma2.6. [5]: Let A be a Pre A*-algebra with 1,

(@ 1If ye B(A)then X AX AY=XAX", VXe A (b) If X,y € B(A) then XA(XVY)=XV(XAY)=X

Lemma 2.7. [6] : Let (A, A,V,(—)") beaPre A*-algebraand let a € A .Then the relation
0, ={(x,y)e AxAl anx=any}is (a)acongruence relation (b) 6, N6,-=6, .-
(C) ea meb - eavb (d) ea M ea' - ea/\a'

Lemma 2.8 [6]: Let Abe aPre A*-algebraand a,b € B(A), then 6, N6, =0, ,

Lemma 2.9 [6]: Let A be aPre A*-algebra, let A, denote the trivial congruence on A: A, ={(X, X)/ X € A} then (a)
0,=A, ifandonlyif anXx=X,VXxeA(b) 8, =AxA ifandonlyif aaAXx=a, VXeA (c)
(a,b)€0,,6, then a=b (d)If acB(A) then 6, "0,- =A,

Theorem 2.10. [6] :Let Abe a Pre A*-algebra, then A/ 6 ={6,/a € A} is a Pre A*-algebra, is called quotient Pre A*-

Algebra, whose operations are defined as@, A6, =0, .0,V 6, =6, , an(6,)” =6,

Definition 2.11.[6]:An algebra A is called subdirectly irreducible provided there is a congruence ¢ on A such that ¢ = A ,,
and if@ # A, is acongruenceon A, then ¢ = 0
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Theorem 2.12. [6] : 2 and 3 are the only sub-directly irreducible Pre A*-algebras.

Corollary 2.13. [6]: Every Pre A*-algebra is a sub algebra of a product of copies of 3.

Lemma 2.14. [6]: Let A be Pre A*-algebra with 1 and a,b € B(A)then(a) 6, 0 6, =6, ,(b) 6, 06, =6, 06, (c)
0, < 6, ifandonlyif b=a b (d) 6, 0 6,- =AxA

Definition 2.15.[6]:A congruence & on an algebra A is called a factor congruence on A if there is a congruence ¢ on A
suchthat 6 Ngp=A, and 8 0 ¢ = Ax A

Theorem 2.16.[6]: Let A be a Pre A*-algebra with 1and & be congruence on A. If 8 =6, for some X € B(A), then 0, is
a factor congruence on A.

Now we prove some important properties of Pre A*-algebra

Theorem 2.17: Let A be a Pre A*-Algebraand X,y € A, then XV X vy=Xvyvy~
Proof: Xv X vy=Xxv(yvXx)

=xv{yv(y Ax)}
=(xvy)v{xv(y Ax)}
=(xvy)v{xv(x Ay}
=(xvy)vxvy’)
=Xvyvy"
Theorem.2.18:Let A be a Pre A*-Algebraand X,y € A, {Xv (XA Y)}v{X V(X  AY)}=xvX vy

Proof: {XVv (XAY)IV{X V(X AY)}=XV(XAY)VX V(X AY)
=X v (xAy)vixv(x Ay}
=X vVyvXvy
=X VXVvY
=XvX vy
Theorem.2.19: Let A be a Pre A*-algebra with 1and X,y € A such that X Yy € B(A) then X € B(A)

Proof: Let a Pre A*-algebra with 1 and X,y € A such that X v Y € B(A) then
I=(Xvy)v(xvy)
=(xvy)v(x Ay)
=(Xvyvx)a(xvyvy’)
=(XvX vy)Aa(xvyvy’)
=(Xvyvy )A(Xvyvy') (Theorem2.17)
=XVvyvy’
Therefore 1=Xv y v Yy -----(a)
Now XvX =(xvXx)al
=(XvX)A(Xvyvy)
=[XA(xvyvy)lvIx alxvyvy)]
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=[XA(XVX VY)]VIX A(XvX vy)] Theorem2.17
=[XA{X v (xvy)HVIX A{xv (X" v )}
=[XA(XVY)]VIX AX VvY)] Property 2.1(g)
=[xv(xXANIVIX v (X AY)]
=(Xvy)v(x vy)
=XvX vy
=XvYyvy  Theorem2.17
=1
This shows that X € B(A)
The converse of the above theorem need not be true. For example, in the Pre-A* Algebra A, we know O e B(A) but

0v 2=2¢B(A). We have the following consequence of the above theorem.

Lemma.2.20: Let A be a Pre-A* Algebrawith 1, @,b € A and aAnb e B(A), then a € B(A)

Proof: Let aAbe B(A),thenwehave (anb) e B(A) =a vb eB(A)
—a €B(A)
—=aeB(A)

3. The Pre A*-Algebra

We prove that, for each x e A, P, ={x v t/t e A} is itself a Pre-A* algebra under induced operations A,V and unary
operation is defined by (X v t)* = XAt". We observe that P, need not be a sub-algebra of A because the unary operation in
P, is not the restriction of the unary operation on A. Also for each X € A, the set M, = {s € A/ s <x}is a Pre A*-algebra
under the induced operationsan,v where the complementation is defined by S =XAS" We prove that
Sen ={P.12a€B(A)} and Ty, ={M,|a€B(A)} is a Boolean algebras under set, also we establish that
B(A), 35 and 3, are isomorphic to each other
Theorem 3.1: Let < A,A,Vv, ~ > be a Pre -A* algebra, x € A and P, ={Xxvt/t € A}, then <P, A,v, *> isa Pre-A*
algebra with x as the identity for v/ , where Aand Vv are the operations in A restricted to P, and for any X vt e P, here
(xvt) =xvt”
Proof:
Let a,b,ce A.Then (xva)v(xvb)=xv(avb)eP, and (xva)a(xvb)=xv(aab)eP, . Thus v,A are

closed in P, Consider (Xv a)**={(xva)*}* =(xva )*=(xva~)=(xva) .Therefore (Xva)**=(xva).
Now [(Xva)A(xvb)]*=[xv(aab)]*=xv(aab) =xv(a vb’) =(xva)*A(xvh)*
(xva)a{(xva)*v(xvb)} =(xva)a{(xva’)v(xvh)}

=(xva)a{(xv(a vb)}

=xv(an(a vhb)

=xv(anb).
The remaining identities of Pre A*-algebra also hold in P, because they hold in A. Hence P, is itself a Pre A*-algebra. Here X

is the identity for Vv because X v Xva=Xxvav Xx=Xvaand
XV X~ is the identity for A because (Xv X )A(Xva)=xv(x Aad) =Xxva
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Theorem 3.2 Let A be a Pre A*-algebra. Then the following holds.
(i) P = Py ifand only if X=y

(i) P, Py = PXvy
(i) (P)wy =Puy

Proof: Suppose P, =P,. Since X=XvxeP, =P, and y=yvyePR =P, Therefore Xx=Yyva and y=Xvb for
some a,be A. Now, Xx=yva=(yvavy)v(yvyva) =(xvy)a(yvx) =(xvxvb)a(xvbvx) =xvb
=Y. The converse is trivial

(ii) Suppose @€ P, MP,. Then a=xvb=ywvc forsome b,ce A.
Now a=xvXxvb=xva =xvyvc eP,, .Therefore B NP c P,

Let a€ P, ,thena=XvYyvb forsome be A
Now a=Xvyvb=xvteP wheret=yvb

Again a=Xvyvb=a=yvxvb =yvseP  where s=xvb.sSoaeP NP,
Therefore P,,, < P, NP,

Xvy =

Hence P, M Py =P

Xvy
(i) (P),,, ={xvyvalaeP}={xvyvxvblbe Af={xvyvblbe A}=P,_,
Theorem 3.3:  Let A be a Pre A*-algebra with 1 and X € A , then the mapping ¢, : A— P, defined by o, (t)=xva for

all ae A isahomomorphismof A to P, with kernel € _ and hence A|6 = =P,

X

Proof : Let a,be A, then ¢ (avb)=xvavb = xvavxvb = ¢ (a)ve,(b) and o, (a")=xva =
(xva)*=(a,(a))* . Clearly a,(arb)=xv(anb) =(xva)a(xvb) = a,(a)ra, (D)
Also o, (1) =xv1=xwv X", which is the identity for Ain P, . Therefore «, is a homomorphism. Hence by the fundamental

theorem of homomorphism A| Kera, = P, and
Kera,={(a,b) e AxAla,(a) =c, (b)}

={(a,b) e AxA|xva=yvh}
={(a,b) e AxA|x" rna=y Ab}=0_andhence A|O _ =P,.

Theorem 3.4: Let A be a Pre A*-algebra with 1and & € B(A) , then A= P, xP _.

Proof: Define & : A— P, xP_ by ar(X) = (&, (X), (X)) forall x e A . Then by Theorem 3.3, r is well-defined and

a is a homogenous. Now we prove that ¢ is one-one.
Let X,y € A and a(x)=a(y)

= (o, (X), - (X)) = (e, (¥), - (Y))
=(avx,a vx)=(avy,a vy) >avx=avyada vx=a vy
Now x=1vx =(arna’)vx=(avx)a(a vx) =(avy)a(@vy)=y.
Finally, we prove that ¢ is onto.
Let (X,y)eP,xP_ then x=avtand y=a vr forsome t,r € A. Therefore, avx=avavt=avt=Xx,
avy=ava vr=lvr=lada vx=a vavt=lvt=l,a vy=a va vr=a vr=y.
Now a(xAy)=(a,(xAY),a, (xAY))
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=(av(xay)a v(xay))
=((avx)a(avy),@ vx)a@ vy) =xaALIAy) =(XY)
Therefore « is onto and is an isomorphism. Therefore A= P, x Pa_
Theorem 3.5: Let < A, A,V,” > beaPre A*-algebra with 1, then the set 3, ) ={P, |a € B(A)} is a Boolean algebra

under set inclusion.

Proof: Clearly (SP(A) ,C) is a partially ordered set under inclusion. First we show that P, isthe infimum of {P,, P.} and
P, ., isthe supremumof {P,, P}

From the theorem 3.2 of (ii), shows that P, , is the infimum of {P,,P,}.

Lette P, ,thent=av X forsome X € A.

Now t=avx=(aan(avb))vx =(anb)vavxeP,, . Therefore P, c P, . Similarly we can prove that
R < P,.,. Therefore P, , is an upper bound of P,, P, . Suppose P, is the upper bound of P,,PB and teP, , , then
t=(aAb)vx forsome xe A.

Now t=(anb)vx={an(a vb)}vx=(avx)a(@ vbvx)=(avx)a(bva vx)eS§,

(since avxeS, cS,,bva vxeS, cS.and S, is closed under A ). Therefore P, , is the supremum of {P,,R.}.
Denote supremum of {P,,R,} by P,v P, and infimum of {P,,R} by P, AR . Now PAP, =P, , =P, and
P, vP, =P, =PF,.So P is the least element and P, is the greatest element of (SP(A),Q) . Now for any a,b,c € B(A),
(RvR)AR =PRape =Pavgntve =Puc VR =(RAR) V(R AR) .

Also AP =P =P andPB,vP_ =P =P, Therefore (3 ,,<) is a complimented distributive lattice and

anb)ve

hence it is a Boolean algebra.

Theorem 3.6: Let A be a Pre A*-algebra with 1. Define ¢ : B(A) — 3, by ¢(a) = P_for all a € B(A). Then ¢ is an

isomorphism.

Proof: Let a,beB(A), then p(arb)= P(aA =P_ AR =p@nreb) ; plavb)= P(av =P_VvE.

b)” b)”
=p(@)ve(b) and p(a”)=P_=(P,)” =(¢(a))" . Clearly ¢ is both one-one and onto. Hence B(A) = I,

In [5], defined partial ordering on Pre-A* algebraby X <Y ifand only if XAy =Y A X =X and studied the properties of this
partial ordering. Given necessary and sufficient conditions for Pre A*-algebra to become a lattice. In[5,8], proved that if A isa
Pre A*-algebra and X € A, then M, = {se A/s<x}is a Pre A*-algebra under the induced operationsa,v where the
complementation is defined by S =XAS" the relation defined on Pre A* algebra A by S< X if SAX=XAS=S5 and the
mapping &, : A— M, defined by &, (S) =XAS for all S A is a homomorphism of A onto M, with kernel 6, and
hence A/6, =M, where 6, ={(p,q) € AXA|XA Pp=XA0}.We can easily see that the Pre A*-algebras P, A, are

different in general where X € A .Now, we prove that the set of all A ’s where a € B(A) is a Boolean Algebra under set
inclusion. The following theorem can be proved analogous to theorem 3.5.

Theorem 3.7: Let A be Pre A*-algebra with 1. Then 3, ,» ={M, [a € B(A)} is a Boolean algebra under set inclusion in

which the supremum of {A,, A)}= A, , and the infimum {A,,A}=A, ,

The Proof of the following theorem is analogous to that of theorem 3.6
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Theorem 3.8: Let A be a Pre A*-algebra with 1, define y : B(A) — 3,5 by w(a) =M, forall a € B(A). Then y isan

isomorphism
The following lemma can be proved directly from 3.6 and 3.8

Lemma 3.9: Let A be a Pre A*-algebra with 1, then B(A), 3 and 3 are isomorphic to each other.
9 P(A) M(A) p
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