Boolean Algebras of Pre A*-Algebra

Vijayabarathi.S^{#1}, Srinivasa Rao.K^{*2}

[#]Assistant Professor, Department of Mathematics, SCSVMV University, Kanchipuram, India *Associate Professor, Department of Mathematics, SCSVMV University, Kanchipuram,India

Abstract— In this paper, we obtain Boolean algebras $\mathfrak{T}_{P(A)}$, $\mathfrak{T}_{M(A)}$ from Pre A*-algebra, and proved that $\mathfrak{T}_{P(A)}$, $\mathfrak{T}_{M(A)}$ and B(A) are isomorphic to each other.

Keywords- Pre A*-Algebra, Centre of Pre A*-Algebra, Boolean Algebra, Isomorphism, Partial Ordering

1. INTRODUCTION

In a draft paper [2], E.G.Maines introduced the concept of Ada (Algebra of disjoint alternatives) $(A, \land, \lor, (-)', (-)_{-}, 0, 1, 2)$ which is however differ from the definition of the Ada of his later paper[9]. While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras $(A, \land, \lor, ')$ introduced by Fernando Guzman and Craig C. Squir [1]. In [3], introduced the concept of A*-algebra $(A, \land, \lor, *, (-)^{\sim}(-)_{\pi}, 0, 1, 2)$ and studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation also introduced the concept of A*-clone, the If-Then-Else structure over A*-algebra and Ideals of A*-algebra. In [4], introduced the concept Pre A*-algebra $(A, \land, \lor, (-)^{\sim})$ analogous to C-algebra. In [5], defined partial ordering on Pre-A* algebra by $x \le y$ if and only if $x \land y = y \land x = x$ and studied the properties of this partial ordering. Given necessary and sufficient conditions for Pre A*-algebra to become a lattice. In[6], defined congruence relation on Pre A*-algebra by $\theta_x = \{(p,q) \in A \times A \mid x \land p = x \land q\}$ and studied the subdirectly irreducible representation of Pre A*-algebra. In [7], defined ternary operation of Pre A*-algebra , and established Cayley's theorem on Centre of Pre A*-algebra. In [8], proved that if A is a Pre A*-algebra, $x \in A$, then $M_x = \{s \in A \mid s \le x\}$ is a Pre A*-algebra under the induced operations \land,\lor where the complementation is defined by $s^* = x \wedge s^{\sim}$ the relation defined on Pre A* algebra A by $s \leq x$ if $s \wedge x = x \wedge s = s$ and the mapping $\alpha_x : A \to M_x$ defined by $\alpha_x(s) = x \land s$ for all $s \in A$ is a homomorphism of A onto M_x with kernel θ_x and hence $A/\theta_x \cong M_x$ also studied the decomposition of Pre A*-algebra. In this paper we prove that three Boolean algebras $B(A), \mathfrak{I}_{P(A)}$ and $\mathfrak{I}_{M(A)}$ are isomorphic to each other.

2. PRELIMANARIES

In this section we recall the definition of Pre A*-algebra and some results from [5,6] which will be required later.

2.1. Definition:

An algebra $(A, \land, \lor, (-))$ where A is non-empty set with $1, \land, \lor$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying

(a) x = x, $\forall x \in A$ (b) $x \land x = x$, $\forall x \in A$ (c) $x \land y = y \land x$, $\forall x, y \in A$ (d) $(x \land y) = x \lor y$, $\forall x, y \in A$ (e) $x \land (y \land z) = (x \land y) \land z$, $\forall x, y, z \in A$ (f) $x \land (y \lor z) = (x \land y) \lor (x \land z)$, $\forall x, y, z \in A$ (g) $x \land y = x \land (x \lor y)$, $\forall x, y \in A$. is called a Pre A*-algebra

2.2. Example:

3 = {0, 1, 2} with operations $\land, \lor, (-)$ defined below is a Pre A*-algebra.

\wedge	0	1	2		\vee	0	1	2	x	x~
0	0	0	2	-	0	0	1	2	0	1
1	0	1	2		1	1	1	2	1	0
2	2	2	2		2	2	2	2	2	2

It can be observed that 2.1(a) and 2.1(b) imply that the varieties of Pre A*-algebras satisfies all dual statements of 2.1(b) to 2.1(g).

Lemma2.3: Every Pre A*-algebra satisfies the following laws[5,6]

- (a) $x \lor 1 = x \lor x^{\sim}$ and $x \land 0 = x \land x^{\sim}$ (c) $x \land (x^{\sim} \lor x) = x \lor (x^{\sim} \land x) = x$ (d) $(x \lor x^{\sim}) \land y = (x \land y) \lor (x^{\sim} \land y)$ (e) $(x \lor y) \land z = (x \land z) \lor (x^{\sim} \land y \land z)$ (f) $x \land y = 0, x \lor y = 1$, then $y = x^{\sim}$
- (g) If $x \lor y = 0$, then x = y = 0 and If $x \lor y = 1$, then $x \lor x^{\sim} = 1$

Definition 2.4. [5]: Let A be a Pre A*-algebra. An element $x \in A$ is called central element of A if $x \lor x = 1$ and the set $\{x \in A \mid x \lor x = 1\}$ of all central elements of A is called the centre of A and it is denoted by B(A).

Theorem 2.5. [5]: Let A be a Pre A*-algebra with 1, then B(A) is a Boolean algebra with the induced operations $\land, \lor, (-)$

Lemma2.6. [5]: Let A be a Pre A*-algebra with 1,

(a) If $y \in B(A)$ then $x \wedge x^{\tilde{}} \wedge y = x \wedge x^{\tilde{}}$, $\forall x \in A$ (b) If $x, y \in B(A)$ then $x \wedge (x \vee y) = x \vee (x \wedge y) = x$

Lemma 2.7. [6]: Let $(A, \land, \lor, (-)^{\sim})$ be a Pre A*-algebra and let $a \in A$. Then the relation $\theta_a = \{(x, y) \in A \times A \mid a \land x = a \land y\}$ is (a) a congruence relation (b) $\theta_a \cap \theta_{a^{-}} = \theta_{a \lor a^{-}}$ (c) $\theta_a \cap \theta_b \subseteq \theta_{a \lor b}$ (d) $\theta_a \cap \theta_{a^{-}} \subseteq \theta_{a \land a^{-}}$

Lemma 2.8 [6]: Let A be a Pre A*-algebra and $a, b \in B(A)$, then $\theta_a \cap \theta_b = \theta_{a \lor b}$

Lemma 2.9 [6]: Let A be a Pre A*-algebra, let Δ_A denote the trivial congruence on A: $\Delta_A = \{(x, x) \mid x \in A\}$ then (a) $\theta_a = \Delta_A$ if and only if $a \wedge x = x$, $\forall x \in A$ (b) $\theta_a = A \times A$ if and only if $a \wedge x = a$, $\forall x \in A$ (c) $(a,b) \in \theta_a, \theta_b$ then a = b (d) If $a \in B(A)$ then $\theta_a \cap \theta_{a^-} = \Delta_A$

Theorem 2.10. [6] :Let A be a Pre A*-algebra, then $A/\theta = \{\theta_a / a \in A\}$ is a Pre A*-algebra, is called quotient Pre A*-Algebra, whose operations are defined as $\theta_a \wedge \theta_b = \theta_{a \wedge b}$, $\theta_a \vee \theta_b = \theta_{a \vee b}$ an $(\theta_a)^{\sim} = \theta_{a^{\sim}}$

Definition 2.11.[6]: An algebra A is called subdirectly irreducible provided there is a congruence ϕ on A such that $\phi \neq \Delta_A$, and if $\theta \neq \Delta_A$ is a congruence on A, then $\phi \subseteq \theta$

Theorem 2.12. [6] : 2 and 3 are the only sub-directly irreducible Pre A*-algebras.

Corollary 2.13. [6]: Every Pre A*-algebra is a sub algebra of a product of copies of 3.

Lemma 2.14. [6]: Let A be Pre A*-algebra with 1 and $a, b \in B(A)$ then(a) θ_a o $\theta_b = \theta_{a \wedge b}$ (b) θ_a o $\theta_b = \theta_b$ o θ_a (c) $\theta_a \ \subseteq \ \theta_b \ \text{ if and only if } b = a \wedge b \ \text{ (d) } \theta_a \ \text{ o } \ \theta_{a^{\sim}} = \mathbf{A} \times \mathbf{A}$

Definition 2.15.[6]: A congruence θ on an algebra A is called a factor congruence on A if there is a congruence ϕ on A such that $\theta \cap \phi = \Delta_A$ and θ o $\phi = A \times A$.

Theorem 2.16.[6]: Let A be a Pre A*-algebra with 1 and θ be congruence on A. If $\theta = \theta_x$ for some $x \in B(A)$, then θ_x is a factor congruence on A.

Now we prove some important properties of Pre A*-algebra

Theorem 2.17: Let A be a Pre A*-Algebra and $x, y \in A$, then $x \lor x^{\sim} \lor y = x \lor y \lor y^{\sim}$

Proof: $x \lor x^{\sim} \lor y = x \lor (y \lor x^{\sim})$

$$= x \lor \{ y \lor (y^{\sim} \land x^{\sim}) \}$$

= $(x \lor y) \lor \{ x \lor (y^{\sim} \land x^{\sim}) \}$
= $(x \lor y) \lor \{ x \lor (x^{\sim} \land y^{\sim}) \}$
= $(x \lor y) \lor (x \lor y^{\sim})$
= $x \lor y \lor y^{\sim}$

Theorem.2.18:Let A be a Pre A*-Algebra and $x, y \in A$, $\{x \lor (x \land y)\} \lor \{x \lor (x \land y)\} = x \lor x \lor y$

Proof:
$$\{x \lor (x \land y)\} \lor \{x^{\tilde{}} \lor (x^{\tilde{}} \land y)\} = x \lor (x \land y) \lor x^{\tilde{}} \lor (x^{\tilde{}} \land y)$$
$$= \{x^{\tilde{}} \lor (x \land y)\} \lor \{x \lor (x^{\tilde{}} \land y)\}$$
$$= x^{\tilde{}} \lor y \lor x \lor y$$
$$= x^{\tilde{}} \lor x \lor y$$
$$= x \lor x^{\tilde{}} \lor y$$

Theorem.2.19: Let A be a Pre A*-algebra with 1 and $x, y \in A$ such that $x \lor y \in B(A)$ then $x \in B(A)$

Proof: Let a Pre A*-algebra with 1 and $x, y \in A$ such that $x \lor y \in B(A)$ then

$$l = (x \lor y) \lor (x \lor y)^{\tilde{}}$$

$$= (x \lor y) \lor (x^{\tilde{}} \land y^{\tilde{}})$$

$$= (x \lor y \lor x^{\tilde{}}) \land (x \lor y \lor y^{\tilde{}})$$

$$= (x \lor x^{\tilde{}} \lor y) \land (x \lor y \lor y^{\tilde{}})$$

$$= (x \lor y \lor y^{\tilde{}}) \land (x \lor y \lor y^{\tilde{}}) \quad \text{(Theorem 2.17)}$$

$$= x \lor y \lor y^{\tilde{}}$$
Therefore $l = x \lor y \lor y^{\tilde{}} \quad \text{-----}(a)$
Now $x \lor x^{\tilde{}} = (x \lor x^{\tilde{}}) \land l$

$$= (x \lor x^{\tilde{}}) \land (x \lor y \lor y^{\tilde{}})$$

$$= [x \land (x \lor y \lor y^{\tilde{}})] \lor [x^{\tilde{}} \land (x \lor y \lor y^{\tilde{}})]$$

Now

$$= [x \land (x \lor x^{\tilde{}} \lor y)] \lor [x^{\tilde{}} \land (x \lor x^{\tilde{}} \lor y)]$$
Theorem 2.17
$$= [x \land \{x^{\tilde{}} \lor (x \lor y)\}] \lor [x^{\tilde{}} \land \{x \lor (x^{\tilde{}} \lor y)\}]$$
$$= [x \land (x \lor y)] \lor [x^{\tilde{}} \land (x^{\tilde{}} \lor y)]$$
Property 2.1(g)
$$= [x \lor (x \land y)] \lor [x^{\tilde{}} \lor (x^{\tilde{}} \land y)]$$
$$= (x \lor y) \lor (x^{\tilde{}} \lor y)$$
$$= x \lor x^{\tilde{}} \lor y$$
$$= x \lor y \lor y^{\tilde{}}$$
Theorem 2.17
$$= 1$$

This shows that $x \in B(A)$

The converse of the above theorem need not be true. For example, in the Pre-A* Algebra A, we know $0 \in B(A)$ but $0 \lor 2 = 2 \notin B(A)$. We have the following consequence of the above theorem.

Lemma.2.20: Let A be a Pre-A* Algebra with 1, $a, b \in A$ and $a \land b \in B(A)$, then $a \in B(A)$

Proof: Let $a \land b \in B(A)$, then we have $(a \land b)^{\sim} \in B(A) \Rightarrow a^{\sim} \lor b^{\sim} \in B(A)$ $\Rightarrow a^{\sim} \in B(A)$ $\Rightarrow a \in B(A)$

3. The Pre A*-Algebra

We prove that, for each $x \in A$, $P_x = \{x \lor t/t \in A\}$ is itself a Pre-A* algebra under induced operations \land,\lor and unary operation is defined by $(x \lor t)^* = x \land t^{\tilde{}}$. We observe that P_x need not be a sub-algebra of A because the unary operation in P_x is not the restriction of the unary operation on A. Also for each $x \in A$, the set $M_x = \{s \in A/s \le x\}$ is a Pre A*-algebra under the induced operations \land,\lor where the complementation is defined by $s^* = x \land s^{\tilde{}}$. We prove that $\mathfrak{I}_{P(A)} = \{P_a \mid a \in B(A)\}$ and $\mathfrak{I}_{M(A)} = \{M_a \mid a \in B(A)\}$ is a Boolean algebras under set, also we establish that $B(A), \mathfrak{I}_{P(A)}$ and $\mathfrak{I}_{M(A)}$ are isomorphic to each other

Theorem 3.1: Let $\langle A, \wedge, \vee, \rangle$ be a Pre -A* algebra, $x \in A$ and $P_x = \{x \lor t/t \in A\}$, then $\langle P_x, \wedge, \vee, \rangle$ is a Pre-A* algebra with x as the identity for \vee , where \wedge and \vee are the operations in A restricted to P_x and for any $x \lor t \in P_x$, here $(x \lor t)^* = x \lor t^{\sim}$

Let $a, b, c \in A$. Then $(x \lor a) \lor (x \lor b) = x \lor (a \lor b) \in P_x$ and $(x \lor a) \land (x \lor b) = x \lor (a \land b) \in P_x$. Thus \lor, \land are closed in P_x Consider $(x \lor a)^{**} = \{(x \lor a)^*\}^* = (x \lor a^-)^* = (x \lor a)$. Therefore $(x \lor a)^{**} = (x \lor a)$. Now $[(x \lor a) \land (x \lor b)]^* = [x \lor (a \land b)]^* = x \lor (a \land b)^- = x \lor (a^- \lor b^-) = (x \lor a)^* \land (x \lor b)^*$ $(x \lor a) \land \{(x \lor a)^* \lor (x \lor b)\} = (x \lor a) \land \{(x \lor a^-) \lor (x \lor b)\}$ $= (x \lor a) \land \{(x \lor (a^- \lor b)\})\}$ $= x \lor (a \land (a^- \lor b))$ $= x \lor (a \land b)$.

The remaining identities of Pre A*-algebra also hold in P_x because they hold in A. Hence P_x is itself a Pre A*-algebra. Here x is the identity for \lor because $x \lor x \lor a = x \lor a \lor x = x \lor a$ and

 $x \lor x^{\sim}$ is the identity for \land because $(x \lor x^{\sim}) \land (x \lor a) = x \lor (x^{\sim} \land a) = x \lor a$

Theorem 3.2: Let A be a Pre A*-algebra. Then the following holds.

(i)
$$P_x = P_y$$
 if and only if $x = y$
(ii) $P_x \cap P_y = P_{x \lor y}$
(iii) $(P_x)_{x \lor y} = P_{x \lor y}$
Proof: Suppose $P_x = P_y$. Since $x = x \lor x \in P_x = P_y$ and $y = y \lor y \in P_y = P_x$. Therefore $x = y \lor a$ and $y = x \lor b$ for
some $a, b \in A$. Now, $x = y \lor a = (y \lor a \lor y) \lor (y \lor y \lor a) = (x \lor y) \land (y \lor x) = (x \lor x \lor b) \land (x \lor b \lor x) = x \lor b$
 $= y$. The converse is trivial
(ii) Suppose $a \in P_x \cap P_y$. Then $a = x \lor b = y \lor c$ for some $b, c \in A$.
Now $a = x \lor x \lor b = x \lor a = x \lor y \lor c \in P_{x \lor y}$. Therefore $P_x \cap P_y \subseteq P_{x \lor y}$
Let $a \in P_{x \lor y}$, then $a = x \lor y \lor b$ for some $b \in A$
Now $a = x \lor y \lor b = x \lor t \in P_x$, where $t = y \lor b$
Again $a = x \lor y \lor b = a = y \lor x \lor b = y \lor s \in P_y$, where $s = x \lor b$. So $a \in P_x \cap P_y$.
Therefore $P_{x \lor y} \subseteq P_x \cap P_y$
Hence $P_x \cap P_y = P_{x \lor y}$
(iii) $(P_x)_{x \lor y} = \{x \lor y \lor a / a \in P_x\} = \{x \lor y \lor x \lor b | b \in A\} = \{x \lor y \lor b | b \in A\} = P_{x \lor y}$

Theorem 3.3: Let A be a Pre A*-algebra with 1 and $x \in A$, then the mapping $\alpha_x : A \to P_x$ defined by $\alpha_x(t) = x \lor a$ for all $a \in A$ is a homomorphism of A to P_x with kernel θ_{x^-} and hence $A | \theta_{x^-} \cong P_x$

Proof : Let $a, b \in A$, then $\alpha_x(a \lor b) = x \lor a \lor b = x \lor a \lor x \lor b = \alpha_x(a) \lor \alpha_x(b)$ and $\alpha_x(a^{\tilde{}}) = x \lor a^{\tilde{}} = (x \lor a)^* = (\alpha_x(a))^*$. Clearly $\alpha_x(a \land b) = x \lor (a \land b) = (x \lor a) \land (x \lor b) = \alpha_x(a) \land \alpha_x(b)$. Also $\alpha_x(1) = x \lor 1 = x \lor x^{\tilde{}}$, which is the identity for \land in P_x . Therefore α_x is a homomorphism. Hence by the fundamental theorem of homomorphism $A | Ker \alpha_x \cong P_x$ and

$$Ker\alpha_{x} = \{(a,b) \in A \times A \mid \alpha_{x}(a) = \alpha_{x}(b)\}$$

$$=\{(a,b) \in A \times A \mid x \vee a = y \vee b\}$$
$$=\{(a,b) \in A \times A \mid x^{\tilde{}} \wedge a = y^{\tilde{}} \wedge b\} = \theta_{x^{\tilde{}}} \text{ and hence } A \mid \theta_{x^{\tilde{}}} \cong P_{x}.$$

Theorem 3.4: Let A be a Pre A*-algebra with 1 and $a \in B(A)$, then $A \cong P_a \times P_a^{-}$.

Proof: Define $\alpha : A \to P_a \times P_{a^-}$ by $\alpha(x) = (\alpha_a(x), \alpha_{a^-}(x))$ for all $x \in A$. Then by Theorem 3.3, α is well-defined and α is a homogenous. Now we prove that α is one-one.

Let
$$x, y \in A$$
 and $\alpha(x) = \alpha(y)$
 $\Rightarrow (\alpha_a(x), \alpha_{a^{-}}(x)) = (\alpha_a(y), \alpha_{a^{-}}(y))$
 $\Rightarrow (a \lor x, a^{-} \lor x) = (a \lor y, a^{-} \lor y) \Rightarrow a \lor x = a \lor y \text{ and } a^{-} \lor x = a^{-} \lor y$
Now $x = 1 \lor x = (a \land a^{-}) \lor x = (a \lor x) \land (a^{-} \lor x) = (a \lor y) \land (a^{-} \lor y) = y$.

Finally, we prove that α is onto.

Let $(x, y) \in P_a \times P_{a^{\tilde{a}}}$, then $x = a \vee t$ and $y = a^{\tilde{a}} \vee r$ for some $t, r \in A$. Therefore, $a \vee x = a \vee a \vee t = a \vee t = x$, $a \vee y = a \vee a^{\tilde{a}} \vee r = 1 \vee r = 1$ and $a^{\tilde{a}} \vee x = a^{\tilde{a}} \vee a \vee t = 1 \vee t = 1$, $a^{\tilde{a}} \vee y = a^{\tilde{a}} \vee a^{\tilde{a}} \vee r = a^{\tilde{a}} \vee r = y$. Now $\alpha(x \wedge y) = (\alpha_a(x \wedge y), \alpha_{a^{\tilde{a}}}(x \wedge y))$

$$= (a \lor (x \land y), a^{\tilde{}} \lor (x \land y))$$

= $((a \lor x) \land (a \lor y), (a^{\tilde{}} \lor x) \land (a^{\tilde{}} \lor y)) = (x \land 1, 1 \land y) = (x, y)$

Therefore α is onto and is an isomorphism. Therefore $A \cong P_a \times P_{a^{-1}}$

Theorem 3.5: Let $\langle A, \wedge, \vee, \rangle$ be a Pre A*-algebra with 1, then the set $\mathfrak{I}_{P(A)} = \{P_a \mid a \in B(A)\}$ is a Boolean algebra under set inclusion.

Proof: Clearly $(\mathfrak{T}_{P(A)}, \subseteq)$ is a partially ordered set under inclusion. First we show that $P_{a \lor b}$ is the infimum of $\{P_a, P_b\}$ and $P_{a \lor b}$ is the supremum of $\{P_a, P_b\}$.

From the theorem 3.2 of (ii), shows that $P_{a \lor b}$ is the infimum of $\{P_a, P_b\}$.

Let $t \in P_a$, then $t = a \lor x$ for some $x \in A$.

Now $t = a \lor x = (a \land (a \lor b)) \lor x = (a \land b) \lor a \lor x \in P_{a \land b}$. Therefore $P_a \subseteq P_{a \land b}$. Similarly we can prove that $P_b \subseteq P_{a \land b}$. Therefore $P_{a \land b}$ is an upper bound of P_a, P_b . Suppose P_c is the upper bound of P_a, P_b and $t \in P_{a \land b}$, then $t = (a \land b) \lor x$ for some $x \in A$.

Now $t = (a \land b) \lor x = \{a \land (a^{\sim} \lor b)\} \lor x = (a \lor x) \land (a^{\sim} \lor b \lor x) = (a \lor x) \land (b \lor a^{\sim} \lor x) \in S_c$

(since $a \lor x \in S_a \subseteq S_c$, $b \lor a^{\sim} \lor x \in S_b \subseteq S_c$ and S_c is closed under \land). Therefore $P_{a \land b}$ is the supremum of $\{P_a, P_b\}$. Denote supremum of $\{P_a, P_b\}$ by $P_a \lor P_b$ and infimum of $\{P_a, P_b\}$ by $P_a \land P_b$. Now $P_1 \land P_a = P_{1 \lor a} = P_a$ and $P_0 \lor P_a = P_{0 \land a} = P_0$. So P_1 is the least element and P_0 is the greatest element of $(\Im_{P(A)}, \subseteq)$. Now for any $a, b, c \in B(A)$, $(P_a \lor P_b) \land P_c = P_{(a \land b) \lor c} = P_{(a \lor c) \land (b \lor c)} = P_{a \lor c} \lor P_{b \lor c} = (P_a \land P_c) \lor (P_b \land P_c)$.

Also $P_a \wedge P_{a^-} = P_{a \vee a^-} = P_1$ and $P_a \vee P_{a^-} = P_{a \wedge a^-} = P_0$. Therefore $(\mathfrak{I}_{P(A)}, \subseteq)$ is a complimented distributive lattice and hence it is a Boolean algebra.

Theorem 3.6: Let A be a Pre A*-algebra with 1. Define $\varphi: B(A) \to \mathfrak{I}_{P(A)}$ by $\varphi(a) = P_{a^{-}}$ for all $a \in B(A)$. Then φ is an isomorphism.

Proof: Let $a, b \in B(A)$, then $\varphi(a \wedge b) = P_{(a \wedge b)^{-}} = P_{a^{-}} \wedge P_{b^{-}} = \varphi(a) \wedge \varphi(b)$; $\varphi(a \vee b) = P_{(a \vee b)^{-}} = P_{a^{-}} \vee P_{b^{-}} = \varphi(a) \vee \varphi(b)$ and $\varphi(a^{-}) = P_{a^{-}} = (P_{a})^{-} = (\varphi(a))^{-}$. Clearly φ is both one-one and onto. Hence $B(A) \cong \mathfrak{I}_{P(A)}$

In [5], defined partial ordering on Pre-A* algebra by $x \le y$ if and only if $x \land y = y \land x = x$ and studied the properties of this partial ordering. Given necessary and sufficient conditions for Pre A*-algebra to become a lattice. In[5,8], proved that if A is a Pre A*-algebra and $x \in A$, then $M_x = \{s \in A / s \le x\}$ is a Pre A*-algebra under the induced operations \land,\lor where the complementation is defined by $s^* = x \land s^-$ the relation defined on Pre A* algebra A by $s \le x$ if $s \land x = x \land s = s$ and the mapping $\alpha_x : A \to M_x$ defined by $\alpha_x(s) = x \land s$ for all $s \in A$ is a homomorphism of A onto M_x with kernel θ_x and hence $A / \theta_x \cong M_x$, where $\theta_x = \{(p,q) \in A \times A \mid x \land p = x \land q\}$. We can easily see that the Pre A*-algebras P_x, A_x are different in general where $x \in A$. Now, we prove that the set of all A_a 's where $a \in B(A)$ is a Boolean Algebra under set inclusion. The following theorem can be proved analogous to theorem 3.5.

Theorem 3.7: Let A be Pre A*-algebra with 1. Then $\mathfrak{T}_{M(A)} = \{M_a \mid a \in B(A)\}$ is a Boolean algebra under set inclusion in which the supremum of $\{A_a, A_b\} = A_{a \lor b}$ and the infimum $\{A_a, A_b\} = A_{a \land b}$ The Proof of the following theorem is analogous to that of theorem 3.6

International Journal of Mathematics Trends and Technology – Volume 7 Number 1 – March 2014

Theorem 3.8: Let A be a Pre A*-algebra with 1, define $\psi: B(A) \to \mathfrak{I}_{M(A)}$ by $\psi(a) = M_a$ for all $a \in B(A)$. Then ψ is an isomorphism

The following lemma can be proved directly from 3.6 and 3.8

Lemma 3.9: Let A be a Pre A*-algebra with 1, then B(A), $\mathfrak{I}_{P(A)}$ and $\mathfrak{I}_{M(A)}$ are isomorphic to each other.

References:

- [1] Fernando Guzman and Craig C.Squir: The Algebra of Conditional logic, Algebra Universalis 27(1990), 88-110
- [2] Manes E.G: The Equational Theory of Disjoint Alternatives, personal communication to Prof.N.V.Subrahmanyam(1989)
- [3] Koteswara Rao.P, A*-Algebra an If-Then-Else structures(Doctoral thesis) 1994, Nagarjuna University, A.P., India
- [4] Venkateswara Rao.J., On A*-Algebras(Doctoral Thesis) 2000, Nagarjuna University, A.P., India
- [5] Venkateswara Rao.J and Srinivasa Rao.K, Pre A*-Algebra as a Poset, African Journal of Mathematics and Computer Science Research.Vol.2 (4), pp 073-080, May 2009.
- [6] Venkateswara Rao.J and Srinivasa Rao.K, Congruence relation on Pre A*-Algebra, Journal of Mathematical Sciences, Vol.4, Issue 4,2009, page 295-312.
- [7] Srinivasa Rao.K, and Venkateswara Rao.J, Cayley's Theorem on Centre of a Pre -Algebra, International Journal of Computational and Applied Mathematics, Vol.5, No.1, 2010 pp 103- 111
- [8] Venkateswara Rao.J, Srinivasa Rao.K, D.Kalyani, Decomposition of Pre A*-Algebra, International Journal of Mathematical Sciences and ApplicationsVol. 1 No. 1, January, 2011
- [9] Manes E.G: Ada and the Equational Theory of If-Then-Else, Algebra Universalis 30(1993), 373-394.