(Sp)^{*} Closed Sets in Topological Spaces

L. Elvina Mary,

Assistant Professor, Nirmala College for Women, Coimbatore.

R.Chitra,

PG student, Nirmala College for Women, Coimbatore.

Abstract:

In this paper we introduce a new class of sets namely, (sp)^{*}-closed sets and properties of this set are investigated. We introduce (sp)^{*}-continuous maps and (sp)^{*}-irresolute maps.

Keywords: (sp)*-closed sets, (sp)*-continuous and (sp)*-irresolute.

1. INTRODUCTION:

Levine [10], Mashhour et. al. [14], Njastad [16] and Abd El-Monsef et. al. [1] introduced semi-open sets, preopen sets, α -sets and semi-pre-open sets respectively. Levine [9] introduced generalized closed (briefly g-closed) sets in 1970. Maki et. al.[12] and Bhattacharya and Lahiri [5] introduced and studied $g\alpha$ –closed sets and sg-closed sets respectively. Maki et. al. [11] introduced αg -closed sets. S.P.Arya and T.Nour [3] defined gs-closed sets in 1994. Dontchev [7] introduced gsp-closed sets by generalizing semi-pre-open sets. In this paper we introduce a new class of sets namely (sp)^{*}-closed sets. Further we introduce (sp)^{*}-continuous maps and (sp)^{*}-irresolute maps.

2. PRELIMINARIES:

Throughout this paper (X, τ) represents a non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space (X, τ) , cl(A) and int(A) and α Cl(A)denote the closure, interior and α closure of the subset A.

Definition:2.1

A subset A of a topological space (X, τ) is said to be a

- 1. pre-closed[14] if $cl(int(A)) \subseteq A$.
- 2. semi-closed[10] if $int(cl(A)) \subseteq A$.
- 3. semi-pre-closed[1] if $int(cl(Int(A))) \subseteq A$.
- 4. α -closed[16] if cl(Int(cl(A))) \subseteq A.
- 5. g-closed[9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 6. gsp-closed[7] if spcl(A) \subseteq U whenever A \subseteq U and U is open.
- 7. αg -closed[11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 8. $g\alpha$ -closed[12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.

9. sg-closed[5] if scl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.

10. gp-closed[13] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

11. α^* -closed[18] if cl(A) \subseteq U whenever A \subseteq U and U is α -open in X.

12. gs-closed[3] if scl(A) \subseteq U whenever A \subseteq U and U is open in X.

13. ωg -closed[15] if cl(int(A)) $\subseteq U$ whenever $A \subseteq U$ and U is open in X.

14. g-closed[17] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.

Definition:2.2

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a

- 1. α -continuous[16] if f⁻¹(V) is α -closed in (X, τ) for every closed set V of (Y, σ).
- 2. g-continuous[4] if $f^{1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ).
- 3. sg-continuous[5] if $f^{1}(V)$ is sg-closed in (X, τ) for every closed set V of (Y, σ).

4. gs-continuous[6] if $f^{1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ).

5. αg -continuous[8] if $f^{1}(V)$ is αg -closed in (X, τ) for every closed set V of (Y, σ).

6. $g\alpha$ -continuous[12] if $f^{-1}(V)$ is $g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ).

7. gsp-continuous[7] if $f^{1}(V)$ is gsp- closed in (X, τ) for every closed set V of (Y, σ).

8. gp-continuous[2] if $f^{1}(V)$ is gp-closed in (X, τ) for every closed set V of (Y, σ).

9. ωg -continuous[15] if $f^{1}(V)$ is ωg -closed in (X, τ) for every closed set V of (Y, σ).

10. α^* -continuous[18] if f¹(V) is α^* -closed in (X, τ) for every closed set V of (Y, σ).

11. \hat{g} -continuous[17] if $f^{-1}(V)$ is \hat{g} -closed in (X, τ) for every closed set V of (Y, σ).

3. Basic Properties of (sp)^{*}-Closed Sets:

We introduce the following definition.

Definition 3.01: A subset A of a topological space (X, τ) is said to be $(sp)^*$ -closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-pre-open in X.

Theorem 3.02: Every closed set is (sp)^{*}-closed.

Proof follows from the definition.

Theorem 3.03: Every (sp)^{*}-closed set is gsp-closed.

Proof: Let A be $(sp)^*$ -closed. Let A \subseteq U and U be open. Then A \subseteq U and U is semi-pre-open and $cl(A) \subseteq U$, since A is $(sp)^*$ -closed. Then $spcl(A) \subseteq cl(A) \subseteq U$. Therefore A is gsp-closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.04:Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b,c\}, X\}$ A={a,b} is gsp-closed but not (sp)*-closed in (X, τ)

Theorem 3.05: Every (sp)^{*}-closed set is g-closed.

Proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.06: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b,c\}, X\}$. A={a,c} is g-closed but not (sp)*-closed in (X, τ)

Theorem 3.07: Every (sp)^{*}-closed set is gs-closed.

Proof: Let A be $(sp)^*$ -closed. Let A \subseteq U and U be open. Then A \subseteq U and U is semi-pre-open and $cl(A) \subseteq U$, since A is $(sp)^*$ -closed. Then $scl(A) \subseteq cl(A) \subseteq U$. Hence A is $(sp)^*$ -closed.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.08: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. A={c} is gs-closed but not a (sp)*-closed set in (X, τ)

Theorem 3.09: Every (sp)^{*}-closed set is gp-closed.

Proof: Let A be (sp)^{*}-closed. Let A \subseteq U and U be open. Then A \subseteq U and U is semi-pre-open and cl(A) \subseteq U, since A is (sp)^{*}-closed. Then $pcl(A) \subseteq cl(A) \subseteq U$. Hence A is gp-closed.

The converse of the above Theorem is not true always as seen in the following example.

Example 3.10: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. A={a,c} is gp-closed but not (sp)*-closed in (X, τ) .

Theorem 3.11: Every (sp)^{*}-closed set is sg-closed.

Proof: Let A be $(sp)^*$ -closed. Let A \subseteq U and U be semi-pre-open. Then A \subseteq U and U is semi-preopen and cl(A) \subseteq U since A is $(sp)^*$ -closed. Then $scl(A) \subseteq cl(A) \subseteq U$. Hence A is sg-closed.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.12:Let X={a,b,c}, $\tau = {\phi, {a}, X}$.A={c} is sg-closed but not (sp)^{*}-closed in (X, τ)

Theorem 3.13: Every (sp)*-closed set is $\stackrel{\frown}{g}$ -closed.

Proof follows from the definition.

The converse of the above theorem need not be true in general as it can be seen from the following example.

Example 3.14: Let X={a,b,c} $\tau = \{\phi, \{b, c\}, X\}$. A={a,c} is g-closed but not (sp)*-closed in (X, τ)

Theorem 3.15: Every $(sp)^*$ -closed set is αg -closed.

Proof: Let A be $(sp)^*$ -closed. Let A \subseteq U and U be open. Then A \subseteq U and U is semi-pre-open and cl(A) \subseteq U, since A is $(sp)^*$ -closed. Then α cl(A) \subseteq cl(A) \subseteq U. Hence A is αg -closed.

The following example supports that the converse of the above theorem is not true.

Example 3.16: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. A={b} is αg -closed but not (sp)*-closed in (X, τ) .

Theorem 3.17: Every (sp)^{*}-closed set is $g\alpha$ -closed.

Proof: Let A be $(sp)^*$ -closed. Let A \subseteq U and U be α -open. Then A \subseteq U and U is semi-pre-open and cl(A) \subseteq U, since A is $(sp)^*$ -closed. Then α cl(A) \subseteq cl(A) \subseteq U. Hence A is $g\alpha$ -closed.

The converse of the above theorem is not true always as seen in the following example.

Example 3.18: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. A={c} is $g\alpha$ -closed but not (sp)*-closed in (X, τ)

Theorem 3.19: Every $(sp)^*$ -closed set is ωg -closed.

Proof: Let A be $(sp)^*$ -closed. Let A \subseteq U and U be open. Then A \subseteq U and U is semi-pre-open and $cl(A) \subseteq U$, since A is $(sp)^*$ -closed. Then $cl(int(A)) \subseteq cl(A) \subseteq U$. Hence A is ωg -closed.

The converse of the above theorem is not true always as seen in the following example.

Example 3.20: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. A={b} is ωg -closed but not (sp)*-closed in (X, τ) .

Theorem 3.21: Every (sp)^{*}-closed set is α ^{*}-closed.

Proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.22: Let X={a,b,c}, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. A={c} is α^* -closed but not (sp)*-closed in (X, τ) .

Theorem 3.23: If A and B are $(sp)^*$ -closed, then $A \cup B$ is also $(sp)^*$ -closed.

Proof: Let A and B are $(sp)^*$ -closed sets. Let $A \cup B$ where U is semi-pre-open. $cl(A \cup B) = cl(A) \cup cl(B) \subseteq U$. Hence $A \cup B$ is $(sp)^*$ -closed.

Theorem 3.24: If A is $(sp)^*$ -closed set $\ni A \subseteq B \subseteq cl(A)$ then, B is also a $(sp)^*$ -closed set.

Proof: Let A be $(sp)^*$ -closed set and $A \subseteq B \subseteq cl(A)$. Let $B \subseteq U$ where U is semi-pre-open.

 $B \subseteq cl(A), cl(B) \subseteq cl(A) \subseteq U$. Hence B is (sp)^{*}-closed.

Theorem 3.25: A is a (sp)^{*}-closed set of (X, τ) if and only if $cl(A)\setminus A$ does not contain any nonempty semi-pre-closed set.

Proof: Necessity: Let F be a semi-pre-closed set of (X, τ) such that $F \subseteq cl(A) \setminus A$. Then $A \subseteq X \setminus F$. A is (sp)-closed and $X \setminus F$ is semi-pre-open, $cl(A) \subseteq X \setminus F$. Since $F \subseteq X \setminus Cl(A)$.

So, $F \subseteq ((X \setminus Cl(A)) \cap ((Cl(A) \setminus A) = \phi)$, Therefore $F = \phi$.

Sufficiency: Let A be a subset of (X, τ) such that Cl(A)\A does not contain any non-empty semipre-closed set. Let U be a semi-pre-open set of (X, τ) such that $A \subseteq U$. If Cl(A) $\not\subseteq U$, then Cl(A) $\cap U^c \neq \phi$ and Cl(A) $\cap U^c$ is semi-pre-closed. Therefore $\phi \neq Cl(A) \cap U^c \subseteq Cl(A)$ \A. Therefore cl(A)\A contains a non-empty semi-pre-closed set, which is a contradiction. Therefore cl(A) $\subseteq U$. Therefore A is a (sp)^{*}-closed set. **Theorem 3.26:** If A is both semi-pre-open and (sp)^{*}-closed, then A is closed.

Proof: Let A be both semi-pre-open and $(sp)^*$ -closed. Let A \subseteq A, where A is semi-pre-open. Then $cl(A) \subseteq A$, since A is $(sp)^*$ -closed. Therefore A is closed.

The above results can be represented as the following diagram.

where $A \rightarrow B$ represents A implies B, but not B implies A.

4.(sp)^{*}-continuous And (sp)^{*}-irresolute Maps

We introduce the following definition.

Definition 4.01: A function $f:(X,\tau) \to (Y,\sigma)$ is called $(sp)^*$ -continuous if $f^1(V)$ is a $(sp)^*$ -closed set of (X,τ) for every closed set V of (Y,σ) .

Theorem 4.02: Every continuous map is (sp)^{*}-continuous.

Theorem 4.03: Every (sp)^{*}-continuous map is gsp-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^{-1}(V)$ is a $(sp)^*$ -closed, since f is $(sp)^*$ -continuous and hence by theorem 3.03, it is gsp-closed in (X, τ) . Therefore f is gsp-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.04: Let X=Y={a,b,c} $\tau = \{X, \phi, \{a\}, \{b,c\}\}$ $\sigma = \{Y, \phi, \{b\}\}$. Let

f: $(X,\tau) \to (Y,\sigma)$ be defined by an identity mapping. f⁻¹{a,c}={a,c} is gsp-closed but not $(sp)^*$ closed in (X,τ) .

Theorem 4.05: Every (sp)^{*}-continuous map is g-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of (X_{τ}) , since f is $(sp)^*$ -continuous and hence by theorem-3.5, $f^1(V)$ is g-closed in (X, τ) . Therefore f is g-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.06: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b,c\}, X\}, \sigma = \{\phi, \{c\}, Y\}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by an identity mapping. $f^{1}\{a, c\} = \{a, c\}$ is g-closed but not $(sp)^{*}$ -closed.

Theorem 4.07: Every (sp)^{*}-continuous map is gs-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of X, since f is $(sp)^*$ -continuous and hence by theorem-3.7, $f^1(V)$ is gs-closed in (X, τ) . Therefore f is gs-continuous.

The converse of the above theorem is not true in general as it can be seen in the following example.

Example 4.08: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{b\}, Y\}$. Let f:

 $(X,\tau) \rightarrow (Y,\sigma)$ be defined by an identity mapping. $f^{1}\{a,c\}=\{a,c\}$ is gs-closed but not $(sp)^{*}$ -closed.

Theorem 4.09: Every (sp)^{*}-continuous map is gp-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) , since f is $(sp)^*$ -continuous and hence by theorem-3.9, $f^1(V)$ is gp-closed in (X, τ) . Therefore f is gp-continuous.

The following example supports that the converse of the above theorem is not true.

Example 4.10: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b,c\}, X\}, \sigma = \{\phi, \{c\}, Y\}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by an identity mapping. $f^{1}\{a,b\}=\{a,b\}$ is gp-closed but not $(sp)^{*}$ -closed.

Theorem 4.11: Every (sp)^{*}-continuous map is sg-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) .. Then $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) , since f is $(sp)^*$ -continuous, and hence by theorem-3.11, $f^1(V)$ is sg-closed in (X, τ) . Therefore f is sg-continuous.

The converse of the above theorem is not true always as seen in the following example.

Example 4.12: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, X\}, \sigma = \{\phi, \{a, c\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by an identity mapping. f¹{b}={b} is sg-closed but not (sp)^{*}-closed.

Theorem 4.13: Every $(sp)^*$ -continuous map is g-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) , since f is $(sp)^*$ -continuous and hence by theorem-3.13, $f^1(V)$ is g^* -closed in (X, τ) . Therefore f is g^* -continuous.

The following example supports that the converse of the above theorem is not true.

Example 4.14: Let X={a,b,c}=Y, $\tau = \{\phi, \{b, c\}, X\}, \sigma = \{\phi, \{a\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by an identity mapping. f¹{b,c}={b,c} is g-closed but not (sp)*-closed. **Theorem 4.15:** Every $(sp)^*$ -continuous map is αg -continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) , since $(sp)^*$ -continuous and hence by theorem-3.15, $f^1(V)$ is αg -closed in (X, τ) . Therefore f is αg -continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.16: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b,c\}, X\}, \sigma = \{\phi, \{c\}, Y\}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by an identity mapping. $f^{1}\{a,b\}=\{a,b\}$ is αg -closed but not $(sp)^{*}$ -closed.

Theorem 4.17: Every (sp)^{*}-continuous map is $g\alpha$ -continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) , since $(sp)^*$ -continuous and hence by theorem-3.17, $f^1(V)$ is $g\alpha$ -closed in (X, τ) . Therefore f is $g\alpha$ -continuous.

The converse of the above theorem is not true in general it can be seen from the following example.

Example 4.18: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{c\}, Y\}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by an identity mapping. $f^{1}\{a, b\} = \{a, b\}$ is $g\alpha$ -closed but not $(sp)^{*}$ -closed.

Theorem 4.19: Every $(sp)^*$ -continuous map is ωg -continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) , since f is $(sp)^*$ -continuous and hence by theorem-3.19, $f^1(V)$ is ωg - closed in (X, τ) . Therefore f is ωg -continuous.

The converse of the above theorem is not true always as seen in the following example.

Example 4.20: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{c\}, Y\}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by an identity mapping. $f^{1}\{a,b\}=\{a,b\}$ is ωg –closed but not $(sp)^{*}$ -closed.

Theorem 4.21: Every (sp)^{*}-continuous map is α^* -continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $(sp)^*$ -continuous. Let V be closed set of (Y, σ) . Then $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) , since $(sp)^*$ -continuous and hence by theorem-3.21, $f^1(V)$ is α^* -closed in (X, τ) . Therefore f is α^* -continuous.

The converse of the above theorem is not true in general it can be seen from the following example.

Example 4.22: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{c\}, Y\}.$

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by an identity mapping. $f^{1}\{a,b\}=\{a,b\}$ is α^{*} -closed but not $(sp)^{*}$ -closed.

Definition 4.23: A function $f: (X, \tau) \to (Y, \sigma)$ is called $(sp)^*$ -irresolute if $f^1(V)$ is a $(sp)^*$ -closed set of (X, τ) for every $(sp)^*$ -closed set V of (Y, σ) .

Theorem 4.24: Every (sp)^{*}-irresolute function is (sp)^{*}-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.25: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{a, c\}, Y\}.$

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=a and f(c)=b. f¹{b}={a} is (sp)-closed in (X, τ) . Therefore f is $(sp)^*$ -continuous. {b,c} is $(sp)^*$ -closed in Y. f¹{b,c}={a,b} is not $(sp)^*$ -closed in (X, τ) . Therefore f is not $(sp)^*$ -irresolute.

Theorem 4.26: Every (sp)^{*}-irresolute function is gsp-continuous.

The converse of the above Theorem is not true as seen in the following example.

Example 4.27: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{a\}, Y\}.$

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=b and f(c)=a. f¹{b,c}={b,a}={a,b} is gsp-closed in (X, τ). Therefore f is gsp-continuous. {b,c} is (sp)^{*}-closed in Y. f¹{b,c}={a,b} is not (sp)^{*}-closed in (X, τ). Hence f is not (sp)^{*}-irresolute.

Theorem 4.28: Every (sp)^{*}-irresolute function is g-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.29: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ $\sigma = \{\phi, \{a\}, Y\}$.

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=b and f(c)=a. f¹{b,c}={c,a}={a,c} is g-closed in (X, τ). Therefore f is g-continuous. {b,c} is (sp)^{*}-closed set in y. f¹{b,c}={a,b} is not (sp)^{*}-closed in (X, τ). Hence f is not (sp)^{*}-irresolute.

Theorem 4.30: Every (sp)^{*}-irresolute function is gs-continuous.

The following example supports that the converse of the above theorem is not true always.

Example 4.31: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b,c\}, X\}$ $\sigma = \{\phi, \{a\}, Y\}$.

Define $f: (X, \tau) \to (Y, \sigma)$ by f(a)=c, f(b)=a and f(c)=b. $f^{1}\{b,c\}=\{a,b\}$ is gs-closed in (X, τ) .

Therefore f is gs-continuous. {b,c} is $(sp)^*$ -closed set in Y. f¹{b,c}={a,b} is not $(sp)^*$ -closed in (X, τ). Hence f is not $(sp)^*$ -irresolute.

Theorem 4.32: Every (sp)^{*}-irresolute function is gp-continuous.

The converse of the above Theorem is not true always as seen in the following example.

Example 4.33: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b,c\}, X\}$ $\sigma = \{\phi, \{a\}, Y\}.$

Define $f: (X, \tau) \to (Y, \sigma)$ by f(a)=b, f(b)=a and f(c)=c. $f^{1}\{b,c\}=\{a,c\}$ is gp-closed in (X, τ) .

Therefore f is gp-continuous. {b,c} is $(sp)^*$ -closed set in Y. f¹{b,c}={a,c} is not $(sp)^*$ -closed in (X, τ). Hence f is not $(sp)^*$ -irresolute.

Theorem 4.34: Every (sp)^{*}-irresolute function is sg-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.35: Let X={a,b,c}=y, $\tau = \{\phi, \{a\}, X\} \sigma = \{\phi, \{b, c\}, Y\}.$

Define $f: (X, \tau) \to (Y, \sigma)$ by f(a)=b, f(b)=c and f(c)=a. $f^{1}\{a\}=\{b\}$ is sg-closed in (X, τ) . Therefore f is sg-continuous. $\{a\}$ is $(sp)^{*}$ -closed set in Y. $f^{1}\{a\}=\{b\}$ is not $(sp)^{*}$ -closed in (X, τ) . Hence f is not $(sp)^{*}$ -irresolute.

Theorem 4.36: Every (sp)^{*}-irresolute function is \hat{g} -continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.37: Let X={a,b,c}=Y, $\tau = \{\phi, \{b,c\}, X\} \sigma = \{\phi, \{a\}, \{b,c\}, Y\}.$

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=a, f(b)=c and f(c)=b. f¹{a}={a} is g° -closed in (X, τ) . Therefore f is g-continuous. {b,c} is $(sp)^{*}$ -closed sets in Y. f¹{b,c}={c,b}={b,c} is not $(sp)^{*}$ -closed in (X, τ) . Hence f is not $(sp)^{*}$ -irresolute.

Theorem 4.38: Every $(sp)^*$ -irresolute function is αg -continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.39: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ $\sigma = \{\phi, \{a\}, Y\}$.

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=a and f(c)=b. f¹{b,c}={a,b} is αg -closed in (X, τ) . Therefore f is αg -continuous.{b,c} is (sp)*-closed sets in Y. f¹{b,c}={a,b} is not (sp)*-closed in (X, τ) . Hence f is not (sp)*-irresolute.

Theorem 4.40: Every (sp)^{*}-irresolute function is $g\alpha$ -continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.41: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ $\sigma = \{\phi, \{a\}, Y\}$.

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=b and f(c)=a.. f¹{b,c}={c,a}={a,c} is $g\alpha$ -closed in (X, τ). Therefore f is $g\alpha$ -continuous. {b,c} is (sp)^{*}-closed set in Y. f^{1} {b,c}={a,b} is not (sp)^{*}-closed in (X, τ). Hence f is not (sp)^{*}-irresolute.

Theorem 4.42: Every $(sp)^*$ -irresolute function is ωg -continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.43: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b,c\}, X\} \sigma = \{\phi, \{b,c\}, Y\}.$

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=b, f(b)=b and f(c)=a. f¹{a}={b} is ωg -closed in (X, τ) .

Therefore f is ωg -continuous. {a} is (sp)^{*}-closed sets in Y. f¹{a}={b} is not (sp)^{*}-closed in (X, τ). Hence f is not (sp)^{*}-irresolute.

Theorem 4.44: Every (sp)^{*}-irresolute function is α^* -continuous.

The following example supports that the converse of the above theorem is not true.

Example 4.45: Let X={a,b,c}=Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ $\sigma = \{\phi, \{a\}, Y\}$.

Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a)=b, f(b)=a and f(c)=c. $f^{1}\{b,c\}=\{a,c\}$ is g-closed in (X, τ) .

Therefore f is α^* -continuous. {b,c} is (sp)*-closed sets in Y. f¹{b,c}={a,c} is not (sp)*-closed in (X, τ). Hence f is not (sp)*-irresolute.

REFERENCES

[1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.

[2] I. Arokiarani, K.Balachandran and J. Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser.A. Math., 20(1999), 93-104.

[3] S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.

[4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser. A, Math., 12(1991), 5-13.

[5] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3) (1987), 375-382.

[6] R. Devi, H. Maki and K. Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math., 26(3) (1995), 271-284.

[7] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Ser.A, Math., 16(1995), 35-48.

[8]Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.

[9] N. Levine, Generalized closed sets topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.

[10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[11] H. Maki.H, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15(1994), 51-63.

[12] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.

[13] H. Maki, J. Umehara and T. Noiri, Every topological spaces is pre- $T_{1/2}$, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., 17(1996), 33-42.

[14] A.S. Mashhour, M.E. Abd. E1-Monsef and S.N.E1-Deep, On pre-continuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.

[15] Nagaveni, studies on generalization of homeomorphisms in topological spaces, Ph. D thesis, Bharathiar university, Coimbatore, 1999.

[16] O. Njastad, On Some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

[17] M.K.R.S. Veerakumar, \hat{g} -closed sets and GIC-functions, Indian J. Math., 43 (2) (2001) 231-247.

[18] Veronica Vijayan, F. Priya, α^* -closed sets in topological spaces, IJCA, Issue 3, Volume 4 (July-Aug 2013), ISSN:2250-1797, 49-60.