On Edge Pair Sum Labeling of Graphs

P. Jeyanthi ${ }^{\# 1}$ and T. Saratha Devi ${ }^{* 2}$
${ }^{\text {\#1 }}$ Principal and Head of the Department, Research Center, Department of Mathematics, Govindammal Aditanar College for Women, Thiruchendur 628215, India.
${ }^{* 2}$ Assistant Professor, Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti, India

Abstract - An injective map $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm q\}$ is said to be an edge pair sum labeling of a $\operatorname{graph} \mathbf{G}(\mathbf{p}, \mathbf{q})$ if the induced vertex function $\boldsymbol{f}^{*}: V(G) \rightarrow \boldsymbol{Z}-\{0\}$ defined by $\boldsymbol{f}^{*}(\boldsymbol{v})=\sum_{e \in E_{v}} f(e)$ is one - one, where E_{v} denotes the set of edges in G that are incident with a vertex v and $f^{*}(V(G))$ is either of the form $\left\{ \pm \boldsymbol{k}_{1}, \pm \boldsymbol{k}_{2}, \ldots, \pm \boldsymbol{k}_{\frac{p}{2}}\right\}$ or $\left\{ \pm \boldsymbol{k}_{1}, \pm \boldsymbol{k}_{2}, \ldots, \pm \boldsymbol{k}_{\frac{p-1}{2}}\right\} \cup\left\{\boldsymbol{k}_{\frac{p}{2}}\right\}$ according as p is even or odd. A graph which admits edge pair sum labeling is called an edge pair sum graph. In this paper we prove that some cycle related graphs are edge pair sum graphs.

Keywords: Pair sum labeling, pair sum graph, edge pair sum labeling, edge pair sum graph, ladder graph.

AMS Subject Classification (2010): 05C78

I. Introduction

All graphs in this paper are finite, simple and undirected. For standard terminology and notations we follow Gross and Yellen [1]. The symbols V(G) and $\mathrm{E}(\mathrm{G})$ denote the vertex set and the edge set of a graph. R.Ponraj et.al introduced the concept of pair sum labeling in [7]. An injective map $f: V(G) \rightarrow$ $\{ \pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling of a graph $G(p, q)$ if the induced edge function $f_{e}: E(G) \rightarrow$ $Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q}{2}}\right\}$ or
$\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q-1}{2}}\right\} \cup\left\{ \pm k_{\frac{q+1}{2}}\right\}$ according as q is even or odd. A graph with a pair sum labeling is called pair sum graph. Analogous to pair sum labeling we define a new labeling called edge pair sum labeling [3]. Let $G(p, q)$ be a graph. An injective map $f: E(G) \rightarrow$ $\{ \pm 1, \pm 2, \ldots, \pm q\}$ is said to be an edge pair sum labeling if the induced vertex function $f^{*}: V(G) \rightarrow$ $Z-\{0\}$ is defined by $f^{*}(v)=\sum_{e \in E_{v}} f(e)$ is one one where E_{v} denotes the set of edges in G that are incident with a vertex v and $f^{*}(V(G))$ is either of the form $\quad\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{p}{2}}\right\} \quad$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{p-1}{2}}\right\} \cup\left\{k_{\frac{p}{2}}\right\}$ according as p is even or odd. A graph with an edge pair sum labeling is called an edge pair sum graph. We established that the path, cycle, star graph, $P_{m} \cup K_{1, n}, C_{n} \odot K_{m}^{c}$ if n is even, triangular snake, bistar, $K_{1, n} \cup K_{1, m}, c_{n} \cup c_{n}$ and complete bipartite graphs $K_{1, n}$ are edge pair sum graph [3-6]. In this paper we prove that some cycle related graphs are edge pair sum graphs.

II EDGE PAIR SUM GRAPH WITH MANY ODD AND EVEN CYCLES:
In [3] it was shown that the cycle C_{n} is an edge pair sum graph. The star graph $K_{1, n}$ is an edge pair sum graph if and only if n is even. We would like to consider graphs with many odd and even cycles. Let $P_{n}(+) N_{m}$ be a graph with
$V\left(P_{n}(+) \quad N_{m}\right)=\left\{v_{l}, \quad v_{2}, \ldots, v_{n}, \quad u_{l}, \quad u_{2}, \quad \ldots, u_{m}\right\}$ $E\left(P_{n}(+) N_{m}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{1} u_{1}, v_{l} u_{2}, \ldots, v_{l} u_{m}\right.$ $\left., v_{n} u_{1}, v_{n} u_{2}, \ldots, v_{n} u_{m}\right\}$. Here $\mathrm{p}=\mathrm{n}+\mathrm{m}$ and $\mathrm{q}=\mathrm{n}+2 \mathrm{~m}-1$.

Theorem 2.1: The graph $P_{n}(+) N_{m}$ is an edge pair sum graph if m is odd.

Proof: Let $V\left(P_{n}(+) N_{m}\right)=\left\{v_{i}, u_{j}: 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and $E\left(P_{n}(+) N_{m}\right)=\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq\right.$ $(n-1), e_{j}^{\prime}=v_{1} u_{j}$ and $\left.e_{j}^{\prime \prime}=v_{n} u_{j}: 1 \leq j \leq m\right\}$ be the vertices and edges of the graph $P_{n}(+) N_{m}$. Define the edge labeling $f: E\left(P_{n}(+) N_{m}\right)=\{ \pm 1, \pm 2, \ldots, \pm(n+2 m-1)\}$ by considering the following three cases.

Case (i): $\mathrm{n}=2$

Define $f\left(e_{1}\right)=2, f\left(e_{1}^{\prime}\right)=-1, f\left(e_{1}^{\prime \prime}\right)=-3$,
for $1 \leq i \leq \frac{m-1}{2} f\left(e_{1+i}^{\prime}\right)=(2 i+3), f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)=$ $-(2 i+3), f\left(e_{1+i}^{\prime \prime}\right)=(m+2+2 i)$ and $f\left(e_{\frac{m+1}{\prime \prime}+i}^{2}\right)=$ $-(m+2+2 i)$.

The induced vertex labeling are as follows $f^{*}\left(v_{1}\right)=$ $f\left(e_{1}\right)+f\left(e_{1}^{\prime}\right)+f\left(e_{1+i}^{\prime}\right)+f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)=1$,
$f^{*}\left(v_{2}\right)=f\left(e_{1}\right)+f\left(e_{1}^{\prime \prime}\right)+f\left(e_{1+i}^{\prime \prime}\right)+f\left(e_{\frac{m+1}{\prime \prime}+i}^{2}\right)=$ $-1, f^{*}\left(u_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}^{\prime \prime}\right)=-4$, for $1 \leq i \leq \frac{m-1}{2}$ $f^{*}\left(u_{1+i}\right)=f\left(e_{1+i}^{\prime}\right)+f\left(e_{1+i}^{\prime \prime}\right)=(m+5+4 i) \quad$ and $f^{*}\left(u_{\frac{m+1}{2}+i}\right)=f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)+f\left(e_{\frac{m+1}{2}+i}^{\prime \prime}\right)=-(m+$ $5+4 i)$. From the above arguments we get $f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=\{ \pm 1, \pm(m+9), \pm(m+$ 13), $\ldots, \pm(3 m+3)\} \cup\{-4\}$. Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$. The example for the edge pair sum graph labeling $P_{n}(+) N_{m}$ for $\mathrm{n}=2$ and $\mathrm{m}=3$ is shown in Figure 1.

Figure 1

Case (ii): n is odd and take $\mathrm{n}=2 \mathrm{k}+1$.

Sub case (i): $k=1$ and k is even
for $1 \leq i \leq k \quad f\left(e_{i}\right)=(1+i)$ and $f\left(e_{k+i}\right)=-i$, $f\left(e_{1}^{\prime}\right)=1, f\left(e_{1}^{\prime \prime}\right)=-(k+1)$, for $1 \leq i \leq \frac{m-1}{2}$ $f\left(e_{1+i}^{\prime}\right)=(k+1+2 i), \quad f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)=-(k+1+$ 2i), $f\left(e_{1+i}^{\prime \prime}\right)=(k+m+2 i) \quad$ and $\quad f\left(e_{\frac{m+1}{\prime \prime}+i}^{2}\right)=$ $-(k+m+2 i)$.

The induced vertex labeling are
$f^{*}\left(v_{1}\right)=f\left(e_{1}\right)+f\left(e_{1}^{\prime}\right)+f\left(e_{1+i}^{\prime}\right)+f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)=$ 3, for $1 \leq i \leq k-1 f^{*}\left(v_{1+i}\right)=f\left(e_{i}\right)+f\left(e_{1+i}\right)=$ $(2 i+3), \quad f^{*}\left(v_{k+1}\right)=f\left(e_{k}\right)+f\left(e_{k+1}\right)=k, \quad$ for $1 \leq i \leq k-1 f^{*}\left(v_{k+1+i}\right)=f\left(e_{k+i}\right)+f\left(e_{k+1+i}\right)=$ $-(2 i+1), \quad f^{*}\left(v_{2 k+1}\right)=f\left(e_{2 k}\right)+f\left(e_{1}^{\prime \prime}\right)=$ $-(2 k+1), \quad f^{*}\left(u_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}^{\prime \prime}\right)=-k, \quad$ for $1 \leq i \leq \frac{m-1}{2} \quad f^{*}\left(u_{1+i}\right)=f\left(e_{1+i}^{\prime}\right)+f\left(e_{1+i}^{\prime \prime}\right)=$ $(2 k+m+1+4 i)$ and $f^{*}\left(u_{\frac{m+1}{2}+i}\right)=f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)+$ $f\left(e_{\frac{m+1}{\prime \prime}+i}^{\prime \prime}\right)=-(2 k+m+1+4 i)$. From the above arguments
we
$f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=\{ \pm k, \pm 3, \pm 5, \pm 7, \ldots, \pm(2 k+$ 1) $, \pm(2 k+m+5), \pm(2 k+m+9), \ldots, \pm(2 k+$ $3 m-1)\}$. Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$. Figure 2 illustrates the edge sum graph labeling $P_{n}(+) N_{m}$ where $\mathrm{m}=\mathrm{n}=3$.

Figure 2
Sub case (ii): k is odd and $k \geq 3$
for $\quad 1 \leq i \leq k \quad f\left(e_{i}\right)=(1+i), \quad f\left(e_{k+1}\right)=-2$, $f\left(e_{k+2}\right)=-1, \quad$ for $\quad 1 \leq i \leq k-2 \quad f\left(e_{k+2+i}\right)=$
$f\left(e_{k+i}\right)-2, f\left(e_{1}^{\prime}\right)=1, f\left(e_{1}^{\prime \prime}\right)=-k$, for $1 \leq i \leq$ $\frac{m-1}{2} f\left(e_{1+i}^{\prime}\right)=(k+2 i), \quad f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)=-(k+2 i)$, $f\left(e_{1+i}^{\prime \prime}\right)=(k+m-1+2 i) \quad$ and $\quad f\left(e_{\frac{m+1}{\prime \prime}+i}^{\prime \prime}\right)=$ $-(k+m-1+2 i)$.
The induced vertex labeling $\operatorname{are} f^{*}\left(v_{1}\right)=3$, for $1 \leq i \leq k-1 \quad f^{*}\left(v_{1+i}\right)=f\left(e_{i}\right)+f\left(e_{1+i}\right)=$ $(2 i+3), \quad f^{*}\left(v_{k+1}\right)=f\left(e_{k}\right)+f\left(e_{k+1}\right)=(k-1)$, for $1 \leq i \leq k f^{*}\left(v_{k+1+i}\right)=f\left(e_{k+i}\right)+f\left(e_{k+1+i}\right)=$ $-(2 i+1), \quad f^{*}\left(u_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}^{\prime \prime}\right)=-(k-1)$, for $\quad 1 \leq i \leq \frac{m-1}{2} \quad f^{*}\left(u_{1+i}\right)=f\left(e_{1+i}^{\prime}\right)+f\left(e_{1+i}^{\prime \prime}\right)=$ $(2 k+m-1+4 i)$ and $f^{*}\left(u_{\frac{m+1}{2}+i}\right)=f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)+$ $f\left(e_{\frac{m+1}{\prime}+i}^{\prime \prime}\right)=-(2 k+m-1+4 i)$.

From the above arguments we get $f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=\{ \pm 3, \pm 5, \pm 7, \ldots, \pm(2 k+$ 1), $\pm(k-1), \pm(2 k+m+3), \pm(2 k+m+$ 7), $\ldots, \pm(2 k+3 m-3)\}$.

Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$.

Case (iii): n is even and take $\mathrm{n}=2 \mathrm{k}$

Sub case $(i): k \equiv 0,2(\bmod 3)$

Define $f\left(e_{1}\right)=-2$, for $1 \leq i \leq k-1 f\left(e_{1+i}\right)=$ $(2+i), \quad f\left(e_{k+1}\right)=-1, \quad$ for $\quad 1 \leq i \leq k-2$ $f\left(e_{k+1+i}\right)=-(2+i), f\left(e_{1}^{\prime}\right)=1, \quad f\left(e_{1}^{\prime \prime}\right)=-(k+$ $1)$ for $\quad 1 \leq i \leq \frac{m-1}{2} \quad f\left(e_{1+i}^{\prime}\right)=(k+2 i)$,
$f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)=-(k+2 i), \quad f\left(e_{1+i}^{\prime \prime}\right)=(k+m-1+$
$2 i)$ and $f\left(e_{\frac{m+1}{\prime \prime}+i}^{2}\right)=-(k+m-1+2 i)$. The induced vertex labeling are $f^{*}\left(v_{1}\right)=-1, f^{*}\left(v_{2}\right)=$ 1 , for $3 \leq i \leq k \quad f^{*}\left(v_{i}\right)=f\left(e_{i}\right)+f\left(e_{1+i}\right)=(2 i+$ 1), $f^{*}\left(v_{k+1}\right)=k, f^{*}\left(v_{k+2}\right)=-4$, for $3 \leq i \leq k$ $f^{*}\left(v_{k+i}\right)=-(2 i+1), \quad f^{*}\left(u_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}^{\prime \prime}\right)=$ $-k, \quad$ for $\quad 1 \leq i \leq \frac{m-1}{2} \quad f^{*}\left(u_{1+i}\right)=f\left(e_{1+i}^{\prime}\right)+$ $f\left(e_{1+i}^{\prime \prime}\right)=(2 k+m-1+4 i) \quad$ and $\quad f^{*}\left(u_{\frac{m+1}{2}+i}\right)=$ $f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)+f\left(e_{\frac{m+1}{\prime \prime}+i}^{\prime \prime}\right)=-(2 k+m-1+4 i)$.

From the above arguments we get $f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=\{ \pm 1, \pm k, \pm 7, \pm 9, \ldots, \pm(2 k+$ $1), \pm(2 k+m+3), \pm(2 k+m+7), \ldots, \pm(2 k+$ $3 m-3)\} \cup\{-4\}$. Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$.

Sub case (ii): $k \equiv 1(\bmod 3)$

Define $f\left(e_{1}\right)=2, f\left(e_{2}\right)=-3$, for $1 \leq i \leq k-2$ $f\left(e_{2+i}\right)=(3+i), \quad f\left(e_{k+1}\right)=-1, \quad f\left(e_{k+2}\right)=-2$, for $1 \leq i \leq k-3 f\left(e_{k+2+i}\right)=-(3+i), \quad f\left(e_{1}^{\prime}\right)=$ $1, f\left(e_{1}^{\prime \prime}\right)=-(k+1)$, for $1 \leq i \leq \frac{m-1}{2} f\left(e_{1+i}^{\prime}\right)=$ $(k+1+2 i), \quad f\left(\frac{e_{m+1}^{\prime}}{2}+i\right)=-(k+1+2 i)$, $f\left(e_{1+i}^{\prime \prime}\right)=(k+m+2 i) \quad$ and $\quad f\left(e_{\frac{m+1}{\prime \prime}+i}^{\prime \prime}\right)=$ $-(k+m+2 i)$. The induced vertex labeling are $f^{*}\left(v_{1}\right)=3, f^{*}\left(v_{2}\right)=-1, f^{*}\left(v_{3}\right)=1$, for $4 \leq i \leq$
$k \quad f^{*}\left(v_{i}\right)=(2 i+1), \quad f^{*}\left(v_{k+1}\right)=k, f^{*}\left(v_{k+2}\right)=$ $-3, \quad f^{*}\left(v_{k+3}\right)=-6$, for $4 \leq i \leq k \quad f^{*}\left(v_{k+i}\right)=$ $-(2 i+1), \quad f^{*}\left(u_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}^{\prime \prime}\right)=-k, \quad$ for $1 \leq i \leq \frac{m-1}{2} \quad f^{*}\left(u_{1+i}\right)=f\left(e_{1+i}^{\prime}\right)+f\left(e_{1+i}^{\prime \prime}\right)=$ $(2 k+m+1+4 i)$ and $f^{*}\left(u_{\frac{m+1}{2}+i}\right)=f\left(e_{\frac{m+1}{2}+i}^{\prime}\right)+$ $f\left(e_{\frac{m+1}{\prime \prime}+i}^{\prime \prime}\right)=-(2 k+m+1+4 i)$. From the above arguments we get
$f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=$
$\{ \pm 1, \pm k, \pm 3, \pm 9, \pm 11, \ldots, \pm(2 k+1), \pm(2 k+m+$
5) $, \pm(2 k+m+9), \ldots, \pm(2 k+3 m-1) \cup\{-6\}\}$.

Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$ if m is odd.

Theorem 2.2: The graph $P_{n}(+) N_{m}$ is an edge pair sum graph if m is even and $n \geq 3$.

Proof: Let $V\left(P_{n}(+) N_{m}\right)=\left\{v_{i}, u_{j}: 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and $E\left(P_{n}(+) N_{m}\right)=\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq n\right.$, $e_{j}^{\prime}=v_{1} u_{j}$ and $\left.e_{j}^{\prime \prime}=v_{n} u_{j}: 1 \leq j \leq m\right\}$ be the vertices and edges of the graph $P_{n}(+) N_{m}$. Define the edge labeling $f: E\left(P_{n}(+) N_{m}\right)=\{ \pm 1, \pm 2, \ldots, \pm(n+$ $2 m-1)\}$ by considering the following four cases.

Case (i): $\mathrm{n}=3$
Define $f\left(e_{1}\right)=-2, f\left(e_{2}\right)=1$, for $\quad 1 \leq i \leq \frac{m}{2}$ $f\left(e_{i}^{\prime}\right)=(1+2 i), \quad f\left(e_{\frac{m}{2}+i}^{\prime}\right)=-(1+2 i), \quad f\left(e_{i}^{\prime \prime}\right)=$ $(m+1+2 i)$ and $f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(m+1+2 i)$. The
induced vertex labeling $\left.\operatorname{are} f^{*}\left(v_{1}\right)=-2, f^{*}\left(v_{2}\right)=6+4 i\right)$. From the above arguments we get $-1, f^{*}\left(v_{3}\right)=1$, for $1 \leq i \leq \frac{m}{2} f^{*}\left(u_{i}\right)=f\left(e_{i}^{\prime}\right)+$ $f\left(e_{i}^{\prime \prime}\right)=(m+2+4 i)$ and $f^{*}\left(u_{\frac{m}{2}+i}\right)=f\left(e_{\frac{m}{2}+i}^{\prime}\right)+$ $f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(m+2+4 i)$. From the above arguments we get $f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=\{ \pm 1, \pm(m+$ $6), \pm(m+10), \ldots, \pm(3 m+2) \cup\{-2\}\}$. Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$. Figure 3 shows that $P_{n}(+) N_{m}$ is an edge pair sum graph labeling for $\mathrm{m}=2$ and $\mathrm{n}=3$.

Figure 3
Case (ii): $\mathrm{n}=4$
$f\left(e_{1}\right)=-2, f\left(e_{2}\right)=-1, f\left(e_{3}\right)=3$, for $1 \leq i \leq \frac{m}{2}$
$f\left(e_{i}^{\prime}\right)=(3+2 i), \quad f\left(e_{\frac{m}{2}+i}^{\prime}\right)=-(3+2 i), \quad f\left(e_{i}^{\prime \prime}\right)=$ $(m+3+2 i)$ and $f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(m+3+2 i)$.

The induced vertex labeling are $f^{*}\left(v_{1}\right)=$ $-2, f^{*}\left(v_{2}\right)=-3, \quad f^{*}\left(v_{3}\right)=2, \quad f^{*}\left(v_{4}\right)=3, \quad$ for $1 \leq i \leq \frac{m}{2} f^{*}\left(u_{i}\right)=f\left(e_{i}^{\prime}\right)+f\left(e_{i}^{\prime \prime}\right)=(m+6+4 i)$ and $\quad f^{*}\left(u_{\frac{m}{2}+i}\right)=f\left(e_{\frac{m}{2}+i}^{\prime}\right)+f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(m+$
$f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=\{ \pm 2, \pm 3, \pm(m+10), \pm(m+$ $14), \ldots, \pm(3 m+6)\}$.

Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$. Figure 4 shows that $P_{n}(+) N_{m}$ is an edge pair sum graph labeling for $\mathrm{m}=\mathrm{n}=4$.

Figure 4
Case (iii): n is even and take $\mathrm{n}=2 \mathrm{k}, k \geq 3$

Define $f\left(e_{i}\right)=\left\{\begin{array}{cc}-2 & \text { if } i=k-1 \\ -1 & \text { if } i=k \\ 3 & \text { if } i=k+1\end{array}\right.$
$f\left(e_{i}\right)=\left\{\begin{array}{rr}2 k+1-2 i & \text { if } 1 \leq i \leq k-2 \\ 2 k-1-2 i & \text { if } k+2 \leq i \leq 2 k-1\end{array}\right.$
for $1 \leq i \leq \frac{m}{2} f\left(e_{i}^{\prime}\right)=(2 k+2 i-1), f\left(e_{\frac{m}{2}+i}^{\prime}\right)=$ $-(2 k+2 i-1), \quad f\left(e_{i}^{\prime \prime}\right)=(2 k+m-1+2 i) \quad$ and $f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(2 k+m-1+2 i)$. The induced vertex labeling are as follows $f^{*}\left(v_{1}\right)=f\left(e_{1}\right)+$
$f\left(e_{i}^{\prime}\right)+f\left(e_{\frac{m}{2}+i}^{\prime}\right)=(2 k-1), f^{*}\left(v_{n}\right)=f\left(e_{2 k-1}\right)+f\left(e_{\frac{m+2}{\prime}+i}^{\prime \prime}\right)=-(2 k+m-1+2 i)$. The induced $f\left(e_{i}^{\prime \prime}\right)+f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(2 k-1)$, for $2 \leq i \leq k-2$ $f^{*}\left(v_{i}\right)=f\left(e_{i-1}\right)+f\left(e_{i}\right)=4(k+1-i)$,
$f^{*}\left(v_{k-1}\right)=3, f^{*}\left(v_{k}\right)=-3, \quad f^{*}\left(v_{k+1}\right)=$ $2, f^{*}\left(v_{k+2}\right)=-2, \quad$ for $\quad k+3 \leq i \leq 2 k-1$ $f^{*}\left(v_{i}\right)=f\left(e_{i-1}\right)+f\left(e_{i}\right)=4(k-i)$, for $1 \leq i \leq \frac{m}{2}$ $f^{*}\left(u_{i}\right)=f\left(e_{i}^{\prime}\right)+f\left(e_{i}^{\prime \prime}\right)=(4 k+m-2+4 i) \quad$ and $f^{*}\left(u_{\frac{m}{2}+i}\right)=f\left(e_{\frac{m}{2}+i}^{\prime}\right)+f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(4 k+m-$ $2+4 i$. From the above arguments we get $f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=\{ \pm 2, \pm 3, \pm 12, \pm 16, \ldots, \pm 4(k-$ 1) $, \pm(2 k-1), \pm(4 k+m+2), \pm(4 k+m+$
$6), \ldots, \pm(4 k+3 m-2)\}$. Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$.

Case (iv): n is odd and take $\mathrm{n}=2 \mathrm{k}+1, k \geq 2$
Define $f\left(e_{i}\right)=\left\{\begin{array}{rc}1 & \text { if } i=k+1 \\ 2 & \text { if } i=k \\ -5 & \text { if } i=k-1\end{array}\right.$

$$
\begin{gathered}
f\left(e_{i}\right)= \\
\left\{\begin{array}{cl}
5 & \text { if } i=k+2 \\
-(2 k+3-2 i) & \text { if } 1 \leq i \leq k-2 \\
-2 k+1+2 i & \text { if } k+3 \leq i \leq 2 k
\end{array}\right. \\
f\left(e_{1}^{\prime}\right)=4, f\left(e_{2}^{\prime}\right)=-4, f\left(e_{1}^{\prime \prime}\right)=6, f\left(e_{2}^{\prime \prime}\right)=-6, \text { for } \\
1 \leq i \leq \frac{m-2}{2} f\left(e_{2+i}^{\prime}\right)=(2 k+2 i+1), f\left(e_{\frac{m+2}{\prime}+i}^{\prime}\right)= \\
-(2 k+2 i+1), f\left(e_{2+i}^{\prime \prime}\right)=(2 k+m-1+2 i) \text { and }
\end{gathered}
$$

$f\left(e_{i}^{\prime}\right)+f\left(e_{\frac{m}{2}+i}^{\prime}\right)=-(2 k+1), f^{*}\left(v_{n}\right)=f\left(e_{2 k}\right)+$
$f\left(e_{i}^{\prime \prime}\right)+f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=(2 k+1), \quad$ for $\quad 2 \leq i \leq k-1$ $f^{*}\left(v_{i}\right)=f\left(e_{i-1}\right)+f\left(e_{i}\right)=4(-k-2+i)$,
$f^{*}\left(v_{k}\right)=-3, f^{*}\left(v_{k+1}\right)=3, \quad f^{*}\left(v_{k+2}\right)=6$, for $k+3 \leq i \leq 2 k \quad f^{*}\left(v_{i}\right)=f\left(e_{i-1}\right)+f\left(e_{i}\right)=$ $-4(k-i), f^{*}\left(u_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}^{\prime \prime}\right)=10, f^{*}\left(u_{2}\right)=$ $f\left(e_{2}^{\prime}\right)+f\left(e_{2}^{\prime \prime}\right)=-10$, for $1 \leq i \leq \frac{m-2}{2} f^{*}\left(u_{2+i}\right)=$ $f\left(e_{i}^{\prime}\right)+f\left(e_{i}^{\prime \prime}\right)=(4 k+m+4 i)$ and $f^{*}\left(u_{\frac{m+2}{2}+i}\right)=$ $f\left(e_{\frac{m}{2}+i}^{\prime}\right)+f\left(e_{\frac{m}{2}+i}^{\prime \prime}\right)=-(4 k+m+4 i)$.

From the above arguments we get $f^{*}\left(V\left(P_{n}(+) N_{m}\right)\right)=$ $\{ \pm 3, \pm 12, \pm 16, \ldots, \pm 4 k, \pm(2 k+1), \pm(4 k+m+$ 4), $\pm(4 k+m+8), \ldots, \pm(4 k+3 m-4) \cup\{6\}\}$.

Hence f is an edge pair sum labeling of $P_{n}(+) N_{m}$. Figure 5 shows that $P_{n}(+) N_{m}$ is an edge pair sum graph for $\mathrm{m}=2$ and $\mathrm{n}=6$.

Figure 5
III. LADDER GRAPH:

Let $L_{n}=P_{n} \times P_{2}$ be a ladder with $V\left(L_{n}\right)=$ $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}\right.$: $1 \leq i \leq(n-1)\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.

Theorem 3.1: The graph L_{n} is an edge pair sum graph if n is even.

Proof: let $V\left(L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=$ $\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq(n-1), e_{i}^{\prime}=u_{i} v_{i}: 1 \leq i \leq\right.$ n and $\left.e_{i}^{\prime \prime}=v_{i} v_{i+1}: 1 \leq i \leq(n-1)\right\}$ are the vertices and edges of the graph L_{n}. Define the edge labeling $f: E\left(L_{n}\right)=\{ \pm 1, \pm 2, \ldots, \pm(3 n-2)\}$ by considering the following two cases.

Case (i): $\mathrm{n}=2$
Define $\quad f\left(e_{1}\right)=-2, \quad f\left(e_{1}^{\prime}\right)=1, f\left(e_{2}^{\prime}\right)=-1$, $f\left(e_{1}^{\prime \prime}\right)=2$. The induced vertex labeling
$f^{*}\left(u_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}\right)=-1, f^{*}\left(u_{2}\right)=f\left(e_{1}\right)+$
$f\left(e_{2}^{\prime}\right)=-3, \quad f^{*}\left(v_{1}\right)=f\left(e_{1}^{\prime}\right)+f\left(e_{1}^{\prime \prime}\right)=3 \quad$ and $f^{*}\left(v_{2}\right)=f\left(e_{1}^{\prime \prime}\right)+f\left(e_{2}^{\prime}\right)=1$. From the above arguments we get $f^{*}\left(V\left(L_{n}\right)\right)=\{ \pm 1, \pm 3\}$. Hence f is an edge pair sum labeling of L_{n}.

Case (ii) $n=2 k, k \geq 2$
for $1 \leq i \leq \frac{n}{2}-1 \quad f\left(e_{i}\right)=2\left(\frac{n}{2}-i\right)+1, f\left(e_{\frac{n}{2}}\right)=$ -2 , for $1 \leq i \leq \frac{n}{2}-1 f\left(e_{\frac{n}{2}+i}\right)=-6 i+2$, for $1 \leq i \leq \frac{n}{2}-1 \quad f\left(e_{i}^{\prime}\right)=6\left(\frac{n}{2}-i\right), \quad f\left(e_{\frac{n}{2}}^{\prime}\right)=1$,
$f\left(e_{\frac{n}{2}+1}^{\prime}\right)=-1$, for $1 \leq i \leq \frac{n}{2}-1 f\left(e_{\frac{n}{2}+1+i}^{\prime}\right)=-6 i$ and $f\left(e_{i}^{\prime \prime}\right)=3(n-2 i)-2, f\left(e_{\frac{n}{2}}^{\prime \prime}\right)=2$, for $1 \leq i \leq$ $\frac{n}{2}-1 f\left(e_{\frac{n}{2}+i}^{\prime \prime}\right)=-(2 i+1) . \quad$ The induced vertex labeling are as follows
$f^{*}\left(u_{1}\right)=f\left(e_{1}\right)+f\left(e_{1}^{\prime}\right)=(4 n-7)$, for $1 \leq i \leq$ $\frac{n}{2}-2 \quad f^{*}\left(u_{i+1}\right)=f\left(e_{i}\right)+f\left(e_{i+1}\right)+f\left(e_{i+1}^{\prime}\right)=$ $(5 n-10 i-6), \quad f^{*}\left(u_{\frac{n}{2}}\right)=f\left(e_{\frac{n}{2}-1}\right)+f\left(e_{\frac{n}{2}}^{\prime}\right)+$ $f\left(e_{\frac{n}{2}}\right)=2, \quad f^{*}\left(u_{\frac{n}{2}+1}\right)=f\left(e_{\frac{n}{2}+1}\right)+f\left(e_{\frac{n}{2}+1}^{\prime}\right)+$ $f\left(e_{\frac{n}{2}}\right)=-7, \quad$ for $\quad 1 \leq i \leq \frac{n}{2}-2 \quad f^{*}\left(u_{\frac{n}{2}+1+i}\right)=$ $f\left(e_{\frac{n}{2}+i}\right)+f\left(e_{\frac{n}{2}+1+i}^{\prime}\right)+f\left(e_{\frac{n}{2}+1+i}\right)=-(18 i+2)$,
$f^{*}\left(u_{n}\right)=f\left(e_{n-1}\right)+f\left(e_{n}^{\prime}\right)=-(6 n-14)$,
$f^{*}\left(v_{1}\right)=f\left(e_{1}^{\prime \prime}\right)+f\left(e_{1}^{\prime}\right)=(6 n-14)$, for $1 \leq i \leq$ $\frac{n}{2}-2 \quad f^{*}\left(v_{1+i}\right)=f\left(e_{i}^{\prime \prime}\right)+f\left(e_{i+1}^{\prime \prime}\right)+f\left(e_{i+1}^{\prime}\right)=$ $(9 n-18 i-16), \quad f^{*}\left(v_{\frac{n}{2}}\right)=f\left(e_{\frac{n}{2}}^{\prime}\right)+f\left(e_{\frac{n}{2}-1}^{\prime \prime}\right)+$ $f\left(e_{\frac{n}{2}}^{\prime \prime}\right)=7, \quad f^{*}\left(v_{\frac{n}{2}+1}\right)=f\left(e_{\frac{n}{2}+1}^{\prime}\right)+f\left(e_{\frac{n}{2}+1}^{\prime \prime}\right)+$ $f\left(e_{\frac{n}{2}}^{\prime \prime}\right)=-2, \quad$ for $1 \leq i \leq \frac{n}{2}-2 \quad f^{*}\left(v_{\frac{n}{2}+1+i}\right)=$ $f\left(e_{\frac{n}{2}+1+i}^{\prime}\right)+f\left(e_{\frac{n}{2}+i}^{\prime \prime}\right)+f\left(e_{\frac{n}{2}+1+i}^{\prime \prime}\right)=-(10 i+4)$,
$f^{*}\left(v_{n}\right)=f\left(e_{n}^{\prime}\right)+f\left(e_{n-1}^{\prime \prime}\right)=-(4 n-7)$. From the above labeling we get $f^{*}\left(V\left(L_{n}\right)\right)=\{ \pm 2, \pm 7 \pm$ $(4 n-7), \pm(6 n-14), \pm 14, \pm 24, \pm 34, \ldots, \pm(5 n-$ $16), \pm 20, \pm 38, \pm 56, \ldots \pm(9 n-34)\}$. Hence f is an
edge pair sum labeling for L_{n} if n is even. The example for the edge pair sum graph labeling of L_{n} for $n=4$ is shown in Figure 6.

Figure 6
References
[1] J. Gross and Yellen, Graph theory and its applications, CRS Press, (1999).
[2] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, (2013)
[3] P.Jeyanthi, T.Saratha Devi, Journal of Scientific Research, "Edge Pair Sum Labeling", Vol. 5 No. 3 (2013), 457-467.
[4] P.Jeyanthi, T.Saratha Devi, "Some edge pair sum graph" (Preprint).
[5] P.Jeyanthi, T.Saratha Devi, "Some results on edge pair sum labeling"(Preprint).
[6] P.Jeyanthi, T.Saratha Devi, "Edge pair sum labeling of spider graph "(Preprint).
[7] R. Ponraj and J. V. X. Parthipan, "Pair Sum Labeling of Graphs," The
Journal of Indian Academy of Mathematics, Vol. 32, No. 2, (2010),
587-595.

