Boolean Algebras of Pre A*-Algebra

Vijayabarathi. ${ }^{\# 1}$, Srinivasa Rao.K ${ }^{* 2}$
\#Assistant Professor, Department of Mathematics, SCSVMV University, Kanchipuram, India *Associate Professor, Department of Mathematics, SCSVMV University, Kanchipuram,India

Abstract- In this paper, we obtain Boolean algebras $\mathcal{J}_{P(A)}, \mathcal{J}_{\mathrm{M}(\mathrm{A})}$ from Pre A^{*}-algebra, and proved that $\mathcal{J}_{P(A)}, \mathcal{J}_{\mathrm{M}(\mathrm{A})}$ and $B(A)$ are isomorphic to each other.

Keywords- Pre A*-Algebra, Centre of Pre A*-Algebra, Boolean Algebra, Isomorphism, Partial Ordering

1. INTRODUCTION

In a draft paper [2], E.G.Maines introduced the concept of Ada (Algebra of disjoint alternatives) $\left(A, \wedge, \vee,(-)^{\prime},(-)_{\pi}, 0,1,2\right)$ which is however differ from the definition of the Ada of his later paper[9]. While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras $\left(A, \wedge, \vee,^{\prime}\right)$ introduced by Fernando Guzman and Craig C. Squir [1]. In [3], introduced the concept of A^{*}-algebra $\left(A, \wedge, \vee, *,(-)^{\sim}(-)_{\pi}, 0,1,2\right)$ and studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation also introduced the concept of A^{*}-clone, the If-Then-Else structure over A^{*}-algebra and Ideals of A^{*}-algebra. In [4], introduced the concept Pre A^{*}-algebra $\left(A, \wedge, \vee,(-)^{\sim}\right)$ analogous to C-algebra. In [5], defined partial ordering on Pre- A^{*} algebra by $x \leq y$ if and only if $x \wedge y=y \wedge x=x$ and studied the properties of this partial ordering. Given necessary and sufficient conditions for Pre A^{*}-algebra to become a lattice. In[6], defined congruence relation on Pre A^{*}-algebra by $\theta_{x}=\{(p, q) \in A \times A \mid x \wedge p=x \wedge q\}$ and studied the subdirectly irreducible representation of Pre A^{*}-algebra. In [7], defined ternary operation of Pre A^{*}-algebra, and established Cayley's theorem on Centre of Pre A^{*}-algebra. In [8], proved that if A is a Pre A^{*}-algebra, $x \in A$, then $M_{x}=\{s \in A / s \leq x\}$ is a Pre A^{*}-algebra under the induced operations \wedge, \vee where the complementation is defined by $s^{*}=x \wedge s^{\sim}$ the relation defined on Pre A* algebra A by $s \leq x$ if $s \wedge x=x \wedge s=s$ and the mapping $\alpha_{x}: A \rightarrow M_{x}$ defined by $\alpha_{x}(s)=x \wedge S$ for all $s \in A$ is a homomorphism of A onto M_{x} with kernel θ_{x} and hence $A / \theta_{x} \cong M_{x}$ also studied the decomposition of Pre A^{*}-algebra. In this paper we prove that three Boolean algebras $B(A), \mathfrak{J}_{P(A)}$ and $\Im_{\mathrm{M}(\mathrm{A})}$ are isomorphic to each other.

2. PRELIMANARIES

In this section we recall the definition of Pre A^{*}-algebra and some results from $[5,6]$ which will be required later.
2.1. Definition:

An algebra $\left(A, \wedge, \vee,(-) \tilde{)}\right.$ where A is non-empty set with $1, \wedge, \vee$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying
(a) $x^{\sim}=x, \quad \forall x \in A$
(b) $x \wedge x=x, \quad \forall x \in A$
(c) $x \wedge y=y \wedge x, \quad \forall x, y \in A$
(d) $(x \wedge y)^{\sim}=x^{\sim} \vee y^{\sim}, \quad \forall x, y \in A$
(e) $x \wedge(y \wedge z)=(x \wedge y) \wedge z, \quad \forall x, y, z \in A$
(f) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z), \quad \forall x, y, z \in A$
(g) $x \wedge y=x \wedge\left(x^{\sim} \vee y\right), \quad \forall x, y \in A$. is called a Pre A^{*}-algebra

2.2. Example:

$\mathbf{3}=\{0,1,2\}$ with operations $\wedge, \vee,(-)$ defined below is a Pre A^{*}-algebra.

\wedge	0	1	2
0	0	0	2
1	0	1	2
2	2	2	2

\vee	0	1	2
0	0	1	2
1	1	1	2
2	2	2	2

x	x^{\sim}
0	1
1	0
2	2

It can be observed that 2.1(a) and 2.1(b) imply that the varieties of Pre A*-algebras satisfies all dual statements of 2.1(b) to 2.1(g).

Lemma2.3: Every Pre A^{*}-algebra satisfies the following laws[5,6]
(a) $x \vee 1=x \vee x^{\sim}$ and $x \wedge 0=x \wedge x^{\sim}$
(c) $x \wedge\left(x^{\sim} \vee x\right)=x \vee\left(x^{\sim} \wedge x\right)=x$
(d) $\left(x \vee x^{\sim}\right) \wedge \mathrm{y}=(\mathrm{x} \wedge \mathrm{y}) \vee\left(\mathrm{x}^{\sim} \wedge \mathrm{y}\right)$
(e) $(x \vee y) \wedge z=(x \wedge z) \vee\left(x^{\sim} \wedge \mathrm{y} \wedge \mathrm{z}\right)$
(f) $x \wedge y=0, x \vee y=1$, then $y=x^{\sim}$
(g) If $x \vee y=0$, then $x=y=0$ and If $x \vee y=1$, then $x \vee x^{\sim}=1$

Definition 2.4. [5]: Let A be a Pre A*-algebra. An element $x \in A$ is called central element of A if $x \vee x^{\sim}=1$ and the set $\{x \in A / x \vee x \sim=1\}$ of all central elements of A is called the centre of A and it is denoted by $B(A)$.

Theorem 2.5. [5]: Let A be a Pre A^{*}-algebra with 1 , then $B(A)$ is a Boolean algebra with the induced operations $\wedge, \vee,(-)^{\sim}$ Lemma2.6. [5]: Let A be a Pre A^{*}-algebra with 1 ,
(a) If $y \in B(A)$ then $x \wedge x^{\sim} \wedge y=x \wedge x^{\sim}, \forall x \in \mathrm{~A}($ b) If $x, y \in B(\mathrm{~A})$ then $x \wedge(x \vee y)=x \vee(x \wedge y)=x$

Lemma 2.7. [6] : Let $\left(A, \wedge, \vee,(-)^{\sim}\right)$ be a Pre A^{*}-algebra and let $a \in A$.Then the relation $\theta_{a}=\{(x, y) \in A \times A / a \wedge x=a \wedge y\}$ is (a) a congruence relation (b) $\theta_{a} \cap \theta_{a^{\sim}}=\theta_{a \vee a^{\sim}}$
(c) $\theta_{a} \cap \theta_{b} \subseteq \theta_{a \vee \mathrm{~b}}$ (d) $\theta_{a} \cap \theta_{a^{\sim}} \subseteq \theta_{a \wedge a^{\sim}}$

Lemma 2.8 [6]: Let A be a Pre A*-algebra and $a, b \in B(A)$, then $\theta_{a} \cap \theta_{b}=\theta_{a \vee \mathrm{~b}}$
Lemma 2.9 [6]: Let A be a Pre A*-algebra, let Δ_{A} denote the trivial congruence on A: $\Delta_{A}=\{(x, x) / x \in A\}$ then (a) $\theta_{a}=\Delta_{A}$ if and only if $a \wedge x=x, \forall x \in \mathrm{~A}$ (b) $\theta_{a}=A \times A$ if and only if $a \wedge x=a, \forall x \in \mathrm{~A}$ $(a, b) \in \theta_{a}, \theta_{b}$ then $a=b(\mathrm{~d})$ If $a \in B(A)$ then $\theta_{a} \cap \theta_{a^{\sim}}=\Delta_{A}$

Theorem 2.10. [6] :Let A be a Pre A*-algebra, then $A / \theta=\left\{\theta_{a} / a \in A\right\}$ is a Pre A*-algebra, is called quotient Pre A*Algebra, whose operations are defined as $\theta_{a} \wedge \theta_{b}=\theta_{a \wedge b}, \theta_{a} \vee \theta_{b}=\theta_{a \vee b}$ an $\left(\theta_{a}\right)^{\sim}=\theta_{a^{\sim}}$

Definition 2.11.[6]:An algebra A is called subdirectly irreducible provided there is a congruence ϕ on A such that $\phi \neq \Delta_{A}$, and if $\theta \neq \Delta_{A}$ is a congruence on A, then $\phi \subseteq \theta$

Theorem 2.12. [6] : $\mathbf{2}$ and $\mathbf{3}$ are the only sub-directly irreducible Pre A*-algebras.
Corollary 2.13. [6]: Every Pre A^{*}-algebra is a sub algebra of a product of copies of $\mathbf{3}$.
Lemma 2.14. [6]: Let A be Pre A*-algebra with 1 and $a, b \in B(A)$ then(a) θ_{a} o $\theta_{b}=\theta_{a \wedge b}$ (b) θ_{a} o $\theta_{b}=\theta_{b}$ o θ_{a} (c) $\theta_{a} \subseteq \theta_{b}$ if and only if $b=a \wedge b$ (d) θ_{a} o $\theta_{a^{\sim}}=\mathrm{A} \times \mathrm{A}$

Definition 2.15.[6]:A congruence θ on an algebra A is called a factor congruence on A if there is a congruence ϕ on A such that $\theta \cap \phi=\Delta_{A}$ and $\theta \circ \phi=A \times A$.

Theorem 2.16.[6]: Let A be a Pre A*-algebra with 1 and θ be congruence on A. If $\theta=\theta_{x}$ for some $x \in B(A)$, then θ_{x} is a factor congruence on A.
Now we prove some important properties of Pre A*-algebra
Theorem 2.17: Let A be a Pre A*-Algebra and $x, y \in A$, then $x \vee x^{\sim} \vee y=x \vee y \vee y^{\sim}$
Proof: $x \vee x^{\sim} \vee y=x \vee\left(y \vee x^{\sim}\right)$

$$
\begin{aligned}
& =x \vee\left\{y \vee\left(y^{\sim} \wedge x^{\sim}\right)\right\} \\
& =(x \vee y) \vee\left\{x \vee\left(y^{\sim} \wedge x^{\sim}\right)\right\} \\
& =(x \vee y) \vee\left\{x \vee\left(x^{\sim} \wedge y^{\sim}\right)\right\} \\
& =(x \vee y) \vee\left(x \vee y^{\sim}\right) \\
& =x \vee y \vee y^{\sim}
\end{aligned}
$$

Theorem.2.18:Let A be a Pre A*-Algebra and $x, y \in A,\{x \vee(x \wedge y)\} \vee\left\{x^{\sim} \vee\left(x^{\sim} \wedge y\right)\right\}=x \vee x^{\sim} \vee y$
Proof: $\{x \vee(x \wedge y)\} \vee\left\{x^{\sim} \vee\left(x^{\sim} \wedge y\right)\right\}=x \vee(x \wedge y) \vee x^{\sim} \vee\left(x^{\sim} \wedge y\right)$

$$
\begin{aligned}
& =\left\{x^{\sim} \vee(x \wedge y)\right\} \vee\left\{x \vee\left(x^{\sim} \wedge y\right)\right\} \\
& =x \vee y \vee x \vee y \\
& =x \sim \vee x \vee y \\
& =x \vee x \sim y
\end{aligned}
$$

Theorem.2.19: Let A be a Pre A*-algebra with 1 and $x, y \in A$ such that $x \vee y \in B(A)$ then $x \in B(A)$
Proof: Let a Pre A^{*}-algebra with 1 and $x, y \in A$ such that $x \vee y \in B(A)$ then

$$
\begin{aligned}
& 1=(x \vee y) \vee(x \vee y)^{\sim} \\
& =(x \vee y) \vee\left(x^{\sim} \wedge y^{\sim}\right) \\
& =\left(x \vee y \vee x^{\sim}\right) \wedge\left(x \vee y \vee y^{\sim}\right) \\
& =\left(x \vee x^{\sim} \vee y\right) \wedge\left(x \vee y \vee y^{\sim}\right) \\
& =\left(x \vee y \vee y^{\sim}\right) \wedge\left(x \vee y \vee y^{\sim}\right) \quad \text { (Theorem 2.17) } \\
& =x \vee y \vee y^{\sim}
\end{aligned}
$$

Therefore $1=x \vee y \vee y^{\sim}$-----(a)
Now $\quad x \vee x^{\sim}=\left(x \vee x^{\sim}\right) \wedge 1$

$$
\begin{aligned}
& =\left(x \vee x^{\sim}\right) \wedge\left(x \vee y \vee y^{\sim}\right) \\
& =\left[x \wedge\left(x \vee y \vee y^{\sim}\right)\right] \vee\left[x^{\sim} \wedge\left(x \vee y \vee y^{\sim}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[x \wedge\left(x \vee x \sim x^{\sim}\right)\right] \vee\left[x^{\sim} \wedge\left(x \vee x^{\sim} \vee y\right)\right] \quad \text { Theorem } 2.17 \\
& =[x \wedge\{x \sim(x \vee y)\}] \vee[\tilde{x} \wedge\{x \vee(x \sim y)\}] \\
& =[x \wedge(x \vee y)] \vee[\tilde{x} \wedge(x \sim \vee y)] \quad \text { Property } 2.1(\mathrm{~g}) \\
& =[x \vee(x \wedge y)] \vee\left[x^{\sim} \vee(x \sim \wedge y)\right] \\
& =(x \vee y) \vee\left(x^{\sim} \vee y\right) \\
& =x \vee x^{\sim} \vee y \\
& =x \vee y \vee y^{\sim} \quad \text { Theorem } 2.17 \\
& =1
\end{aligned}
$$

This shows that $x \in B(A)$
The converse of the above theorem need not be true. For example, in the Pre-A* Algebra A, we know $0 \in B(A)$ but $0 \vee 2=2 \notin B(A)$. We have the following consequence of the above theorem.

Lemma.2.20: Let A be a Pre-A* Algebra with $1, a, b \in A$ and $a \wedge b \in B(A)$, then $a \in B(A)$
Proof: Let $a \wedge b \in B(A)$, then we have $(a \wedge b)^{\sim} \in B(A) \Rightarrow a^{\sim} \vee b^{\sim} \in B(A)$

$$
\Rightarrow a^{\sim} \in B(A)
$$

$$
\Rightarrow a \in B(A)
$$

3. The Pre A^{*}-Algebra

We prove that, for each $x \in A, P_{x}=\{x \vee t / t \in A\}$ is itself a Pre-A* algebra under induced operations \wedge, \vee and unary operation is defined by $(x \vee t)^{*}=x \wedge t^{\sim}$. We observe that P_{x} need not be a sub-algebra of A because the unary operation in P_{x} is not the restriction of the unary operation on A. Also for each $x \in A$, the set $M_{x}=\{s \in A / s \leq x\}$ is a Pre A*-algebra under the induced operations \wedge, \vee where the complementation is defined by $s^{*}=x \wedge S^{\sim}$. We prove that $\mathfrak{J}_{\mathrm{P}(A)}=\left\{P_{a} \mid a \in B(A)\right\}$ and $\mathfrak{J}_{\mathrm{M}(A)}=\left\{M_{a} \mid a \in B(A)\right\}$ is a Boolean algebras under set, also we establish that $B(A), \mathfrak{J}_{P(A)}$ and $\mathfrak{I}_{\mathrm{M}(\mathrm{A})}$ are isomorphic to each other
Theorem 3.1: Let $<A, \wedge, \vee,^{\sim}>$ be a Pre -A* algebra, $x \in A$ and $P_{x}=\{x \vee t / t \in A\}$, then $<P_{x}, \wedge, \vee, *>$ is a Pre-A* algebra with x as the identity for \vee, where \wedge and \vee are the operations in A restricted to P_{x} and for any $x \vee t \in P_{x}$, here $(x \vee t)^{*}=x \vee t^{\sim}$
Proof:
Let $a, b, c \in A$.Then $(x \vee a) \vee(x \vee b)=x \vee(a \vee b) \in P_{x} \quad$ and $(x \vee a) \wedge(x \vee b)=x \vee(a \wedge b) \in P_{x}$. Thus \vee, \wedge are closed in P_{x} Consider $(x \vee a)^{* *}=\left\{(x \vee a)^{*}\right\}^{*}=\left(x \vee a^{\sim}\right)^{*}=\left(x \vee a^{\sim \sim}\right)=(x \vee a)$. Therefore $(x \vee a)^{* *}=(x \vee a)$.
Now $[(x \vee a) \wedge(x \vee b)]^{*}=[x \vee(a \wedge b)]^{*}=x \vee(a \wedge b)^{\sim}=x \vee\left(a^{\sim} \vee b^{\sim}\right)=(x \vee a)^{*} \wedge(x \vee b)^{*}$
$(x \vee a) \wedge\left\{(x \vee a)^{*} \vee(x \vee b)\right\}=(x \vee a) \wedge\left\{\left(x \vee a^{\sim}\right) \vee(x \vee b)\right\}$

$$
\begin{aligned}
& =(x \vee a) \wedge\left\{\left(x \vee\left(a^{\sim} \vee b\right)\right\}\right. \\
& =x \vee\left(a \wedge\left(a^{\sim} \vee b\right)\right. \\
& =x \vee(a \wedge b)
\end{aligned}
$$

The remaining identities of Pre A*-algebra also hold in P_{x} because they hold in A. Hence P_{x} is itself a Pre A^{*}-algebra. Here x is the identity for \vee because $x \vee x \vee a=x \vee a \vee x=x \vee a$ and $x \vee x^{\sim}$ is the identity for \wedge because $\left(x \vee x^{\sim}\right) \wedge(x \vee a)=x \vee\left(x^{\sim} \wedge a\right)=x \vee a$

Theorem 3.2: Let A be a Pre A*-algebra. Then the following holds.
(i) $P_{x}=P_{y}$ if and only if $x=y$
(ii) $P_{x} \cap P_{y}=P_{x \vee y}$
(iii) $\left(P_{x}\right)_{x \vee y}=P_{x \vee y}$

Proof: Suppose $P_{x}=P_{y}$. Since $x=x \vee x \in P_{x}=P_{y}$ and $y=y \vee y \in P_{y}=P_{x}$. Therefore $x=y \vee a$ and $y=x \vee b$ for some $a, b \in A$. Now, $x=y \vee a=(y \vee a \vee y) \vee(y \vee y \vee a)=(x \vee y) \wedge(y \vee x)=(x \vee x \vee b) \wedge(x \vee b \vee x)=x \vee b$ $=y$. The converse is trivial
(ii) Suppose $a \in P_{x} \cap P_{y}$. Then $a=x \vee b=y \vee c$ for some $b, c \in A$.

Now $a=x \vee x \vee b=x \vee a=x \vee y \vee c \in P_{x \vee y}$. Therefore $P_{x} \cap P_{y} \subseteq P_{x \vee y}$
Let $a \in P_{x \vee y}$, then $a=x \vee y \vee b$ for some $b \in A$
Now $a=x \vee y \vee b=x \vee t \in P_{x}$, where $t=y \vee b$
Again $a=x \vee y \vee b=a=y \vee x \vee b=y \vee s \in P_{y}$, where $s=x \vee b$. So $a \in P_{x} \cap P_{y}$.
Therefore $P_{x \vee y} \subseteq P_{x} \cap P_{y}$
Hence $P_{x} \cap P_{y}=P_{x \vee y}$
(iii) $\left(P_{x}\right)_{x \vee y}=\left\{x \vee y \vee a / a \in P_{x}\right\}=\{x \vee y \vee x \vee b \mid b \in A\}=\{x \vee y \vee b \mid b \in A\}=P_{x \vee y}$

Theorem 3.3: Let A be a Pre A^{*}-algebra with 1 and $x \in A$, then the mapping $\alpha_{x}: A \rightarrow P_{x}$ defined by $\alpha_{x}(t)=x \vee a$ for all $a \in A$ is a homomorphism of A to P_{x} with kernel $\theta_{x^{\sim}}$ and hence $A \mid \theta_{x^{-}} \cong P_{x}$
Proof : Let $a, b \in A$, then $\alpha_{x}(a \vee b)=x \vee a \vee b=x \vee a \vee x \vee b=\alpha_{x}(a) \vee \alpha_{x}(b)$ and $\alpha_{x}\left(a^{\sim}\right)=x \vee a^{\sim}=$ $(x \vee a)^{*}=\left(\alpha_{x}(a)\right)^{*} \quad$ Clearly $\quad \alpha_{x}(a \wedge b)=x \vee(a \wedge b) \quad=(x \vee a) \wedge(x \vee b)=\alpha_{x}(a) \wedge \alpha_{x}(b)$.
Also $\alpha_{x}(1)=x \vee 1=x \vee x^{\sim}$, which is the identity for \wedge in P_{x}. Therefore α_{x} is a homomorphism. Hence by the fundamental theorem of homomorphism $A \mid \operatorname{Ker} \alpha_{x} \cong P_{x}$ and

$$
\begin{aligned}
\operatorname{Ker} \alpha_{x} & =\left\{(a, b) \in A \times A \mid \alpha_{x}(a)=\alpha_{x}(b)\right\} \\
& =\{(a, b) \in A \times A \mid x \vee a=y \vee b\} \\
& =\left\{(a, b) \in A \times A \mid x^{\sim} \wedge a=y^{\sim} \wedge b\right\}=\theta_{x^{\sim}} \text { and hence } A \mid \theta_{x^{\sim}} \cong P_{x}
\end{aligned}
$$

Theorem 3.4: Let A be a Pre A*-algebra with 1 and $a \in B(\mathrm{~A})$, then $A \cong P_{a} \times P_{a^{\sim}}$.
Proof: Define $\alpha: A \rightarrow P_{a} \times P_{a^{-}}$by $\alpha(x)=\left(\alpha_{a}(x), \alpha_{a^{-}}(x)\right)$ for all $x \in A$. Then by Theorem 3.3, α is well-defined and α is a homogenous. Now we prove that α is one-one.
Let $x, y \in A$ and

$$
\alpha(x)=\alpha(y)
$$

$$
\Rightarrow\left(\alpha_{a}(x), \alpha_{a^{-}}(x)\right)=\left(\alpha_{a}(y), \alpha_{a^{\sim}}(y)\right)
$$

$$
\Rightarrow\left(a \vee x, a^{\sim} \vee x\right)=\left(a \vee y, a^{\sim} \vee y\right) \Rightarrow a \vee x=a \vee y \text { and } a^{\sim} \vee x=a^{\sim} \vee y
$$

Now $x=1 \vee x=\left(a \wedge a^{\sim}\right) \vee x=(a \vee x) \wedge\left(a^{\sim} \vee x\right)=(a \vee y) \wedge\left(a^{\sim} \vee y\right)=y$.
Finally, we prove that α is onto.
Let $\quad(x, y) \in P_{a} \times P_{a^{\sim}}$, then $x=a \vee t$ and $y=a^{\sim} \vee r$ for some $t, r \in A$. Therefore, $a \vee x=a \vee a \vee t=a \vee t=x$,
$a \vee y=a \vee a^{\sim} \vee r=1 \vee r=1$ and $a^{\sim} \vee x=a^{\sim} \vee a \vee t=1 \vee t=1, a^{\sim} \vee y=a^{\sim} \vee a^{\sim} \vee r=a \sim \vee r=y$.
Now $\alpha(x \wedge y)=\left(\alpha_{a}(x \wedge y), \alpha_{a^{-}}(x \wedge y)\right)$

$$
\begin{aligned}
& =(a \vee(x \wedge y), \tilde{a} \vee(x \wedge y)) \\
& =\left((a \vee x) \wedge(a \vee y),(a \sim \vee x) \wedge\left(a^{\sim} \vee y\right)\right) \quad=(x \wedge 1,1 \wedge y)=(x, y)
\end{aligned}
$$

Therefore α is onto and is an isomorphism. Therefore $A \cong P_{a} \times P_{a \sim}$
Theorem 3.5: Let $<A, \wedge, \vee,^{\sim}>$ be a Pre A*-algebra with 1, then the set $\mathfrak{J}_{\mathrm{P}(A)}=\left\{P_{a} \mid a \in B(A)\right\}$ is a Boolean algebra under set inclusion.
Proof: Clearly $\left(\Im_{\mathrm{P}(A)}, \subseteq\right)$ is a partially ordered set under inclusion. First we show that $P_{a \vee b}$ is the infimum of $\left\{P_{a}, P_{b}\right\}$ and $P_{a \wedge b}$ is the supremum of $\left\{P_{a}, P_{b}\right\}$.
From the theorem 3.2 of (ii), shows that $P_{a \vee b}$ is the infimum of $\left\{P_{a}, P_{b}\right\}$.
Let $t \in P_{a}$, then $t=a \vee x$ for some $x \in A$.
Now $t=a \vee x=(a \wedge(a \vee b)) \vee x=(a \wedge b) \vee a \vee x \in P_{a \wedge b}$. Therefore $P_{a} \subseteq P_{a \wedge b}$. Similarly we can prove that $P_{b} \subseteq P_{a \wedge b}$. Therefore $P_{a \wedge b}$ is an upper bound of P_{a}, P_{b}. Suppose P_{c} is the upper bound of P_{a}, P_{b} and $t \in P_{a \wedge b}$, then $t=(a \wedge b) \vee x$ for some $x \in A$.
Now $t=(a \wedge b) \vee x=\left\{a \wedge\left(a^{\sim} \vee b\right)\right\} \vee x=(a \vee x) \wedge\left(a^{\sim} \vee b \vee x\right)=(a \vee x) \wedge\left(b \vee a^{\sim} \vee x\right) \in S_{c}$
(since $a \vee x \in S_{a} \subseteq S_{c}, b \vee a^{\sim} \vee x \in S_{b} \subseteq S_{c}$ and S_{c} is closed under \wedge). Therefore $P_{a \wedge b}$ is the supremum of $\left\{P_{a}, P_{b}\right\}$. Denote supremum of $\left\{P_{a}, P_{b}\right\}$ by $P_{a} \vee P_{b}$ and infimum of $\left\{P_{a}, P_{b}\right\}$ by $P_{a} \wedge P_{b}$. Now $P_{1} \wedge P_{a}=P_{1 \vee a}=P_{a}$ and $P_{0} \vee P_{a}=P_{0 \wedge a}=P_{0}$. So P_{1} is the least element and P_{0} is the greatest element of $\left(\mathfrak{J}_{\mathrm{P}(A)}, \subseteq\right)$. Now for any $a, b, c \in B(\mathrm{~A})$, $\left(P_{a} \vee P_{b}\right) \wedge P_{c}=P_{(a \wedge b) \vee c}=P_{(a \vee c) \wedge(b \vee c)}=P_{a \vee c} \vee P_{b \vee c}=\left(P_{a} \wedge P_{c}\right) \vee\left(P_{b} \wedge P_{c}\right)$.
Also $P_{a} \wedge P_{a^{\sim}}=P_{a \vee a^{\sim}}=P_{1}$ and $P_{a} \vee P_{a^{\sim}}=P_{a \wedge a^{\sim}}=P_{0}$. Therefore $\left(\Im_{\mathrm{P}(A)}, \subseteq\right)$ is a complimented distributive lattice and hence it is a Boolean algebra.

Theorem 3.6: Let A be a Pre A*-algebra with 1. Define $\varphi: B(A) \rightarrow \mathfrak{J}_{\mathrm{P}(\mathrm{A})}$ by $\varphi(a)=P_{a^{\sim}}$ for all $a \in B(\mathrm{~A})$. Then φ is an isomorphism.
Proof: Let $a, b \in B(\mathrm{~A})$, then $\varphi(a \wedge b)=P_{(a \wedge b)^{\sim}}=P_{a^{\sim}} \wedge P_{b^{\sim}}=\varphi(a) \wedge \varphi(b) ; \varphi(a \vee b)=P_{(a \vee b)^{\sim}}=P_{a^{\sim}} \vee P_{b^{\sim}}$ $=\varphi(a) \vee \varphi(b)$ and $\varphi\left(a^{\sim}\right)=P_{a^{\sim}}=\left(P_{a}\right)^{\sim}=(\varphi(a))^{\sim}$. Clearly φ is both one-one and onto. Hence $B(A) \cong \mathfrak{I}_{P(\mathrm{~A})}$
In [5], defined partial ordering on Pre-A* algebra by $x \leq y$ if and only if $x \wedge y=y \wedge x=x$ and studied the properties of this partial ordering. Given necessary and sufficient conditions for Pre A*-algebra to become a lattice. In[5,8], proved that if A is a Pre A*-algebra and $x \in A$, then $M_{x}=\{s \in A / s \leq x\}$ is a Pre A^{*}-algebra under the induced operations \wedge, \vee where the complementation is defined by $s^{*}=x \wedge s^{\sim}$ the relation defined on Pre A* algebra A by $s \leq x$ if $s \wedge x=x \wedge s=s$ and the mapping $\alpha_{x}: A \rightarrow M_{x}$ defined by $\alpha_{x}(s)=x \wedge s$ for all $s \in A$ is a homomorphism of A onto M_{x} with kernel θ_{x} and hence $A / \theta_{x} \cong M_{x}$, where $\theta_{x}=\{(p, q) \in A \times A \mid x \wedge p=x \wedge q\}$. We can easily see that the Pre A*-algebras P_{x}, A_{x} are different in general where $x \in A$.Now, we prove that the set of all A_{a} 's where $a \in B(A)$ is a Boolean Algebra under set inclusion. The following theorem can be proved analogous to theorem 3.5.

Theorem 3.7: Let A be Pre A*-algebra with 1. Then $\mathfrak{J}_{\mathrm{M}(A)}=\left\{M_{a} \mid a \in B(A)\right\}$ is a Boolean algebra under set inclusion in which the supremum of $\left\{A_{a}, A_{b}\right\}=A_{a \vee b}$ and the infimum $\left\{A_{a}, A_{b}\right\}=A_{a \wedge b}$ The Proof of the following theorem is analogous to that of theorem 3.6

Theorem 3.8: Let A be a Pre A*-algebra with 1, define $\psi: B(A) \rightarrow \mathfrak{J}_{\mathrm{M}(\mathrm{A})}$ by $\psi(a)=M_{a}$ for all $a \in B(A)$. Then ψ is an isomorphism
The following lemma can be proved directly from 3.6 and 3.8
Lemma 3.9: Let A be a Pre A*-algebra with 1, then $B(A), \mathfrak{J}_{P(A)}$ and $\mathfrak{J}_{\mathrm{M}(\mathrm{A})}$ are isomorphic to each other.

References:

[1] Fernando Guzman and Craig C.Squir: The Algebra of Conditional logic, Algebra Universalis 27(1990), 88-110
[2] Manes E.G: The Equational Theory of Disjoint Alternatives, personal communication to Prof.N.V.Subrahmanyam(1989)
[3] Koteswara Rao.P, A*-Algebra an If-Then-Else structures(Doctoral thesis) 1994, Nagarjuna University, A.P., India
[4] Venkateswara Rao.J., On A*-Algebras(Doctoral Thesis) 2000, Nagarjuna University, A.P., India
[5] Venkateswara Rao.J and Srinivasa Rao.K, Pre A*-Algebra as a Poset, African Journal of Mathematics and Computer Science Research.Vol. 2 (4), pp 073-080, May 2009.
[6] Venkateswara Rao.J and Srinivasa Rao.K, Congruence relation on Pre A*-Algebra, Journal of Mathematical Sciences, Vol.4, Issue 4,2009, page 295-312.
[7] Srinivasa Rao.K, and Venkateswara Rao.J , Cayley's Theorem on Centre of a Pre -Algebra, International Journal of Computational and Applied Mathematics, Vol.5, No.1, 2010 pp 103- 111
[8] Venkateswara Rao.J, Srinivasa Rao.K, D.Kalyani, Decomposition of Pre A*-Algebra, International Journal of Mathematical Sciences and ApplicationsVol. 1 No. 1, January, 2011
[9] Manes E.G: Ada and the Equational Theory of If-Then-Else, Algebra Universalis 30(1993), 373-394.

