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Abstract

The authors introduced rpsI-closed sets and rpsI-open sets in ideal topo-

logical spaces and established their relationships with some generalized sets

in ideal topological spaces. The aim of this paper is to introduce rpsI-totally

continuous, totally rpsI-continuous, strongly rpsI-continuous functions and

characterize their basic properties.
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1 Introduction

In 1980, Jain [2] introduced totally continuous functions. In 1995, Nour [4] in-
troduced the concept of totally semi continuous functions as a generalization of
totally continuous functions and several properties of totally semi-continuous func-
tions were obtained. We introduced the rpsI-closed sets and rpsI-open sets in ideal
topological spaces. Also we introduced rpsI-continuous functions. In this paper, we
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introduce the concept of rpsI-totally continuous, strongly rpsI-continuous, rpsI-
homeomorphisms and rps∗I-homeomorphisms in ideal topological spaces. Further-
more, basic properties of these functions and preservation theorems of rpsI-totally
continuous functions.

2 Preliminaries

For a subset A of an ideal topological space(X, τ, I), cl∗(A) and int∗(A) denote the
closure of A and interior of A respectively. Ac denotes the complement of A in X.
Now we recall the following definitions.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is called

i) semi-I-open [1] if A ⊆ cl∗(int(A)).

ii) semi pre I-open [1] if A ⊆ cl(int(cl∗(A))).

iii) αI- open [1] if A ⊆ int(cl∗(int(A))).

iv) regular I-open [3] if A = int(cl∗(A)).

Definition 2.2. A subset A of an ideal topological space (X, τ, I) is called

i) regular generalized I-closed (rgI-closed) [5] if cl∗(A) ⊆ U whenever A ⊆ U and
U is regular I-open.

ii) regular pre semi I-closed [5] (rpsI-closed) if spIcl(A) ⊆ U whenever A ⊆ U and
U is regular generalized I-open.

The complement of rpsI-closed set is rpsI-open set. rpsIcl(A) is the smallest
rpsI-closed set containing A.

Definition 2.3. A function f : (X, τ) → (Y, σ) is called totally continuous [2] if the
inverse image of every open subset of Y is clopen in X.

Definition 2.4. A function f : (X, τ, I) → (Y, σ) is called

i) rpsI-irresolute [6] if f−1(A) is rpsI-closed in X, for every rpsI-closed subset A
of Y .

ii) A function f : (X, τ, I) → (Y, σ) is called rpsI-continuous [6] if the inverse
image of every closed subset of Y is rpsI-closed in X.
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3 rpsI-totally continuous functions, totally rpsI-

continuous functions and strongly rpsI-continuous

In this section, the notion of totally rpsI-continuous, rpsI-totally continuous func-
tions and strongly rpsI-continuous are introduced. Characterizations and some
relationships between rpsI-totally continuous functions and other similar functions
are obtained. Also some basic properties of rpsI-totally continuous functions are
investigated.

Definition 3.1. A function f : (X, τ, I) → (Y, σ, J) is called rpsI-totally continuous
function if the inverse image of every rpsI-open subset of Y is clopen in X.

Theorem 3.2. A function f : (X, τ, I) → (Y, σ, J) is rpsI-totally continuous if and
only if the inverse image of every rpsI-closed subset of Y is clopen in X.

Proof. Let F be any rpsI-closed set in Y . Then F c is rpsI-open in Y . By def-
inition, f−1(F c) is clopen in X. But f−1(F c) = (f−1(F ))c which is clopen in X.
This implies f−1(F ) is clopen in X. Conversely suppose V is rpsI-open Y , then
V c is rpsI-closed in Y . By hypothesis f−1(V c) is clopen in X. But f−1(V c) =
(f−1(V ))c which is clopen in X, which implies f−1(V ) is clopen in X. Thus,
inverse image of every rpsI-open set in Y is clopen in X.
Therefore f is rpsI-totally continuous.

Theorem 3.3. Every rpsI-totally continuous function is totally continuous.

Proof. Suppose f : (X, τ, I) → (Y, σ, J) is rpsI-totally continuous. Let U be any
open subset of Y . Since every open set is rpsI-open, U is rpsI-open in Y and f is
rpsI-totally continuous, it follows f−1(U) is clopen in X. This proves the theorem.
The converse of the above theorem need not be true as seen from the following
example.

Example 3.4. Let X = Y = Z = {a, b, c}, τ = {φ,X, {a}, {b, c}, I = {φ, {a}},
σ = {φ, Y, {a}}. Define a functions f : (X, τ, I) → (Y, σ, J) by f(a) = a, f(b) = b,
f(c) = c. Clearly the inverse image of every open set is clopen. Therefore f is
totally continuous. But f is not rpsI-totally continuous, because for the rpsI-open
set {a, b}, f−1({a, b}) = {a, b} is not clopen in X.

Theorem 3.5. Let f : X → Y be a function, where X and Y are ideal topological
spaces. Then the following are equivalent.

i. f is rpsI-totally continuous

ii. for each x ∈ X and each rpsI-open set V in Y with f(x) ∈ V , there is a clopen
set U in X such that x ∈ U and f(U) ⊆ V .
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Proof. (i) ⇒ (ii). Suppose f is rpsI-totally continuous and V be any
rpsI-open set in Y containing f(x) so that x ∈ f−1(V ). Since f is rpsI-totally
continuous, f−1(V ) is clopen in X. Let U = f−1(V ), then U is clopen in X and
x ∈ U . Also f(U) = f(f−1(V )) ⊆ V . This implies f(U) ⊆ V .
(ii) ⇒ (i). Let V be rpsI-open set in Y . Let x ∈ f−1(V ) be any arbitrary point.
This implies f(x) ∈ V . By (ii) there is a clopen set f(G) ⊆ X containing x such
that f(G) ⊆ V , which implies G ⊆ f−1(V ). We have x ∈ G ⊆ f−1(V ). This implies
f−1(V ) is clopen neighbourhood of each of its points. Hence it is clopen set in X.
Therefore f is rpsI-totally continuous.

Theorem 3.6. If a function f : (X, τ, I) → (Y, σ, J) is rpsI-totally continuous then
f is continuous but not conversely.

Proof. Let V be an open set in Y . Then V is rpsI-open in Y . Since f is rpsI-totally
continuous, f−1(V ) is both open and closed in X. Thus f is continuous. Converse
of the above theorem need not be true as seen from the following example

Example 3.7. Let X = Y = {a, b, c, d}, τ = {φ,X, {a, c}, {d}, {a, c, d}}, I =
{φ, {a}}, σ = {φ, Y, {a}, {b}, {a, b}, {b, c}, {a, b, c}. Define a functions f : (X, τ, I) →
(Y, σ, J) by f(a) = d, f(b) = c, f(c) = d, f(d) = b. Then f is continuous
but not rpsI-totally continuous. Because the subset {b} is rpsI-open in Y but
f−1({b}) = {d} is not closed in X.

Example 3.8. Let X = Y = {a, b, c, d}, τ = {φ,X, {a}, {b, c, d}, {a, c, d}}, I =
{φ, {a}}, σ = {φ, Y, {a}, {b}, {a, b}, {b, c}, {a, b, c}. Define a functions f : (X, τ, I) →
(Y, σ, J) by f(a) = b, f(b) = d, f(c) = c, f(d) = d. Then f is perfectly continu-
ous but not rpsI-totally continuous. Because the subset {c} is rpsI-open in Y but
f−1({c}) = {c} is not clopen in X.

Theorem 3.9. The composition of two rpsI-totally continuous functions is rpsI-
totally continuous.

Proof. Let f : (X, τ, I) → (Y, σ, J) and g : (Y, σ, J) → (Z, η,K) be any two rpsI-
totally continuous functions. Let V be rpsI-open set in Z. Since g is rpsI-totally
continuous, g−1(V ) is clopen and hence open in Y . Since every open set is rpsI-open,
g−1(V ) is rpsI-open in Y . Further, since f is rpsI-totally continuous, f−1(g−1(V )) =
(gof)−1(V ) is clopen in X. Hence gof is rpsI-totally continuous function.

Definition 3.10. A function f : (X, τ, I) → (Y, σ, J) is called strongly rpsI-
continuous if the inverse image of every rpsI-open set of Y is open in X.

Theorem 3.11. If a function f : (X, τ, I) → (Y, σ, J) is rpsI-totally continuous
then f is strongly rpsI-continuous but not conversely.

Proof. Proof follows from Definition.
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Example 3.12. Let X = Y = {a, b, c, d}, τ = {φ,X, {a, c}, {d}, {a, c, d}}, I =
{φ, {a}}, σ = {φ, Y, {a}, {b}, {a, b}, {b, c}, {a, b, c}. Define a functions f : (X, τ, I) →
(Y, σ, J) by f(a) = f(b) = f(c) = d, f(d) = a. Then f is strongly rpsI-continuous
but not rpsI-totally continuous. Because the subset a is rpsI-open in Y but f−1(a) =
d is not closed in X.

Theorem 3.13. Let X be a discrete topological space and Y be any ideal space and
f : (X, τ, I) → (Y, σ, J) be a function. If f is strongly rpsI-continuous then f is
rpsI-totally continuous.

Proof. Let V be rpsI-open in Y . Since f is strongly rpsI-continuous, f−1(V ) is
open in X. Also since X is a discrete space, we have f−1(V ) is closed in X and so
f is rpsI-totally continuous.

Definition 3.14. A function f : (X, τ, I) → (Y, σ) is called totally rpsI-continuous
if f−1(V ) is rpsI-clopen in (X, τ, I) for each open set V in (Y, σ).

Theorem 3.15. Every totally rpsI-continuous function is rpsI-continuous.

Proof. proof follows from definition The converse of the above statements need not
be true as seen from the following example.

Example 3.16. Let X = Y = {a, b, c}, τ = {φ,X, {a}, {a, b}, I = {φ, {b}}, σ =
{φ, Y, {b}, {a, b}}. . Define a function f : (X, τ, I) → (Y, σ, J) by f(a) = b,f(b) = a,
f(c) = c. Then f is rpsI-continuous but not totally rpsI-continuous because the set
{b} is open in Y but f−1(b) = {a} which is rpsI-open and not rpsI-closed in X.

Theorem 3.17. Every rpsI-totally continuous function is totally rpsI-continuous.

Proof. Suppose f : (X, τ, I) → (Y, σ, J) is rpsI-totally continuous. Let U be any
open subset of Y . Since every open set is rpsI-open, U is rpsI-open in Y and f

is rpsI-totally continuous, it follows f−1(U) is clopen in X. Then f−1(U) is rpsI-
clopen in X. This proves the theorem.
The converse of the above theorem need not be true as seen from the following
example.

Example 3.18. Let X = Y = Z = {a, b, c}, τ = {φ,X, {a}, {b, c}, I = {φ, {a}},
σ = {φ, Y, {a}}. Define a functions f : (X, τ, I) → (Y, σ, J) by f(a) = a, f(b) = b,
f(c) = c. Clearly the inverse image of every open set is rpsI-clopen in X. Therefore
f is totally rpsI-continuous. But f is not rpsI-totally continuous, because for the
rpsI-open set {a, b}, f−1({a, b}) = {a, b} is not clopen in X.
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4 rpsI-homeomorphisms

In this section, we introduce the concept of rpsI-homeomorphisms and study its re-
lationship with homeomorphisms. We also introduce a new class of functions rps∗I-
homeomorphisms which form a subclass of rpsI-homeomorphisms. We prove that
the set of all rps∗I-homeomorphisms from (X, τ, I) onto itself is a group under the
composition of functions.

Definition 4.1. A bijection f : (X, τ, I) → (Y, σ) is called rpsI-homeomorphism if
both f and f−1 are rpsI-continuous.
We say that the spaces (X, τ, I) and (Y, σ) are rpsI-homeomorphic if there exists an
rpsI-homeomorphism from (X, τ, I) onto (Y, σ).

Theorem 4.2. Every homeomorphism is an rpsI-homeomorphism.

Proof. Let f : (X, τ, I) → (Y, σ) be a homeomorphism. Then f and f−1 are con-
tinuous and f is a bijection. Since every continuous function is rpsI-continuous, it
follows that f is rpsI-homeomorphism.
The converse of the above theorem need not be true as seen from the following
example.

Example 4.3. Let X = Y = {a, b, c, d}, τ = {φ,X, {a}, {b, d}, {a, b, d}}, I =
{φ, {a}}, σ = {φ, Y, {b, c, d}}. Define a function f : (X, τ, I) → (Y, σ, J) by
f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then f is a rpsI homeomorphism but
not homeomorphism. Because the subset (f−1)({a}) = {a} is closed in Y but not
closed in X.

Remark 4.4. The composition of two rpsI-homeomorphism need not be rpsI-
homeomorphism.

Example 4.5. Let X = Y = Z = {a, b, c, d}, τ = {φ,X, {c}, {a, b, d}}, I =
{φ, {a}}, σ = {φ, Y, {b}, {a, c, d}}, J = {φ, {b}} and η = {φ, Z, {a}, {b, c, d}}, K =
{φ, {b}}. Define a function f : (X, τ, I) → (Y, σ, J) by f(a) = a, f(b) = b, f(c) = c,
f(d) = d and g : (Y, , J) → (Z, η,K) by g(a) = c, g(b) = d, g(c) = b, g(d) = a .
Then f and g are both rpsI-homeomorphisms but g ◦f is not rpsI-homeomorphism.
Because the subset b, d} is closed in X, ((g ◦ f)−1)−1({b, d}) = {a, c, d} is not rpsI-
closed in Z.

Definition 4.6. A bijection f : (X, τ, I) → (Y, σ) is called rps∗I-homeomorphism
if both f and f−1 are rpsI-irresolute.
We say that the spaces (X, τ, I) and (Y, σ) are rps∗I-homeomorphic if there exists
an rps∗I-homeomorphism from (X, τ, I) onto (Y, σ).
We denote the family of all rps∗I-homeomorphism of an ideal topological space
(X, τ, I) onto itself by rps∗I − h(X, τ).
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Proof. Let f : (X, τ, I) → (Y, σ) be a rps∗I-homeomorphism. Then f and f−1

are rpsI-irresolute and f is bijection. Therefore f and f−1 are rpsI-continuous.
Therefore f is rpsI-homeomorphism.
The converse is not true as seen from the following example.

Theorem 4.7. Let f : (X, τ, I) → (Y, σ, J) and g : (Y, σ, J) → (Z, η,K) be rps∗I-
homeomorphisms. Then their composition g ◦ f : (X, τ, I) → (Z, η,K) is rps∗I-
homeomorphism.

Proof. Suppose f and g are rps∗I-homeomorphisms. Then f and g are rpsI-
irresolute. Let U be rpsI-open in Z. Since g is rpsI-irresolute, g−1(U) is rpsI-
open in Y . Since f is rpsI-irresolute, f−1(g−1(V )) = (g ◦ f)−1(V ) is rpsI open
in X. Hence gof is rpsI-irresolute. Also for an rpsI-open set G in X, we have
(g ◦ f)(G) = g(f(G)) = g(U) where U = f(G). By hypothesis, f(G) is rpsI-open in
Y and so again by hypothesis, g(f(G)) is an rpsI-open set in Z. That is (gof)(G)
is an rpsI-open set in Z and therefore (gof)−1 is rpsI-irresolute. Also g ◦ f is a
bijection. This proves g ◦ f is rps∗I-homeomorphism.

Theorem 4.8. The set rps∗I − h(X, τ) from (X, τ, I) onto itself is a group under
the composition of functions.

Proof. Let f, g ∈ rps∗I − h(X, τ). Then g ◦ f ∈ rps∗I − h(X, τ). We know that
the composition of functions is associative and the identity element I : (X, τ, I) →
(X, τ, I) belonging to rps∗I − h(X, τ) serves as the identity element. If f ∈ rps∗I −
h(X, τ) then f−1 ∈ rps∗I − h(X, τ). This proves rps∗I − h(X, τ) is a group under
the operation of composition of functions.

Theorem 4.9. Let f : (X, τ, I) → (Y, σ) be an rps∗I-homeomorphism. Then f

induces an isomorphism from the group rps∗I − h(X, τ) onto the group rps∗I −
h(Y, σ).

Proof. Let f ∈ rps∗I − h(X, τ). We define a function ψf : rps∗I − h(X, τ) →
rps∗I − h(Y, σ) by ψ(f(h) = f ◦ h ◦ f−1 for every h ∈ rps∗I − h(X, τ). Then f is
a bijection. Further for all g, h ∈ rps∗I − h(X, τ), ψf(g ◦ h) = f ◦ (g ◦ h) ◦ f−1) =
(f ◦ g ◦ f−1) ◦ (f ◦ h ◦ f−1) = ψf(g) ◦ ψf(h).
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