Some Results on E-Cordial Graphs

S.Venkatesh ${ }^{1}$, Jamal Salah ${ }^{2}$, G.Sethuraman ${ }^{3}$
${ }^{1}$ Corresponding author, Department of Basic Sciences, College of Applied Sciences, A 'Sharqiyah University, P.O. Box.42, P.C.400, Sultanate of Oman.
${ }^{2}$ Department of Basic Sciences, College of Applied Sciences, A 'Sharqiyah University, P.O. Box.42, P.C.400, Sultanate of Oman.
${ }^{3}$ Department of Mathematics, Anna University, Guindy campus, Chennai - 25, India.

Abstract

Let $G(V, E)$ be a finite simple graph. Let φ be a function from the edge set E to $\{0,1\}$. For each vertex $v \in V$, define $\varphi(v)=\sum\{\varphi(u v): u v \in E\}(\bmod 2)$. The function φ is called an $E-$ cordial labeling of G, if the number of edges labeled 0 and the number of edges labeled 1 differs by at most one and the number of vertices labeled 0 and the number of vertices labeled 1 differs by at most one. A graph that admits \mathbf{E} - cordial labeling is said to \mathbf{E} - Cordial. In this paper, we prove that Odd Snakes and $C_{m}^{(t)}$, that is one vertex union of t copies of C_{m}, for t-even and \boldsymbol{m} - odd are E - Cordial.

Keywords- Snakes, One vertex union of cycles, E-Cordial labeling, E-Cordial graphs.

1. Introduction

Let $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be any finite simple graph. For any graph-theoretic notation we follow West [1].A vertex labeling or valuation of a graph G is an assignment f of labels to the vertices of G, that induces for each edge $e=x y$, a label depending on the vertex labels $f(x)$ and $f(y)$. Yilmaz and Cahit [4] introduced edge-cordial labeling as a weaker version of edge graceful labeling. Let φ be a function from the edge set E to $\{0,1\}$. For each vertex $v \in V$, define $\varphi(v)=\sum\{\varphi(u v): u v \in E\}(\bmod 2)$. The function φ is called an E-cordial labeling of G, if the number of edges labeled 0 and number of edges labeled 1 differ by at most one and the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most one. A graph that admits an E-cordial labeling is said to be E - Cordial graph. It is observed that graphs with $n \equiv 2(\bmod 4)$ vertices cannot be E - Cordial. For more related results on E-Cordial graphs one can refer Gallian [2].

2. Odd Snakes are E-Cordial.

Recall that snakes are the graphs whose block cut point graph is a path and further odd snake is a snake whose blocks are isomorphic to a cycle C_{m} of length $m-o d d(=2 n+1)$. Refer Figure. 1. In this section we prove that odd snake is E - Cordial.

2.1. Theorem. Odd Snake is edge Cordial.

Proof:

Let G be an odd snakeas given in figure 1. Then by definition, G contains r blocks $B_{i}, 1 \leq i \leq r$ and each block B_{i} of G is isomorphic to a cycle of length $m(=2 n+1)$, that is, $C_{2 n+1}: v_{i, 1} e_{i, 2} v_{i, 2} e_{i, 3} \ldots v_{i, 2 n} e_{i, 2 n+1} v_{i, 2 n+1}$.

For convenience of the labeling, for $1 \leq i \leq r-1$, let $v_{i, 2 n+1}=v_{i+1,1}$.Thus from the above, we observe that the blocks B_{i} and B_{i+1} have a common cut vertex $v_{i, 1}$ for $2 \leq i \leq r$.
Arrange the edges of all the blocks B_{i} of G in the following order $\left\{e_{i, 1}, e_{i, 2}, e_{i, 3}, \ldots \ldots . e_{i, 2 n+1}\right\}$ as shown in figure. 1 .

Let E_{0} and E_{1} denote the set of all edges assigned the label 0 and 1 respectively. In the same way, let V_{0} and V_{1} denote the set of all vertices assigned the label 0 and 1 respectively.

Define the labeling $\varphi: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$ corresponding to the edges of G in following cases,
Case : 1 . If $m=3$, then for $1 \leq i \leq r$ and $1 \leq j \leq 3$, define $\varphi\left(e_{i, j}\right)=\left\{\begin{array}{l}110, \text { if } r \text { is odd } \\ 100, \text { if } r \text { is even }\end{array}\right.$
The induced vertex labeling is as follows,

$$
v_{1,1}=0, v_{1,2}=1, v_{r, 3}=1
$$

For $2 \leq i \leq r, i-$ even, $v_{i, 1}=0, v_{i, 2}=0$.
For $3 \leq i \leq r, i-$ odd, $v_{i, 1}=1, v_{i, 2}=1$.
Hence, if $m=3$, it is observed that, if the number of blocks r is odd, then $\left|E_{1}\right|=\left|E_{0}\right|+1$ and $\left|V_{1}\right|=\left|V_{0}\right|+1$ and if r is even, then $\left|E_{1}\right|=\left|E_{0}\right|$ and $\left|V_{0}\right|=\left|V_{1}\right|+1$

Case : 2. If $m=4 k+1$, then for $1 \leq i \leq r$ and $1 \leq j \leq 2 n+1$,

$$
\text { Define } \varphi\left(e_{i, j}\right)=\left\{\begin{array}{l}
(1100)^{k} 1, \text { if } r \text { is odd } \\
(0011)^{k} 0, \text { if } r \text { is even }
\end{array}\right.
$$

The induced vertex labeling is as follows,

$$
v_{r, 2 n+1}=0
$$

For $l \leq i \leq r, v_{i, j}=\left\{\begin{array}{l}0, \text { if } 1 \leq j \leq 2 n, j-\text { odd } \\ 1, \text { if } 2 \leq j \leq 2 n, j-\text { even }\end{array}\right.$.
Hence if $m=4 k+1$, it is observed that, if the number of blocks r is odd then, $\left|E_{1}\right|=\left|E_{0}\right|+1$ and $\left|V_{0}\right|=\left|V_{1}\right|+1$ and if r is even, then $\left|E_{1}\right|=\left|E_{0}\right|$ and $\left|V_{0}\right|=\left|V_{1}\right|+1$.

Case: 3. If $m=4 k+3$, then for $1 \leq i \leq r$ and $1 \leq \mathrm{j} \leq 2 \mathrm{n}+1$,

$$
\text { Define } \varphi\left(e_{i, j}\right)=\left\{\begin{array}{l}
(1100)^{k} 110, \text { if } r \text { is odd } \\
100(0011)^{k}, \text { if } r \text { is even }
\end{array}\right.
$$

The induced vertex labeling is as follows,

$$
\left.\begin{array}{rl}
v_{1,1} & =0, v_{r, 2 n+1}=0
\end{array}\right] \begin{aligned}
\text { and } v_{i, 1} & =\left\{\begin{array}{c}
1 \text { if } 3 \leq i \leq r-1, i-\text { odd } \\
0, \text { if } 2 \leq i \leq r-1, i-\text { even }
\end{array}\right. \\
\text { For } 1 \leq i \leq r, \text { and } i \text { is odd, } v_{i, j} & =\left\{\begin{array}{c}
1, \text { if } 2 \leq j \leq 2 n, j-\text { even } \\
0, \text { if } 3 \leq j \leq 2 n, j-\text { odd }
\end{array}\right.
\end{aligned}
$$

For $2 \leq i \leq r$, and i is even, $v_{i, j}=\left\{\begin{array}{c}0, \text { if } 2 \leq j \leq 2 n, j-\text { even } \\ 1, \text { if } 3 \leq j \leq 2 n, j-\text { odd }\end{array}\right.$
If $m=4 k+3$, it is observed that, if the number of blocks r is odd, then $\left|E_{1}\right|=\left|E_{0}\right|+1$ and $\left|V_{1}\right|=\left|V_{0}\right|+1$ and if r is even, then $\left|E_{1}\right|=\left|E_{0}\right|$ and $\left|V_{0}\right|=\left|V_{1}\right|+1$.
Hence it is clear that G is E - Cordial.

Figure. 1. Odd Snake

2.2. Illustrations to Theorem. 2.1.

Fig.2. E - Cordial labeling of C_{3} - snake

Fig.3. E - Cordial labeling of C_{5} - snake

3. $C_{m}^{(t)}$, ONE VERTEX UNION OF EVEN NUMBER OF ODD CYCLES ARE E - CORDIAL.

Recall that a graph G is said to be one vertex union of graphs $G_{1}, G_{2}, G_{3}, \ldots, G_{t}$ if G is obtained by adjoining $G_{1}, G_{2}, G_{3,}, \ldots, G_{t}$ at a common vertex v, that is, $G=\cup G_{i}$, for $i=1,2,3, \ldots, t$. In this section it is proved that $C_{m}^{(t)}$, the one vertex union of t isomorphiccopies of cycles C_{m}, for t-even and m-odd are E - Cordial.
3.1. Theorem. $C_{m}^{(t)}$, one vertex union of t isomorphic copies of cycles C_{m}, for t-even and m-odd is E-Cordial.

Proof:

Let G be the one vertex union of $G_{i}, 1 \leq i \leq t, t$-even, where $G_{i} \cong C_{m(=2 n+1)}$. For $1 \leq i \leq t$, order the copies G_{i} as $G_{1}, G_{2}, \ldots, G_{t}$.
For $1 \leq \mathrm{i} \leq \mathrm{t}$, name the vertices of G_{i} as follows, $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, 2 n}, v_{i, 2 n+1}(=v)\right\}$, where v is a common vertex.

For $1 \leq \mathrm{i} \leq \mathrm{t}$, and name the edges of G_{i} as follows, $\mathrm{e}_{\mathrm{i}, 1}=v v_{i, 2} ; \mathrm{e}_{\mathrm{i}, 2 \mathrm{n}+1}=v_{i, 2 n} v$ and $\mathrm{e}_{\mathrm{i}, \mathrm{j}}=v_{i, j} v_{i, j+1}$, for $2 \leq j \leq 2 n$

From the above it is observed that for $1 \leq i \leq t$, the common vertex v is incident with the edges $e_{i, 1}, e_{i, 2 n+1}$ and $\left\langle e_{i, 1}, e_{i, 2}, e_{i, 3}, \ldots, e_{i, 2 n}, e_{i, 2 n+1}\right\rangle$ induces the cycle $C_{2 n+1}: v e_{i, 1} v_{i, 2} e_{i, 2} v_{i, 3} e_{i, 3} \ldots \ldots v_{i, 2 n} e_{i, 2 n+1} v$. Refer Figure. 4.

For the convenience of the labeling arrange the edges $\mathrm{e}_{\mathrm{i}, \mathrm{j}}$, for $1 \leq i \leq t, 1 \leq j \leq 2 n+1$ of G_{i} as a sequence in the form $e_{i, 1}, e_{i, 2}, e_{i, 3}, \ldots, e_{i, 2 n+1}$.

Fig.4. $G=\cup G_{i}$, for $i=1,2,3, \ldots, t$
Let E_{0} and E_{1} denote the set of all edges assigned the label 0 and 1 respectively. In the same way, let V_{0} and V_{1} denote the set of all vertices assigned the label 0 and 1 respectively.

Define the labeling $\varphi: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$ corresponding to the edges of G in following cases,
Case : 1 . If $m=3$, then for $1 \leq i \leq t$ and $1 \leq j \leq 3$, define $\varphi\left(e_{i, j}\right)=\left\{\begin{array}{l}110, \text { if } t \text { is odd } \\ 100, \text { if } t \text { is even }\end{array}\right.$
The induced vertex labeling is as follows,
For $l \leq i \leq t, i-$ odd, $v_{i, 1}=0, v_{i, 2}=1$.
For $3 \leq i \leq t, i-$ even, $v_{i, 1}=1, v_{i, 2}=0$.
Hence, if $m=3$, it is observed that, $\left|E_{1}\right|=\left|E_{0}\right|$ and $\left|V_{0}\right|=\left|V_{1}\right|+1$.

Case :2. If $m=4 k+1$, then for $1 \leq i \leq t$ and $1 \leq j \leq 2 n+1$,

$$
\text { Define } \varphi\left(\mathrm{e}_{i, j}\right)=\left\{\begin{array}{l}
(1100)^{k} 1, \text { if } t \text { is odd } \\
(0011)^{k} 0, \text { if } t \text { is even }
\end{array}\right.
$$

The induced vertex labeling is as follows,
For $1 \leq i \leq t, v_{i, j}=\left\{\begin{array}{l}0, \text { if } 1 \leq j \leq 2 n, j-\text { odd } \\ 1, \text { if } 2 \leq j \leq 2 n, j-\text { even }\end{array}\right.$.
Hence if $m=4 k+1$, it is observed that $\left|E_{1}\right|=\left|E_{0}\right|$ and $\left|V_{0}\right|=\left|V_{1}\right|+1$.

Case: 3. If $m=4 k+3$, then for $1 \leq i \leq t$ and $1 \leq j \leq 2 n+1$,
Define $\varphi\left(e_{i, j}\right)=\left\{\begin{array}{l}(1100)^{k} 110, \text { if } t \text { is odd } \\ 100(0011)^{k}, \text { if } t \text { is even }\end{array}\right.$

The induced vertex labeling is as follows,

For $l \leq i \leq t$, and i is odd, $v_{i, j}=\left\{\begin{array}{l}1, \text { if } j-\text { even } \\ 0, \text { if } j-\text { odd }\end{array}\right.$
For $2 \leq i \leq t$, and i is even, $v_{i, j}=\left\{\begin{array}{c}0, \text { if } j-\text { even } \\ 1, \text { if } j-\text { odd }\end{array}\right.$ If $m=4 k+3$, it is observed that, $\left|E_{1}\right|=\left|E_{0}\right|$ and $\left|V_{0}\right|=\left|V_{1}\right|+1$ and hence G is E-Cordial.

4. Conclusions

Yilmaz and Cahit have discussed $\mathrm{E}-\mathrm{Cordial}$ labeling of $C_{m}^{(3)}$ for all values n, while in this paper E-Cordial labeling of $C_{m}^{(t)}$, for t-even and m - odd have been investigated.

References

[1] D.B. West. Introduction to Graph Theory, Prentice Hall of India, 2001.
[2] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics,\# DS6, 2013.
[3] I. Cahit, Cordial Graphs : A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23, pp. 201-207, 1987.
[4] R. Yilmaz and I. Cahit E-Cordial graphs, Ars Combinatoria, 46, pp. 251-266, 1997.

