(gs)^{*}-Closed Sets in Topological Spaces

Elvina Mary. L, Assistant Professor, Nirmala College for Women, Coimbatore, Tamil Nadu.

Myvizhi. R, PG student, Nirmala College for Women, Coimbatore, Tamil Nadu.

ABSTRACT

In this paper we introduce a new class of sets namely, $(gs)^*$ -closed sets, properties of this set are investigated and we introduce $(gs)^*$ -continuous maps and $(gs)^*$ -irresolute maps.

Keywords:(gs)^{*}-closed sets, (gs)^{*}-continuous and (gs)^{*}-irresolute.

1.INTRODUCTION

Levine.N[9] introduced generalized closed sets in 1970. S.P Arya and T.Nour [3]defined gs-closed sets in 1990. M.K.R.S. Veerakumar [22]introduced the generalized g^{*}-closed sets in 2000. Pushpalatha.P and Anitha.K [19] introduced the g^{*}s-closed sets in 2011. M.Pauline Mary Helen,Ponnuthai selvarani,Veronica Vijayan [18] introduced and studied g^{**}-closed sets in 2012. In this paper we introduce and study the concept of (gs)^{*}-closed sets

2.PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) represents non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , Cl(A) and int(A) denote the closure and the interior of A respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called a

1) pre-open set [15] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.

2) semi-open set [10] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.

3)semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ and a semi preclosed set if $int(cl(int(A))) \subseteq U$.

4) α -open set[16] if A \subseteq int(cl(int(A))) and a α -closed set if cl(int(cl(A))) \subseteq A.

Definition 2.2: A subset A of a topological space (X, τ) is said to be a

1) g-closed [9] set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).

2) sg-closed [5] set if scl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).

3) gs-closed set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

4) α g-closed set [11] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

5) g α -closed set [12] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

6) gsp-closed set [7] if spcl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

7) gp-closed set [13] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

8) g^{*}-closed set [22] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).

9) g^*s - closed set [19] if scl(A) \subseteq U whenever A \subseteq U and U is gs-open in (X, τ).

10) ψ - closed set [23] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).

11) ψ^* - closed set [27] if scl(A) \subseteq U whenever A \subseteq U and U is ψ -open in (X, τ).

12) g^{**} -closed set [18] if cl(A) \subseteq U whenever A \subseteq U and U is g^{*} -open in (X, τ).

13) α^* -closed set [26] if cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

14) s α g^{*}-closed set [14] if α cl(A) \subseteq U whenever A \subseteq U and U is g^{*}-open in (X, τ).

15) α g^{**}-closed set [20] if α cl(A) \subseteq U whenever A \subseteq U and U is g^{**}-open in (X, τ).

16) sg^{**}-closed set [17] if scl(A) \subseteq U whenever A \subseteq U and U is g^{**}-open in (X, τ).

17) $(g\alpha)^*$ -closed set [25] if $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$ -open in (X, τ) .

18) ω -closed set [21] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).

19)g[#] semi closed set [24] if scl(A) \subseteq U whenever A \subseteq U and U is α g-open in (X, τ).

Definition 2.3:A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called a

1) g-continuos [4] if $f^{1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) .

2) sg-continuous [5] if $f^{1}(V)$ is a sg-closed set of (X, τ) for every closed set V of (Y, σ) .

3) gs-continuous [6] if $f^{-1}(V)$ is a gs-closed set of (X, τ) for every closed set V of (Y, σ) .

4) α g-continuous [8] if f¹(V) is an α g-closed set of (X, τ) for every closed set V of (Y, σ).

5) g α -continuous [12] if f⁻¹(V) is a g α -closed set of (X, τ) for every closed set V of (Y, σ).

6) gsp-continuous [7] if $f^{-1}(V)$ is a gsp-closed set of (X, τ) for every closed set V of (Y, σ) .

7) gp-continuous [2] if $f^{-1}(V)$ is a gp-closed set of (X, τ) for every closed set V of (Y, σ) .

8) g^{*}-continuous if [22] f¹(V) is a g^{*}-closed set of (X, τ) for every closed set V of (Y, σ).

9) g^*s - continuous [19] if $f^1(V)$ is a g^*s -closed set of (X, τ) for every closed set V of (Y, σ) .

10) ψ - continuous[23] if $f^{1}(V)$ is a ψ -closed set of (X, τ) for every closed set V of (Y, σ) .

11) ψ^* - continuous[27] if $f^{-1}(V)$ is a ψ^* -closed set of (X, τ) for every closed set V of (Y, σ) .

12) g^{**} -continuous [18] if $f^{1}(V)$ is a g^{**} -closed set of (X, τ) for every closed set V of (Y, σ) .

13) α^* -continuous [26] if $f^1(V)$ is a α^* -closed set of (X, τ) for every closed set V of (Y, σ) .

14) s α g^{*}-continuous [14] if f¹(V) is a s α g^{*}-closed set of (X, τ) for every closed set V of (Y, σ).

15) α g^{**}-continuous [20] if f⁻¹(V) is a α g^{**}-closed set of (X, τ) for every closed set V of (Y, σ).

16) sg^{**}-continuous [17] if $f^{-1}(V)$ is a sg^{**}-closed set of (X, τ) for every closed set V of (Y, σ) .

17) $(g\alpha)^*$ -continuous [25] if $f^1(V)$ is a $(g\alpha)^*$ -closed set of (X, τ) for every closed set V of (Y, σ) .

18) ω -continuous [21] if $f^{1}(V)$ is a ω -closed set of (X, τ) for every closed set V of (Y, σ) .

19)g[#]-semi continuous [24] if $f^{-1}(V)$ is a g[#]-semi-closed set of (X, τ) for every closed set V of (Y, σ) .

3. BASIC PROPERTIES OF (gs)^{*}-CLOSED SETS

We now introduce the following definition.

Definition 3.1: A subset A of a topological space(X, τ) is called (gs)^{*}-closed set if cl(A) \subseteq U whenever A \subseteq U and U is gs-open in X.

Theorem 3.2: Every closed set is a (gs)^{*}-closed set.

Proof follows from the definition.

The following example supports that a (gs)^{*}-closed set need not be closed in general.

Example 3.3: Let X={a,b,c}, $\tau = \{\phi, X, \{b,c\}\}$. Then A={a,b} is (gs)^{*}-closed but not a closed set of (X, τ).

Theorem 3.4: Every (gs)^{*}-closed set is (i) g-closed,(ii) g^{*}-closed ,(iii) g^{**}-closed.

Proof follows from the definition.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.5: Let X={a,b,c} and $\tau = \{\phi, X, \{a\}, \{a,b\}\}$. Then A={a,c} is (gs)^{*}-closed but not g-closed ,g^{*}-closed and g^{**}-closed.

Theorem 3.6: Every $(gs)^*$ -closed set is α g-closed but not conversely.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then α cl(A) \subseteq cl(A) \subseteq U. Hence A is α g-closed.

Example 3.7: Let X={a,b,c}, $\tau = \{\phi, X, \{b\}\}$. Then A={a} is α g-closed but not (gs)^{*}-closed in (X, τ).

Theorem 3.8: Every $(gs)^*$ -closed set is $g\alpha$ -closed but the converse is not true.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be α -open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then α cl(A) \subseteq cl(A) \subseteq U. Hence A is $g\alpha$ -closed.

Example 3.9: Let X={a,b,c}, $\tau = \{\phi, X, \{b\}\}$. Then A={c} is $g\alpha$ -closed but not $(gs)^*$ -closed in (X, τ) .

Theorem 3.10: Every (gs)^{*}-closed set is sg-closed.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be semi-open in. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then Scl(A) \subseteq cl(A) \subseteq U. Hence A is sg-closed.

The following example supports that a sg-closed set need not be (gs)^{*}-closed in general.

Example 3.11: Let X={a,b,c}, $\tau = \{\phi, X, \{c\}, \{a,c\}\}$. Then A= {a} is sg-closed but not a (gs)^{*}-closed set in (X, τ).

Theorem 3.12: Every (gs)^{*}-closed set is gs-closed but not conversely.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then Scl(A) \subseteq cl(A) \subseteq U. Hence A is gs-closed.

Example 3.13: Let X={a,b,c}, $\tau = \{\phi, X, \{c\}, \{a,c\}\}$. Then A={b,c} is gs-closed but not (gs)^{*}-closed in (X, τ).

Theorem 3.14: Every (gs)^{*}-closed set is gsp-closed.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then Spcl(A) \subseteq cl(A) \subseteq U. Hence A is gsp-closed.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.15: Let X={a,b,c}, $\tau = \{\phi, X, \{a,b\}\}$. Then A={a} is gsp-closed but not a (gs)^{*}-closed set in (X, τ).

Theorem 3.16: Every (gs)^{*}-closed set is gp-closed.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then pcl(A) \subseteq cl(A) \subseteq U. Hence A is gp-closed.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.17: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b\}, \{b, c\}\}$. Then $A = \{a, b\}$ gp-closed but not $(gs)^*$ -closed in (X, τ) .

Theorem 3.18: Every (gs)^{*}-closed set is α ^{*}-closed but not conversely.

Proof follows from the definition.

Example 3.19: Let X={a,b,c}, $\tau = \{\phi, X, \{a\}, \{b,c\}\}$. Then A= {b} is α^* -closed but not (gs)*-closed in (X, τ).

Theorem 3.20: Every $(gs)^*$ -closed set is $s \alpha g^*$ -closed.

Proof: Let A be $(gs)^*$ -closed set. Let $A \subseteq U$ and U be g^* -open. Then $A \subseteq U$ and U is gs-open and $cl(A) \subseteq U$, since A is $(gs)^*$ -closed. Then $\alpha \ cl(A) \subseteq cl(A) \subseteq U$. Hence A is $s \alpha \ g^*$ -closed.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.21: Let X={a,b,c}, $\tau = \{\phi, X, \{a\}, \{a,b\}\}$. Then A={a,c} is s α g^{*}-closed but not a (gs)^{*}-closed set in (X, τ).

Theorem 3.22: Every $(gs)^*$ -closed set is αg^{**} -closed.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be g^{**} -open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then α cl(A) \subseteq cl(A) \subseteq U. Hence A is α g^{**} -closed.

The following example supports that the converse of the above theorem is not true in general.

Example 3.23: Let X={a,b,c}, $\tau = \{\phi, X, \{a\}, \{a,b\}\}$. Then A={b} is α g^{**}-closed but not (gs)^{*}-closed in (X, τ).

Theorem 3.24: Every (gs)^{*}-closed set is sg^{**}-closed.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be g^{**} -open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then scl(A) \subseteq cl(A) \subseteq U. Hence A is sg^{**} -closed.

The following example supports that a sg^{**}-closed set need not be (gs)^{*}-closed in general.

Example 3.25: Let X={a,b,c}, $\tau = \{\phi, X, \{a\}, \{a,b\}\}$. Then A={b} is sg^{**}-closed but not (gs)^{*}-closed in (X, τ).

Theorem 3.26: Every $(gs)^*$ -closed set is $(g\alpha)^*$ -closed.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be g α -open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then α cl(A) \subseteq cl(A) \subseteq U. Hence A is $(g\alpha)^*$ -closed.

The following example supports that a $(g\alpha)^*$ -closed set need not be $(gs)^*$ -closed in general.

Example 3.27: Let X={a,b,c}, $\tau = \{\phi, X, \{b\}\}$. Then A= {a} is a (g α)*-closed set but not (gs)*-closed in (X, τ).

Theorem 3.28: Every $(gs)^*$ -closed set is ω -closed.

Proof follows from the definition.

Example 3.29: Let X={a,b,c}, $\tau = \{\phi, X, \{a\}, \{a,b\}\}$. Then A={a,b} is ω -closed but not a (gs)^{*}-closed set in (X, τ).

Theorem 3.30: Every $(gs)^*$ -closed set is ψ -closed but not conversely.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be sg-open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then sc l(A) \subseteq cl(A) \subseteq U. Hence A is ψ -closed.

Example 3.31: Let X={a,b,c}, $\tau = \{\phi, X, \{c\}, \{a,c\}\}$. Then A={a} is ψ -closed but not (gs)^{*}-closed in (X, τ).

Theorem 3.32: Every $(gs)^*$ -closed set is ψ^* -closed.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be ψ -open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then scl(A) \subseteq cl(A) \subseteq U. Hence A is ψ^* -closed.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.33: Let X={a,b,c}, $\tau = \{\phi, X, \{c\}, \{a,c\}\}$. Then A={a} is ψ^* -closed but not (gs)*-closed in (X, τ).

Theorem 3.34: Every (gs)^{*}-closed set is g^{*}s-closed but not conversely.

Proof follows from the definition.

Example 3.35: Let X={a,b,c} and $\tau = {\phi, X, {b}}$. Then A= {a} is g*s-closed but not (gs)*-closed in (X, τ).

Theorem 3.36: Every (gs)^{*}-closed set is g[#]-semi closed but not conversely.

Proof: Let A be $(gs)^*$ -closed set. Let A \subseteq U and U be α g-open. Then A \subseteq U and U is gs-open and cl(A) \subseteq U, since A is $(gs)^*$ -closed. Then scl(A) \subseteq cl(A) \subseteq U. Hence A is $g^{\#}$ -semi closed.

Example 3.37: Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{b\}\}$. Then $A = \{c\}$ is $g^{\#}$ -semi closed but not a $(gs)^{*}$ -closed set in (X, τ) .

The above results can be represented in the following figure.

1. Closed	6.g α -closed	11.s α g [*] -closed	16.g [*] s-closed
2.g-closed	7.sg-closed	12. α g ^{**} -closed	17. ψ -closed
3.g [*] -closed	8.gs-closed	13.sg**-closed	18. ψ *-closed
4.g ^{**} -closed	9.gsp-closed	14.(g α) [*] -closed	19. ω -closed
5. α g-closed	10.gp-closed	15. g [#] -semi closed	20. α *-closed

Where $A \rightarrow B$ represents A implies B but B does not implies A.

4.(gs)*-CONTINUOUS AND (gs)*-IRRESOLUTE MAPS

Definition 4.1: A function $f:(X, \tau) \to (Y, \sigma)$ is called $(gs)^*$ -continuous if $f^{-1}(V)$ is a $(gs)^*$ -closed set of (X, τ) for every closed set V of (Y, σ) .

Definition 4.2: A function $f:(X, \tau) \to (Y, \sigma)$ is called $(gs)^*$ -irresolute if $f^{-1}(V)$ is a $(gs)^*$ -closed set of (X, τ) for every $(gs)^*$ - closed set V of (Y, σ) .

Theorem 4.3: Every continuous map is (gs)^{*}-continuous but not conversely.

Example 4.4:Let X=Y={a,b,c}, $\tau = \{\phi, X, \{b,c\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$. Define f:(X, τ) \rightarrow (Y, σ) by f(a)=b, f(b)=a, f(c)=c. f is (gs)^{*}-continuous but not continuous since {b,c} is a closed set of (Y, σ) but $f^{-1}{b,c} = \{a,c\}$ is not closed in (X, τ).

Theorem 4.5: Every (gs)^{*}-continuous map is (i) g-continuous (ii) g^{*}-continuous (iii)g^{**}-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be $(gs)^*$ -continuous. Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is $(gs)^*$ -closed in (X, τ) , since f is $(gs)^*$ -continuous and hence by theorem 3.4(resp.3.6, 3.8), it is g-closed(resp.g^{*}-closed,g^{**}-closed). Hence f is g-continuous(resp. g^{*}-continuous, g^{**}-continuous) but the converse is not true.

Example 4.6: Let $X=Y=\{a,b,c\}, \tau = \{\phi, X, \{a\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{b\}\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be the identity mapping. Then $f^{-1}\{a,c\}=\{a,c\}$ which is g-closed(resp. g^{*}-closed, g^{**}-closed) but not (gs)^{*}-closed. Hence f is g-continuous (resp. g^{*}-continuous, g^{**}-continuous) but not (gs)^{*}-continuous.

Theorem 4.7: Every $(gs)^*$ -continuous map is (i) α g-continuous,(ii) $g\alpha$ -continuous (iii) $(g\alpha)^*$ - continuous, (iv) g^* s-continuous,(v) $g^{\#}$ -semi-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be $(gs)^*$ -continuous. Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is $(gs)^*$ -closed in (X, τ) , since f is $(gs)^*$ -continuous and hence by theorem 3.6 (resp. 3.8, 3.26, 3.34, 3.36), it is α g-closed(resp. $g\alpha$ -closed, $(g\alpha)^*$ -closed, g^* s- closed, g^* -semi- closed). Hence f is α g-continuous(resp. $g\alpha$ -continuous, $(g\alpha)^*$ -continuous, g^* s-continuous, g^* -continuous)

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.8: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{b\}\}$ and $\sigma = \{\phi, Y, \{c\}, \{b,c\}\}$. Let f:(X, τ) \rightarrow (Y, σ) be the identity mapping. Then $f^{-1}\{a\} = \{a\}$ is α g-closed(resp. $g\alpha$ -closed, $(g\alpha)^*$ -closed, g^* s- closed, $g^#$ -semi- closed) but not $(gs)^*$ -closed.

Hence f is α g-continuous(resp. $g\alpha$ -continuous, $(g\alpha)^*$ -continuous, g^* s-continuous, $g^{\#}$ -semi-continuous) but not $(gs)^*$ -continuous.

Theorem 4.9: Every (gs)^{*}-continuous map is (i) sg-continuous, (ii) gs-continuous, (iii) ψ -continuous, (iv) ψ ^{*}-continuous.

Proof:Let $f:(X, \tau) \to (Y, \sigma)$ be $(gs)^*$ -continuous. Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is $(gs)^*$ -closed in (X, τ) , since f is $(gs)^*$ -continuous and hence by theorem 3.10(resp. 3.12,3.30,3.32), it is sg-closed(resp. gs-closed, ψ -closed, ψ^* -closed). Hence f is sg-continuous(resp. gs-continuous, ψ -continuous, ψ^* -continuous)

The following example supports that the converse of the above theorem is not true in general.

Example 4.10:Let X=Y={a,b,c}, $\tau = \{\phi, X, \{c\}, \{a,c\}\}$ and $\sigma = \{\phi, Y, \{b,c\}\}$.Let f:(X, τ) \rightarrow (Y, σ) be the identity mapping. Then $f^{-1}\{a\} = \{a\}$ which is gs-closed(resp sg-closed, ψ -closed, ψ *-closed) but not (gs)*-closed.Hence f is gs-continuous (resp.sg-continuous, ψ -continuous) but not (gs)*-continuous.

Theorem 4.11: Every (gs)^{*}-continuous map is gsp-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be $(gs)^*$ -continuous. Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is $(gs)^*$ -closed in (X, τ) , since f is $(gs)^*$ -continuous and hence by theorem 3.14, it is gs-closed. Hence f is gsp-continuous but the converse need not true.

Example 4.12: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a,c\}\}$. Let f:(X, $\tau \rightarrow (Y, \sigma)$ defined by f(a)=b,f(b)=c, f(c)=b. Then $f^{-1}\{b\} = \{a\}$ is gsp-closed but not (gs)^{*}-closed. Hence f is gsp-continuous but not (gs)^{*}-continuous.

Theorem 4.13: Every (gs)^{*}-continuous map is gp-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be $(gs)^*$ -continuous. Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is $(gs)^*$ -closed in (X, τ) , since f is $(gs)^*$ -continuous and hence by theorem 3.16, it is gp-closed. Hence f is gp-continuous.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.14: Let $X=Y=\{a,b,c\}, \tau = \{\phi, X, \{b\}, \{b,c\}\}$ and $\sigma = \{\phi, Y, \{a,c\}\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a)=a, f(b)=c, f(c)=b. Then $f^{-1}\{b\}=\{c\}$ is gp-closed but not $(gs)^*$ -closed. Hence f is gp-continuous but not $(gs)^*$ -continuous.

Theorem 4.15: Every (gs)^{*}-continuous map is (i) α ^{*}-continuous (ii) ω -continuous but not conversely.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be $(gs)^*$ -continuous. Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is $(gs)^*$ -closed in (X, τ) , since f is $(gs)^*$ -continuous and hence by theorem 3.18,(resp.3.28), it is α^* -closed(resp. ω -closed). Hence f is α^* -continuous (resp. ω -continuous).

Example 4.16: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{a\}, \{b,c\}\}$ and $\sigma = \{\phi, Y, \{a,b\}\}$. Let f:(X, τ) \rightarrow (Y, σ) defined by f(a)=b, f(b)=c, f(c)=a. Then $f^{-1}\{c\}=\{b\}$ is α^* -closed(resp. ω -closed) but not (gs)*-closed. Hence f is α^* -continuous (resp. ω -continuous) but not (gs)*-continuous.

Theorem 4.17: Every $(gs)^*$ -continuous map is $(i)s \alpha g^*$ -continuous $(ii) \alpha g^{**}$ -continuous $(iii)sg^{**}$ -continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be $(gs)^*$ -continuous. Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is $(gs)^*$ -closed in (X, τ) , since f is $(gs)^*$ -continuous and hence by theorem 3.20(resp. (3.22),(3.24)), it is $s \alpha g^*$ closed (resp. αg^{**} -closed, sg^{**} -closed). Hence f is $s \alpha g^*$ -continuous (resp. αg^{**} -continuous, sg^{**} -continuous).

The following example supports that the converse of the above results are not true in general.

Example 4.18: Let $X=Y=\{a,b,c\}, \tau = \{\phi, X, \{a\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a)=b, f(b)=a, f(c)=c. Then $f^{-1}\{b,c\}=\{a,c\}$ is $s \alpha g^*$ -closed(resp. αg^{**} -closed, sg^{**} -closed) but not $(gs)^*$ -closed. Hence f is $s \alpha g^*$ - continuous (resp. αg^{**} -continuous, sg^{**} -continuous) but not $(gs)^*$ -continuous.

Theorem 4.19: Every (gs)^{*}-irresolute function is (gs)^{*}-continuous but not conversely.

Example 4.20: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{b,c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b,c\}\}$. Define g: $(X, \tau) \rightarrow (Y, \sigma)$ by g(a)=b, g(b)=a, g(c)=c. $g^{-1}\{b,c\}=\{a,c\}$ is (gs)^{*} closed in (X, τ) . Therefore g is (gs)^{*} continuous. {a} is (gs)^{*}-closed in (Y, σ) but $g^{-1}\{a\}=\{b\}$ is not a (gs)^{*} closed set in (X, τ) . Therefore g is not (gs)^{*} irresolute. Hence g is (gs)^{*}-continuous but not (gs)^{*}-irresolute.

Theorem 4.21: Every (gs)^{*}-irresolute function is (i)g-continuous,(ii) g^{*}-continuous,(iii)g^{**}-continuous.

The following example supports that the converse of the above results are not true in general.

Example 4.22: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{a\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b,c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=b, f(b)=a, f(c)=c. $f^{-1}\{b,c\}=\{a,c\}$ is g-closed(resp. g^{*}-closed, g^{**}-closed) in (X, τ) . Therefore f is g-continuous (resp. g^{*}-continuous, g^{**}-continuous). {b,c} is (gs)^{*}-closed in (Y, σ) but $f^{-1}\{b,c\}=\{a,c\}$ is not (gs)^{*}-closed set in (X, τ) . Therefore f is not (gs)^{*} irresolute. Hence f is g-continuous(resp. g^{*}-continuous, g^{**}-continuous) but not (gs)^{*}-irresolute.

Theorem 4.23: Every $(gs)^*$ -irresolute function is (i) gs-continuous, (ii) sg-continuous, (iii) ψ -continuous, (iv) ψ^* -continuous.

The following example supports that the converse of the above results are not true in general.

Example 4.24: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{c\}, \{a,c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b,c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=b, f(b)=a, f(c)=c. $f^{-1}\{a\}=\{b\}$ is gs-closed(resp.sg-closed, ψ -closed, ψ *-closed) in (X, τ) . Therefore f is gs-continuous (resp. sg-continuous, ψ *-continuous). {b,c} is (gs)*-closed in (Y, σ) but $f^{-1}\{b,c\}=\{a,c\}$ is not (gs)* closed set in (X, τ) . Therefore f is not (gs)* irresolute. Hence f is gs-continuous(resp.sg-continuous, ψ -continuous, ψ *-continuous) but not (gs)*-irresolute.

Theorem 4.25: Every (gs)^{*}-irresolute function is gsp-continuous but not conversely.

Example 4.26: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{a,b\}\}$ and $\sigma = \{\phi, X, \{b\}, \{b,c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=a, f(c)=b. $f^{-1}\{a\} = \{c\}$ is gsp-closed in (X, τ) . Therefore f is gsp-continuous. {a,c} is $(gs)^*$ -closed in (Y, σ) but $f^{-1}\{a,c\} = \{a,b\}$ is not $(gs)^*$ closed set in (X, τ) . Therefore f is not $(gs)^*$ irresolute. Hence f is gsp-continuous but not $(gs)^*$ -irresolute.

Theorem 4.27: Every (gs)^{*}-irresolute function is gp-continuous.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.28: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{b\}, \{b,c\}\}$ and $\sigma = \{\phi, X, \{b\}\}$..Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=a, f(b)=c, f(c)=b. $f^{-1}\{a,c\} = \{a,b\}$ is gp-closed in (X, τ) . Therefore f is gp-continuous. {a,c} is (gs)^{*}-closed in (Y, σ) but

 $f^{-1}{a,c} = {a,b}$ is not (gs)^{*} closed set in (X, τ). Therefore f is not (gs)^{*} irresolute. Hence f is gp-continuous but not (gs)^{*}-irresolute.

Theorem 4.29: Every (gs)^{*}-irresolute function is (i) α ^{*}-continuous, (ii) ω -continuous.

The converse of the above results are not true in general.

Example 4.30: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{a\}, \{b,c\}\}\)$ and $\sigma = \{\phi, X, \{c\}, \{a,c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=a, f(b)=c, f(c)=b. $f^{-1}\{b\}=\{c\}$ is α^* -closed(resp. ω -closed) in (X, τ) . Therefore f is α^* -continuous(resp. ω -continuous). {b} is (gs)*-closed in (Y, σ) but $f^{-1}\{b\}=\{c\}$ is not (gs)* closed set in (X, τ) . Therefore f is not (gs)* irresolute. Hence f is α^* -continuous(resp. ω -continuous) but not (gs)*-closed.

Theorem 4.31: Every $(gs)^*$ -irresolute function is (i) $g\alpha$ -continuous, (ii) $(g\alpha)^*$ - continuous, (iii) g^* s-continuous, (iv) g^* -semi-continuous (v) α g-continuous.

The following example supports that the converse of the above results are not true in general.

Example 4.32: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{b\}\}$ and $\sigma = \{\phi, Y, \{c\}, \{a,c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=a, f(c)=b. $f^{-1}\{b\}=\{c\}$ is $g\alpha$ -closed (resp. $(g\alpha)^*$ -closed, g^* s-closed, g^* -semi-closed) in (X, τ) . Therefore f is $g\alpha$ -continuous (resp. $(g\alpha)^*$ -continuous, g^* s-continuous, g^* -semi-continuous). {a,b} is $(gs)^*$ -closed in (Y, σ) but $f^{-1}\{a,b\}=\{b,c\}$ is not $(gs)^*$ closed set in (X, τ) . Therefore f is not $(gs)^*$ irresolute. Hence f is $g\alpha$ -continuous (resp. α g-continuous, g^* s-continuous, g^* -semi-continuous) but not $(gs)^*$ -irresolute.

Theorem 4.33 : Every $(gs)^*$ -irresolute function is (i) s α g*-continuous, (ii) α g**- continuous, (iii) sg**-continuous.

The following example supports that the converse of the above results are not true in general.

Example 4.34: Let X=Y={a,b,c}, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b, c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=c, f(b)=a, f(c)=b. $f^{-1}\{a\}=\{b\}$ is $s \alpha g^*$ -closed(resp. αg^{**} -closed, sg^{**}-closed) in (X, τ) . Therefore f is $s \alpha g^*$ -continuous (resp. αg^{**} -continuous, sg^{**}-continuous). {b,c} is (gs)^{*}-closed in (Y, σ) but $f^{-1}\{b,c\}=\{a,c\}$ is not (gs)^{*} closed set in (X, τ) . Therefore f is not (gs)^{*} irresolute. Hence f is $s \alpha g^*$ -continuous(resp. αg^{**} -continuous, sg^{**}-continuous) but not (gs)^{*}-irresolute.

REFERENCES

[1] Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.

[2] Arokiarani .I, Balachandran.K and Dontchev. J, Some characterizations of gp-continuous maps between topological spaces, Mem.Fac.Sci.Kochi.Univ.Ser.A. Math., 20(1999),93-104.

[3] Arya S.P and Nour.T, characterizations of s-normal spaces, Indian J.Pure.Appl.Math., 21(8)(1990), 717-719.

[4] Balachandran .K, Sundaram .P and Maki.H, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser. A. Math., 12(1991), 5-13.

[5] Bhattacharya and Lahiri. B.K, Semi-generalized closed sets in topology, Indian J.Math., 29(3) (1987), 375-382.

[6] Devi R, Maki.H and Balachandran.K, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J.Pure.Appl.Math., 26(3) (1995), 271-284.

[7] Dontchev.J, On generalizing semi-preopen sets, Mem.Fac.Sci.Kochi Ser.A, Math., 16(1995), 35-48.

[8] Gnanambal.Y, On generalized preregular closed sets in topological spaces, Indian J.Pure.Appl.Math., 28(3)(1997), 35-48.

[9] Levine N, Generalized closed sets topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.

[10] Levine N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963) 36-41.

[11] Maki.H,Devi.R and Balachandran.K,Associated topologies of generalized α -closed sets and α -generalized closed sets,Mem.Fac.Sci.Kochi Univ.Ser.A,Math.,15(1994),51-63.

[12] Maki.H, Devi.R and Balachandran.K, Generalized α -closed sets in topology, Bull.Fukuoka Univ.Ed.PartIII, 42(1993), 13-21.

[13] Maki.H, Umehara.J and Noiri.T, Every topological spaces is pre- $T_{1/2}$, Mem . Fac .Sci .Kochi .Univ .Ser.A , Math ., 17(1996), 33-42.

[14] Maragathavalli.S and Sheik John.M, On s α g^{*}-closed sets in topological spaces, ACTA CIENCIA INDICA, Vol XXX1 2005 No.3, (2005), 805-815.

[15] Mashhour.A.S,Abd.M.E,E1-Monsef and S.N.E1-Deep, On pre-continuous and weak-pre continuous mapping ,Proc. Math.and Phys.Soc.Egypt,53(1982), 47-53.

[16] Njastad.O, On Some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970.

[17] Pauline Mary Helen.M, Monica.P, sg**-closed sets in topological spaces,IJCA,Issue 3,Volume 2(April 2013),ISSN: 2250-1797,20-30.

[18] Pauline Mary Helen.M, Veronica Vijayan, Ponnuthai Selvarani.S, g**-closed sets in topologicalspaces,IJMA,3(5),2012,1-15.

[19] Pushpalatha .P and Anitha.K, g*s-closed sets in topological space,Int.J. contemp.Math.Sciences,Vol.6.,March 2011,no 19,917-929.

[20] Dr.Saravanakumar.D,Sathiskumar.K.M, On a class of α g^{**}-closed sets in topological spaces and some mapping,International Journal of Scientific & Research Publications,Volume 2,Issue 6,June 2012 ISSN 2250-3153.

[21] Sundaram.P and Sheik John.M(1995) Weakly closed sets and weak continuous maps in topological spaces Proc.82nd Indian Sci.cong.49.(50-58).

[22] Veerakumar M.K.R.S, Between closed sets and g-closed sets, Mem.Fac.Sci.Kochi .Univ.Ser.A.Math., 17(1996), 33-42.

[23] Veerakumar M.K.R.S, Between Semiclosed sets and semi pre-closed sets, Rend. Instint. Univ. Trieste(Italy) XXXII, 25-41(2000).

[24] Veerakumar M.K.R.S, $g^{\#}$ semi-closed sets in topological spaces. International Journal of Scientific & Research Publications, Vol 2, Issue 6, June 2012 ISSN 2250-3153.

[25] Veronica Vijayan ,Daffiny Swarnakumari.E,(g α)^{*}-closed sets in topological spaces,IJCA,Issue 3,Volume 3(May-June 2013),ISSN:2250-1797.

[26] Veronica Vijayan , Priya. F, α^* -closed sets in topological spaces, IJCA, Issue 3, Volume 4(July-Aug 2013), ISSN: 2250-1797, 49-60.

27] Veronica Vijayan ,SelvaPriya.K, A study on $\psi^*, \overline{\psi}$ and ψ^- -closed sets in topological spaces, IJCA, Issue 3,Volume 2(April 2013),ISSN:2250-1797.