International Journal of Mathematics Trends and Technology – Volume 7 Number 2 – March 2014

Some Results on E - Cordial Graphs

S.Venkatesh¹, Jamal Salah², G.Sethuraman³

¹Corresponding author, Department of Basic Sciences, College of Applied Sciences, A'Sharqiyah University, P.O. Box.42, P.C.400, Sultanate of Oman. ²Department of Basic Sciences, College of Applied Sciences, A'Sharqiyah University, P.O. Box.42, P.C.400, Sultanate of Oman. ³Department of Mathematics, Anna University, Guindy campus, Chennai – 25, India.

Abstract

Let G(V, E) be a finite simple graph. Let φ be a function from the edge set E to $\{0, 1\}$. For each vertex $v \in V$, define $\varphi(v) = \sum \{\varphi(uv): uv \in E\} \pmod{2}$. The function φ is called an E – cordial labeling of G, if the number of edges labeled 0 and the number of edges labeled 1 differs by at most one and the number of vertices labeled 0 and the number of vertices labeled 1 differs by at most one. A graph that admits E – cordial labeling is said to E - Cordial. In this paper, we prove that Odd Snakes and $C_m^{(t)}$, that is one vertex union of t copies of C_m , for t –even and m – odd are E - Cordial.

Keywords-Snakes, One vertex union of cycles, E - Cordial labeling, E - Cordial graphs.

1. INTRODUCTION

Let G(V, E) be any finite simple graph. For any graph-theoretic notation we follow West [1]. A vertex labeling or valuation of a graph *G* is an assignment *f* of labels to the vertices of *G*, that induces for each edge e = xy, a label depending on the vertex labels f(x) and f(y). Yilmaz and Cahit [4] introduced edge-cordial labeling as a weaker version of edge graceful labeling. Let φ be a function from the edge set E to {0,1}. For each vertex $v \in V$, define $\varphi(v) = \sum{\varphi(uv) : uv \in E} \pmod{2}$. The function φ is called an *E*-cordial labeling of *G*, if the number of edges labeled 0 and number of edges labeled 1 differ by at most one and the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most one. A graph that admits an *E*-cordial labeling is said to be E - Cordial graph. It is observed that graphs with $n \equiv 2 \pmod{4}$ vertices cannot be E - Cordial. For more related results on E - Cordial graphs one can refer Gallian [2].

2. Odd Snakes are E - Cordial.

Recall that snakes are the graphs whose block cut point graph is a path and further odd snake is a snake whose blocks are isomorphic to a cycle C_m of length m - odd (= 2n + 1). Refer Figure. 1. In this section we prove that odd snake is E - Cordial.

2.1. Theorem. Odd Snake is edge Cordial.

Proof:

Let *G* be an odd snakeas given in figure 1. Then by definition, *G* contains *r* blocks B_i , $1 \le i \le r$ and each block B_i of *G* is isomorphic to a cycle of length m (= 2n + 1), that is, $C_{2n+1} : v_{i,1}e_{i,2}v_{i,2}e_{i,3} \dots v_{i,2n}e_{i,2n+1}v_{i,2n+1}$.

For convenience of the labeling, for $1 \le i \le r - 1$, let $v_{i,2n+1} = v_{i+1,1}$. Thus from the above, we observe that the blocks B_i and B_{i+1} have a common cut vertex $v_{i,1}$ for $2 \le i \le r$.

Arrange the edges of all the blocks B_i of G in the following order $\{e_{i,1}, e_{i,2}, e_{i,3}, \dots, e_{i,2n+1}\}$ as shown in figure. 1.

Let E_0 and E_1 denote the set of all edges assigned the label 0 and 1 respectively. In the same way, let V_0 and V_1 denote the set of all vertices assigned the label 0 and 1 respectively.

International Journal of Mathematics Trends and Technology – Volume 7 Number 2 – March 2014

Define the labeling $\varphi : E(G) \rightarrow \{0,1\}$ corresponding to the edges of G in following cases,

Case : 1. If m = 3, then for $1 \le i \le r$ and $1 \le j \le 3$, define $\varphi(e_{i,j}) = \begin{cases} 110, & \text{if } r \text{ is odd} \\ 100, & \text{if } r \text{ is even} \end{cases}$ The induced vertex labeling is as follows, $v_{1,1} = 0, v_{1,2} = 1, v_{r,3} = 1.$ For $2 \le i \le r$, i - even, $v_{i,1} = 0$, $v_{i,2} = 0$. For $3 \le i \le r$, i - odd, $v_{i,1} = 1$, $v_{i,2} = 1$. Hence, if m = 3, it is observed that, if the number of blocks r is odd, then $|E_1| = |E_0| + 1$ and $|V_1| = |V_0| + 1$ and if r is even, then $|E_1| = |E_0|$ and $|V_0| = |V_1| + 1$

Case : 2. If m = 4k + 1, then for $1 \le i \le r$ and $1 \le j \le 2n + 1$, Define $\varphi(e_{i,j}) = \begin{cases} (1100)^k 1, & \text{if } r \text{ is odd} \\ (0011)^k 0, & \text{if } r \text{ is even} \end{cases}$

The induced vertex labeling is as follows

 $v_{r,2n+1} = 0.$ For $l \le i \le r, v_{i,j} = \begin{cases} 0, if \ 1 \le j \le 2n, j - odd \\ 1, if \ 2 \le j \le 2n, j - even \end{cases}$

Hence if m = 4k + 1, it is observed that, if the number of blocks r is odd then, $|E_1| = |E_0| + 1$ and $|V_0| = |V_1| + 1$ and if r is even, then $|E_1| = |E_0|$ and $|V_0| = |V_1| + 1$.

Case : 3. If m = 4k + 3, then for $1 \le i \le r$ and $1 \le j \le 2n + 1$, $((1100)^{k}110)$ if r is odd

Define
$$\varphi(e_{i,j}) = \begin{cases} (1100) & 110, ij \neq is out \\ 100(0011)^k, if r is even \end{cases}$$

The induced vertex labeling is as follows,

For $1 \le i \le r$, and i is odd, $v_{i,j} = \begin{cases} 1, if \ 3 \le i \le r-1, i-odd \\ 0, if \ 2 \le i \le r-1, i-even \\ 0, if \ 3 \le j \le 2n, j-even \\ 0, if \ 3 \le j \le 2n, j-odd \end{cases}$

For $2 \le i \le r$, and *i* is even, $v_{i,j} = \begin{cases} 0, if \ 2 \le j \le 2n, j - even \\ 1, if \ 3 \le j \le 2n, j - odd \end{cases}$

If m = 4k + 3, it is observed that, if the number of blocks r is odd, then $|E_1| = |E_0| + 1$ and $|V_1| = |V_0| + 1$ and if r is even, then $|E_1| = |E_0|$ and $|V_0| = |V_1| + 1$.

Hence it is clear that *G* is E - Cordial.■

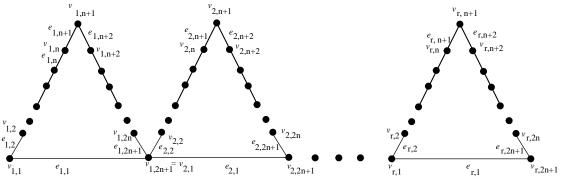


Figure. 1. Odd Snake

2.2. Illustrations to Theorem. 2.1.

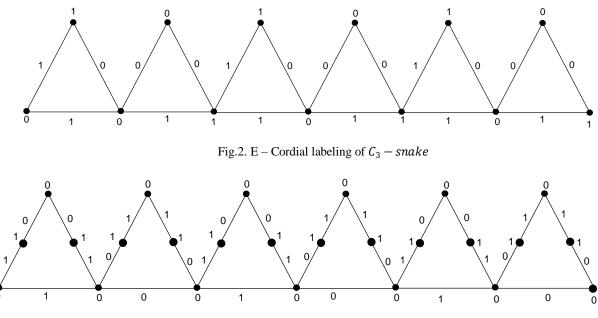


Fig.3. E – Cordial labeling of C_5 – snake

3. $C_m^{(t)}$, One vertex union of even number of odd cycles are **E** - Cordial.

Recall that a graph G is said to be one vertex union of graphs $G_1, G_2, G_3, \dots, G_t$ if G is obtained by adjoining $G_1, G_2, G_3, \dots, G_t$ at a common vertex v, that is, $G = \bigcup G_i$, for $i = 1, 2, 3, \dots, t$. In this section it is proved that $C_m^{(t)}$, the one vertex union of tisomorphic copies of cycles C_m , for t –even and m – odd are E – Cordial.

3.1. Theorem. $C_m^{(t)}$, one vertex union of t isomorphic copies of cycles C_m , for t –even and m – odd is E - Cordial.

Proof:

Let G be the one vertex union of G_i , $1 \le i \le t$, t - even, where $G_i \cong C_{m(=2n+1)}$. For $1 \le i \le t$, order the copies G_i as G_1, G_2, \dots, G_t .

For $1 \le i \le t$, name the vertices of G_i as follows, $\{v_{i,1}, v_{i,2}, \dots, v_{i,2n}, v_{i,2n+1}(=v)\}$, where v is a common vertex.

For $1 \le i \le t$, and name the edges of G_i as follows, $e_{i,1} = v v_{i,2}$; $e_{i,2n+1} = v_{i,2n}v$ and $e_{i,j} = v_{i,j} v_{i,j+1}$, for $2 \le j \le 2n$

From the above it is observed that for $1 \le i \le t$, the common vertex v is incident with the edges $e_{i,1}$, $e_{i,2n+1}$ and $\langle e_{i,1}, e_{i,2}, e_{i,3}, \dots, e_{i,2n}, e_{i,2n+1} \rangle$ induces the cycle $C_{2n+1} : v e_{i,1} v_{i,2} e_{i,2} v_{i,3} e_{i,3} \dots v_{i,2n} e_{i,2n+1} v$. Refer Figure. 4.

For the convenience of the labeling arrange the edges $e_{i,j}$, for $1 \le i \le t, 1 \le j \le 2n + 1$ of G_i as a sequence in the form $e_{i,1}, e_{i,2}, e_{i,3}, \dots, e_{i,2n+1}$.

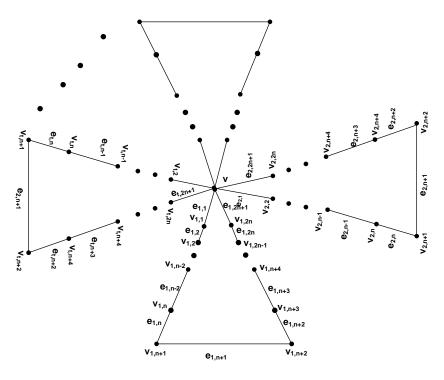


Fig.4. $G = \bigcup G_{i}$, for i = 1, 2, 3, ..., t

Let E_0 and E_1 denote the set of all edges assigned the label 0 and 1 respectively. In the same way, let V_0 and V_1 denote the set of all vertices assigned the label 0 and 1 respectively.

Define the labeling $\varphi : E(G) \rightarrow \{0,1\}$ corresponding to the edges of *G* in following cases, Case : 1. If m = 3, then for $1 \le i \le t$ and $1 \le j \le 3$, define $\varphi(e_{i,j}) = \begin{cases} 110, if t \text{ is odd} \\ 100, if t \text{ is even} \end{cases}$ The induced vertex labeling is as follows, For $1 \le i \le t, i - \text{ odd}, v_{i,1} = 0, v_{i,2} = 1$. For $3 \le i \le t, i - \text{ even}, v_{i,1} = 1, v_{i,2} = 0$. Hence, if m = 3, it is observed that, $|E_1| = |E_0|$ and $|V_0| = |V_1| + 1$. Case : 2. If m = 4k + 1, then for $1 \le i \le t$ and $1 \le j \le 2n + 1$, Define $\varphi(e_{i,j}) = \begin{cases} (1100)^k 1, if t \text{ is odd} \\ (0011)^k 0, if t \text{ is even} \end{cases}$ The induced vertex labeling is as follows, For $1 \le i \le t, v_{i,j} = \begin{cases} 0, if \ 1 \le j \le 2n, j - odd \\ 1, if \ 2 \le j \le 2n, j - even \end{cases}$ Hence if m = 4k + 1, it is observed that $|E_1| = |E_0|$ and $|V_0| = |V_1| + 1$.

Case : 3. If
$$m = 4k + 3$$
, then for $1 \le i \le t$ and $1 \le j \le 2n + 1$,
Define $\varphi(e_{i,j}) = \begin{cases} (1100)^k 110, & \text{if } t \text{ is odd} \\ 100(0011)^k, & \text{if } t \text{ is even} \end{cases}$

The induced vertex labeling is as follows,

International Journal of Mathematics Trends and Technology – Volume 7 Number 2 – March 2014

For $l \le i \le t$, and *i* is odd, $v_{i,j} = \begin{cases} 1, if \ j - even \\ 0, if \ j - odd \end{cases}$

For
$$2 \le i \le t$$
, and *i* is even, $v_{i,j} = \begin{cases} 0, if \ j - even \\ 1, if \ j - odd \end{cases}$
If $m = 4k + 3$, it is observed that, $|E_1| = |E_0|$ and $|V_0| = |V_1| + 1$ and hence *G* is E - Cordial.

4. CONCLUSIONS

Yilmaz and Cahit have discussed E – Cordial labeling of $C_m^{(3)}$ for all values n, while in this paper E – Cordial labeling of $C_m^{(t)}$, for t –even and m – odd have been investigated.

REFERENCES

- [1] D.B. West. Introduction to Graph Theory, Prentice Hall of India, 2001.
- [2] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics,# DS6, 2013.
- [3] I. Cahit, Cordial Graphs : A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23, pp. 201–207, 1987.
- [4] R. Yilmaz and I. Cahit E-Cordial graphs, Ars Combinatoria, 46, pp. 251 266, 1997.