Regular pre semi I totally continuous functions in Ideal Topological Spaces

B.SAKTHI @ SATHYA

Department of Mathematics G.Venkataswamy Naidu College Kovilpatti. agansathyaa@gmail.com

S.MURUGESAN

Department of Mathematics S.Ramasamy Naidu Memorial College Sattur.

satturmurugesh@gmail.com

Abstract

The authors introduced rpsI-closed sets and rpsI-open sets in ideal topological spaces and established their relationships with some generalized sets in ideal topological spaces. The aim of this paper is to introduce rpsI-totally continuous, totally rpsI-continuous, strongly rpsI-continuous functions and characterize their basic properties.

Keywords:rpsI-totally continuous, totally rpsI-continuous, strongly rpsI-continuous functions, rpsI-homeomorphism, rps*I-homeomorphism
2010 AMS Subject Classification : 54C08.

1 Introduction

In 1980, Jain [2] introduced totally continuous functions. In 1995, Nour [4] introduced the concept of totally semi continuous functions as a generalization of totally continuous functions and several properties of totally semi-continuous functions were obtained. We introduced the rpsI-closed sets and rpsI-open sets in ideal topological spaces. Also we introduced rpsI-continuous functions. In this paper, we introduce the concept of rpsI-totally continuous, strongly rpsI-continuous, rpsI-homeomorphisms and rps^*I -homeomorphisms in ideal topological spaces. Furthermore, basic properties of these functions and preservation theorems of rpsI-totally continuous functions.

2 Preliminaries

For a subset A of an ideal topological space (X, τ, I) , $cl^*(A)$ and $int^*(A)$ denote the closure of A and interior of A respectively. A^c denotes the complement of A in X. Now we recall the following definitions.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is called

- i) semi-I-open [1] if $A \subseteq cl^*(int(A))$.
- ii) semi pre I-open [1] if $A \subseteq cl(int(cl^*(A)))$.
- iii) αI open [1] if $A \subseteq int(cl^*(int(A)))$.
- iv) regular I-open [3] if $A = int(cl^*(A))$.

Definition 2.2. A subset A of an ideal topological space (X, τ, I) is called

- i) regular generalized I-closed (rgI-closed) [5] if $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is regular I-open.
- ii) regular pre semi I-closed [5] (rpsI-closed) if $spIcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular generalized I-open.

The complement of rpsI-closed set is rpsI-open set. rpsIcl(A) is the smallest rpsI-closed set containing A.

Definition 2.3. A function $f : (X, \tau) \to (Y, \sigma)$ is called totally continuous [2] if the inverse image of every open subset of Y is clopen in X.

Definition 2.4. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called

- i) rpsI-irresolute [6] if $f^{-1}(A)$ is rpsI-closed in X, for every rpsI-closed subset A of Y.
- ii) A function $f : (X, \tau, I) \to (Y, \sigma)$ is called rpsI-continuous [6] if the inverse image of every closed subset of Y is rpsI-closed in X.

3 *rpsI*-totally continuous functions, totally *rpsI*continuous functions and strongly *rpsI*-continuous

In this section, the notion of totally rpsI-continuous, rpsI-totally continuous functions and strongly rpsI-continuous are introduced. Characterizations and some relationships between rpsI-totally continuous functions and other similar functions are obtained. Also some basic properties of rpsI-totally continuous functions are investigated.

Definition 3.1. A function $f : (X, \tau, I) \to (Y, \sigma, J)$ is called rpsI-totally continuous function if the inverse image of every rpsI-open subset of Y is clopen in X.

Theorem 3.2. A function $f : (X, \tau, I) \to (Y, \sigma, J)$ is rpsI-totally continuous if and only if the inverse image of every rpsI-closed subset of Y is clopen in X.

Proof. Let F be any rpsI-closed set in Y. Then F^c is rpsI-open in Y. By definition, $f^{-1}(F^c)$ is clopen in X. But $f^{-1}(F^c) = (f^{-1}(F))^c$ which is clopen in X. This implies $f^{-1}(F)$ is clopen in X. Conversely suppose V is rpsI-open Y, then V^c is rpsI-closed in Y. By hypothesis $f^{-1}(V^c)$ is clopen in X. But $f^{-1}(V^c) = (f^{-1}(V))^c$ which is clopen in X, which implies $f^{-1}(V)$ is clopen in X. Thus, inverse image of every rpsI-open set in Y is clopen in X. Thus, Therefore f is rpsI-totally continuous.

Theorem 3.3. Every rpsI-totally continuous function is totally continuous.

Proof. Suppose $f : (X, \tau, I) \to (Y, \sigma, J)$ is rpsI-totally continuous. Let U be any open subset of Y. Since every open set is rpsI-open, U is rpsI-open in Y and f is rpsI-totally continuous, it follows $f^{-1}(U)$ is clopen in X. This proves the theorem. The converse of the above theorem need not be true as seen from the following example.

Example 3.4. Let $X = Y = Z = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}, I = \{\phi, \{a\}\}, \sigma = \{\phi, Y, \{a\}\}.$ Define a functions $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ by f(a) = a, f(b) = b, f(c) = c. Clearly the inverse image of every open set is clopen. Therefore f is totally continuous. But f is not rpsI-totally continuous, because for the rpsI-open set $\{a, b\}, f^{-1}(\{a, b\}) = \{a, b\}$ is not clopen in X.

Theorem 3.5. Let $f : X \to Y$ be a function, where X and Y are ideal topological spaces. Then the following are equivalent.

- *i.* f is rpsI-totally continuous
- ii. for each $x \in X$ and each rpsI-open set V in Y with $f(x) \in V$, there is a clopen set U in X such that $x \in U$ and $f(U) \subseteq V$.

Proof. (i) ⇒ (ii). Suppose f is rpsI-totally continuous and V be any rpsI-open set in Y containing f(x) so that $x \in f^{-1}(V)$. Since f is rpsI-totally continuous, $f^{-1}(V)$ is clopen in X. Let $U = f^{-1}(V)$, then U is clopen in X and $x \in U$. Also $f(U) = f(f^{-1}(V)) \subseteq V$. This implies $f(U) \subseteq V$.

 $(ii) \Rightarrow (i)$. Let V be rpsI-open set in Y. Let $x \in f^{-1}(V)$ be any arbitrary point. This implies $f(x) \in V$. By (ii) there is a clopen set $f(G) \subseteq X$ containing x such that $f(G) \subseteq V$, which implies $G \subseteq f^{-1}(V)$. We have $x \in G \subseteq f^{-1}(V)$. This implies $f^{-1}(V)$ is clopen neighbourhood of each of its points. Hence it is clopen set in X. Therefore f is rpsI-totally continuous.

Theorem 3.6. If a function $f : (X, \tau, I) \to (Y, \sigma, J)$ is rpsI-totally continuous then f is continuous but not conversely.

Proof. Let V be an open set in Y. Then V is rpsI-open in Y. Since f is rpsI-totally continuous, $f^{-1}(V)$ is both open and closed in X. Thus f is continuous. Converse of the above theorem need not be true as seen from the following example

Example 3.7. Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a, c\}, \{d\}, \{a, c, d\}\}, I = \{\phi, \{a\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}.$ Define a functions $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ by f(a) = d, f(b) = c, f(c) = d, f(d) = b. Then f is continuous but not rpsI-totally continuous. Because the subset $\{b\}$ is rpsI-open in Y but $f^{-1}(\{b\}) = \{d\}$ is not closed in X.

Example 3.8. Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c, d\}, \{a, c, d\}\}, I = \{\phi, \{a\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}.$ Define a functions $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ by f(a) = b, f(b) = d, f(c) = c, f(d) = d. Then f is perfectly continuous but not rpsI-totally continuous. Because the subset $\{c\}$ is rpsI-open in Y but $f^{-1}(\{c\}) = \{c\}$ is not clopen in X.

Theorem 3.9. The composition of two rpsI-totally continuous functions is rpsI-totally continuous.

Proof. Let $f: (X, \tau, I) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \eta, K)$ be any two *rpsI*-totally continuous functions. Let V be *rpsI*-open set in Z. Since g is *rpsI*-totally continuous, $g^{-1}(V)$ is clopen and hence open in Y. Since every open set is *rpsI*-open, $g^{-1}(V)$ is *rpsI*-open in Y. Further, since f is *rpsI*-totally continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is clopen in X. Hence gof is *rpsI*-totally continuous function.

Definition 3.10. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, J)$ is called strongly rpsIcontinuous if the inverse image of every rpsI-open set of Y is open in X.

Theorem 3.11. If a function $f : (X, \tau, I) \to (Y, \sigma, J)$ is rpsI-totally continuous then f is strongly rpsI-continuous but not conversely.

Proof. Proof follows from Definition.

Example 3.12. Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a, c\}, \{d\}, \{a, c, d\}\}, I = \{\phi, \{a\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}.$ Define a functions $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ by f(a) = f(b) = f(c) = d, f(d) = a. Then f is strongly rpsI-continuous but not rpsI-totally continuous. Because the subset a is rpsI-open in Y but $f^{-1}(a) = d$ is not closed in X.

Theorem 3.13. Let X be a discrete topological space and Y be any ideal space and $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be a function. If f is strongly rpsI-continuous then f is rpsI-totally continuous.

Proof. Let V be rpsI-open in Y. Since f is strongly rpsI-continuous, $f^{-1}(V)$ is open in X. Also since X is a discrete space, we have $f^{-1}(V)$ is closed in X and so f is rpsI-totally continuous.

Definition 3.14. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called totally rpsI-continuous if $f^{-1}(V)$ is rpsI-clopen in (X, τ, I) for each open set V in (Y, σ) .

Theorem 3.15. Every totally rpsI-continuous function is rpsI-continuous.

Proof. proof follows from definition The converse of the above statements need not be true as seen from the following example.

Example 3.16. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}, I = \{\phi, \{b\}\}, \sigma = \{\phi, Y, \{b\}, \{a, b\}\}$. Define a function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ by f(a) = b, f(b) = a, f(c) = c. Then f is rpsI-continuous but not totally rpsI-continuous because the set $\{b\}$ is open in Y but $f^{-1}(b) = \{a\}$ which is rpsI-open and not rpsI-closed in X.

Theorem 3.17. Every rpsI-totally continuous function is totally rpsI-continuous.

Proof. Suppose $f : (X, \tau, I) \to (Y, \sigma, J)$ is rpsI-totally continuous. Let U be any open subset of Y. Since every open set is rpsI-open, U is rpsI-open in Y and f is rpsI-totally continuous, it follows $f^{-1}(U)$ is clopen in X. Then $f^{-1}(U)$ is rpsI-clopen in X. This proves the theorem.

The converse of the above theorem need not be true as seen from the following example.

Example 3.18. Let $X = Y = Z = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}, I = \{\phi, \{a\}\}, \sigma = \{\phi, Y, \{a\}\}.$ Define a functions $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ by f(a) = a, f(b) = b, f(c) = c. Clearly the inverse image of every open set is rpsI-clopen in X. Therefore f is totally rpsI-continuous. But f is not rpsI-totally continuous, because for the rpsI-open set $\{a, b\}, f^{-1}(\{a, b\}) = \{a, b\}$ is not clopen in X.

4 *rpsI*-homeomorphisms

In this section, we introduce the concept of rpsI-homeomorphisms and study its relationship with homeomorphisms. We also introduce a new class of functions rps*Ihomeomorphisms which form a subclass of rpsI-homeomorphisms. We prove that the set of all rps*I-homeomorphisms from (X, τ, I) onto itself is a group under the composition of functions.

Definition 4.1. A bijection $f : (X, \tau, I) \to (Y, \sigma)$ is called rpsI-homeomorphism if both f and f^{-1} are rpsI-continuous.

We say that the spaces (X, τ, I) and (Y, σ) are rpsI-homeomorphic if there exists an rpsI-homeomorphism from (X, τ, I) onto (Y, σ) .

Theorem 4.2. Every homeomorphism is an rpsI-homeomorphism.

Proof. Let $f: (X, \tau, I) \to (Y, \sigma)$ be a homeomorphism. Then f and f^{-1} are continuous and f is a bijection. Since every continuous function is rpsI-continuous, it follows that f is rpsI-homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

Example 4.3. Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, d\}, \{a, b, d\}\}, I = \{\phi, \{a\}\}, \sigma = \{\phi, Y, \{b, c, d\}\}.$ Define a function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then f is a rpsI homeomorphism but not homeomorphism. Because the subset $(f^{-1})^{(\{a\})} = \{a\}$ is closed in Y but not closed in X.

Remark 4.4. The composition of two rpsI-homeomorphism need not be rpsI-homeomorphism.

Example 4.5. Let $X = Y = Z = \{a, b, c, d\}, \tau = \{\phi, X, \{c\}, \{a, b, d\}\}, I = \{\phi, \{a\}\}, \sigma = \{\phi, Y, \{b\}, \{a, c, d\}\}, J = \{\phi, \{b\}\} and \eta = \{\phi, Z, \{a\}, \{b, c, d\}\}, \mathcal{K} = \{\phi, \{b\}\}.$ Define a function $f : (X, \tau, I) \to (Y, \sigma, J)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d and $g : (Y, J) \to (Z, \eta, K)$ by g(a) = c, g(b) = d, g(c) = b, g(d) = a. Then f and g are both rpsI-homeomorphisms but $g \circ f$ is not rpsI-homeomorphism. Because the subset $b, d\}$ is closed in $X, ((g \circ f)^{-1})^{-1}(\{b, d\}) = \{a, c, d\}$ is not rpsI-closed in Z.

Definition 4.6. A bijection $f : (X, \tau, I) \to (Y, \sigma)$ is called rps^*I -homeomorphism if both f and f^{-1} are rpsI-irresolute.

We say that the spaces (X, τ, I) and (Y, σ) are rps^*I -homeomorphic if there exists an rps^*I -homeomorphism from (X, τ, I) onto (Y, σ) .

We denote the family of all rps^*I -homeomorphism of an ideal topological space (X, τ, I) onto itself by $rps^*I - h(X, \tau)$.

Proof. Let $f : (X, \tau, I) \to (Y, \sigma)$ be a rps^*I -homeomorphism. Then f and f^{-1} are rpsI-irresolute and f is bijection. Therefore f and f^{-1} are rpsI-continuous. Therefore f is rpsI-homeomorphism.

The converse is not true as seen from the following example.

Theorem 4.7. Let $f : (X, \tau, I) \to (Y, \sigma, J)$ and $g : (Y, \sigma, J) \to (Z, \eta, K)$ be rps^*I -homeomorphisms. Then their composition $g \circ f : (X, \tau, I) \to (Z, \eta, K)$ is rps^*I -homeomorphism.

Proof. Suppose f and g are rps^*I -homeomorphisms. Then f and g are rpsI-irresolute. Let U be rpsI-open in Z. Since g is rpsI-irresolute, $g^{-1}(U)$ is rpsI-open in Y. Since f is rpsI-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is rpsI open in X. Hence gof is rpsI-irresolute. Also for an rpsI-open set G in X, we have $(g \circ f)(G) = g(f(G)) = g(U)$ where U = f(G). By hypothesis, f(G) is rpsI-open in Y and so again by hypothesis, g(f(G)) is an rpsI-open set in Z. That is (gof)(G) is an rpsI-open set in Z and therefore $(gof)^{-1}$ is rpsI-irresolute. Also $g \circ f$ is a bijection. This proves $g \circ f$ is rps^*I -homeomorphism.

Theorem 4.8. The set $rps^*I - h(X, \tau)$ from (X, τ, I) onto itself is a group under the composition of functions.

Proof. Let $f, g \in rps^*I - h(X, \tau)$. Then $g \circ f \in rps^*I - h(X, \tau)$. We know that the composition of functions is associative and the identity element $I : (X, \tau, I) \rightarrow (X, \tau, I)$ belonging to $rps^*I - h(X, \tau)$ serves as the identity element. If $f \in rps^*I - h(X, \tau)$ then $f^{-1} \in rps^*I - h(X, \tau)$. This proves $rps^*I - h(X, \tau)$ is a group under the operation of composition of functions.

Theorem 4.9. Let $f : (X, \tau, I) \to (Y, \sigma)$ be an rps^*I -homeomorphism. Then f induces an isomorphism from the group $rps^*I - h(X, \tau)$ onto the group $rps^*I - h(Y, \sigma)$.

Proof. Let $f \in rps^*I - h(X,\tau)$. We define a function $\psi f : rps^*I - h(X,\tau) \rightarrow rps^*I - h(Y,\sigma)$ by $\psi(f(h) = f \circ h \circ f^{-1}$ for every $h \in rps^*I - h(X,\tau)$. Then f is a bijection. Further for all $g, h \in rps^*I - h(X,\tau), \psi f(g \circ h) = f \circ (g \circ h) \circ f^{-1}) = (f \circ g \circ f^{-1}) \circ (f \circ h \circ f^{-1}) = \psi f(g) \circ \psi f(h)$.

References

- E.Hatir and T.Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [2] R.C.Jain, The role of regularly open sets in general topology, Ph.D. Thesis, Meerut University, Institute of advanced studies, Meerut-India,(1980).

- [3] A. Keskin and T.Noiri, S. Yuksel, Idealization of a decomposition theorem, Acta. Math. Hungar., 102(2004), 269-277.
- [4] T.M. Nour, Totally semi-continuous functions, Indian J. Pure Appl.Math.,26(7)(1995),675-678.
- [5] B. Sakthi alias Sathya, S. Murugesan, On regular pre semi I closed sets in ideal topological spaces, International Journal of Mathematics and Soft Computing, vol 39(1)(2013), 37-46.
- [6] B. Sakthi alias Sathya, S. Murugesan, Regular pre-semi-I continuous and regular pre-semi-I irresolute functions, International Journal of Mathematical Archieve, 4(3), 2013, 305-308.