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Abstract - In this paper, the non-degeneracy of a class of fifth-order linear differential equations are investigated by Wirtinger 

inequality. In addition, the non-degenerate results are used to obtain the existence and uniqueness of periodic solutions for the 

fifth-order non-linear differential equations with super-linear terms.  

 

Keywords - Existence and Uniqueness, Non-degeneracy, Periodic solution, Super-linear. 

 

1. Introduction  
Since Isaac Newton and Johannes Kepler investigated motion of planets in the seventeenth century, the issues of the 

existence of periodic solutions have gained a great deal of scholars' attention. Existence and uniqueness, as two important 

properties of periodic solutions, reflect the regularity and balance of the development of things and play an important role in the 

modelling of practical problems such as neural networks, ecology and many other fields. [1,2] Consequently, it is of great 

significance to analyse the existence and uniqueness of periodic solutions for differential equations. 

  

For a considerable duration, many researchers have devoted themselves in studying the existence and uniqueness of periodic 

solutions for differential equations, including sub-linear differential equations, [3] semi-linear differential equations [4] and 

super-linear differential equations. [5] It can be seen from the foregoing papers that most of them deal with the existence of 

periodic solutions, while there exists relatively few works on the existence and uniqueness of periodic solutions. An essential 

approach to the investigation of the existence and uniqueness of periodic solutions is to view the differential equation as a linear 

perturbation, and thereby dividing the problem into two parts: one is to consider the non-degeneracy of periodic solutions for the 

linear equations, and the other is to investigate how such periodic solutions appear under the perturbation. Further, the non-

degenerate results for linear differential equations are applied to study the existence and uniqueness of periodic solutions to non-

linear differential equations. And the non-degeneracy of the equations here means that it has no non-trivial solutions. 

 

The notion of non-degeneracy for linear differential equations, proposed by Lasota and Opial, [6] can be traced back to 1964. 

They considered the non-degeneracy of the following differential equation 

 

X’’(t)+a(t)x(t)=0,                                                   (1) 

 

Where 𝑎(𝑡) ∈ 𝐿1(ℝ /𝑇ℤ), 𝑇is a positive constant. The non-degeneracy of equation (1) signifies that (1) has only a trivial 

solution 𝑥(𝑡) ≡ 0. Afterwards, Fonda and Mawhin [7] in 1989 dealt with the existence of periodic solutions for a non-linear 

second-order differential equation by the non-degenerate results of equation (1). Subsequently, Ortega and Zhang [8] improved 

the results of [6] in 2005. They obtained the non-degeneracy for equation (1) if 𝑎(𝑡) ∈ 𝐿𝑝(ℝ/𝑇ℤ) with 1 ≤ 𝑝 ≤ +∞. Besides, 

they employed the results of non-degeneracy of equation (1) to prove the existence and uniqueness of periodic solutions for the 

following second-order super-linear differential equation 

 

X’’(t)+[x]σ
+ = h(t)+S, 

  

Where 𝜎 ∈ (1,∞), [𝑥]+ = 𝑚𝑎𝑥{𝑥, 0}, ℎ ∈ 𝐿1(ℝ/𝑇ℤ) and ∫ ℎ(𝑡)𝑑𝑡 = 0
𝑇

0
, 𝑠is a constant. 
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The above papers pay attention to periodic solutions for the second-order differential equations. In the past few decades, 

many scholars have concentrated on periodic solutions for high-order differential equations and achieved noteworthy 

achievements. [9-12] Li and Zhang [9] in 2009 considered the non-degeneracy under the conditions of periodic boundary values 

for the following fourth-order linear differential equation 

 

 𝑥(4)(𝑡) = 𝑎(𝑡)𝑥(𝑡),                        (2) 

 

 Where 𝑎(𝑡) ∈ 𝐿𝑝(ℝ/𝑇ℤ). They further established the existence and uniqueness of periodic solutions for a fourth-order 

super-linear differential equation by utilizing the non-degenerate results of (2). After that, Torres et al. [10] in 2013 studied the 

non-degeneracy for 2n-order linear differential equation 

 

 {
𝑥(2𝑛)(𝑡) + ∑ 𝑎𝑚𝑥

(𝑚)(𝑡)2𝑛−1
𝑚=1 = 𝑎(𝑡)𝑥(𝑡),  𝑡,  𝑥 ∈ ℝ

𝑥(𝑖)(0) = 𝑥(𝑖)(𝑇), 𝑖 = 0,1,2,⋯ ,2𝑛 − 1
, (3) 

 

Where 𝑎𝑚 ∈ ℝ, 𝑎(𝑡) ∈ 𝐿𝑝(ℝ/𝑇ℤ). In addition, they considered the existence and uniqueness of periodic solutions for the 

associated 2n-order non-linear differential equations with a super-linear term by the non-degenerate results of equation (3). 

 

The differential equations discussed above are all even-order and there exists rather few odd-order differential equations. 

More recently, in 2022, Yao et al. [13] handled with the non-degeneracy for the following third-order linear differential equation 

 

 2 1 0( ) ( ) ( ) ( ) ( )x t a x t a x t a t x t  + + = , 

 

Where 𝑎1, 𝑎2 ∈ ℝ, 𝑎0(𝑡) ∈ 𝐿1(ℝ/𝑇ℤ). And they demonstrated the existence and uniqueness of periodic solutions for third-

order non-linear differential equations under super-linear conditions. 

 

Inspired by the papers of [13,14], in this paper, the non-degeneracy for the fifth-order linear differential equations are first 

considered 

 
(5) (4)

4 3 2 1 0( ) ( ) ( ) ( ) ( ) ( ) ( )x t a x t a x t a x t a x t a t x t  + + + + = ,     (4) 

 

Where 𝑎𝑖 ∈ ℝ,𝑖 = 1,2,3,4,𝑎0(𝑡) ∈ 𝐿𝑝(ℝ/𝑇ℤ). In addition, with the help of the results of non-degeneracy of equation (4), 

the existence and uniqueness of periodic solutions for the following super-linear differential equation are discussed 

 

 
(5) (4)

4 3 2 1( ) ( ) ( ) ( ) ( ) ( ( )) ( )x t a x t a x t a x t a x t f x t s h t  + + + + = − + ,     (5) 

Where 𝑠 ∈ ℝ, ℎ ∈ 𝐿1(ℝ/𝑇ℤ), ∫ ℎ(𝑡)𝑑𝑡 = 0
𝑇

0
, 𝑓 ∈ 𝐶(ℝ,ℝ) is a monotonic function and the non-linear term 𝑓(𝑥) grows 

super-linearly as 𝑥 → ∞. Finally, an example is given to verify the validity of the theorem. 

 

It is worth mentioning that this work is an improvement and generalization of [13]: Theorem 2.1 in [13] does not consider 

the case of 𝑎̄0: =
1

𝑇
∫ 𝑎0(𝑡)𝑑𝑡 < 0
𝑇

0
. Theorem 2.1 in this paper investigates the non-degeneracy as 𝑎̄0 ≠ 0 (i.e. 𝑎̄0 > 0 and 𝑎̄0 <

0), which has a wider range of applications. 

 

2. Non-Degeneracy of Equation (4) 
In this section, the conditions of non-degeneracy for equation (4) is given by Wirtinger inequality. For convenience, we 

define 

‖𝑥 ′‖
𝑝
: = (∫ |𝑥 ′(𝑡)|

𝑝
𝑑𝑡

𝑇

0
)

1

𝑝,
    ‖𝑎0‖:= 𝑚𝑎𝑥

𝑡∈[0,𝑇]
|𝑎0(𝑡)| 

, 

where 1 ≤ 𝑝 ≤ +∞. Next, we recall two lemmas from [15,16]. 

Lemma 2.1. (Wirtinger inequality [15, Theorem 1.3]) Let 𝑥 ∈ 𝐻𝑇
𝑀(ℝ). Then we have 

 ∫ |𝑥(𝑡)|2𝑑𝑡
𝑇

0
≤ 𝐶𝑀 ∫ |𝑥(𝑀)(𝑡)|

2
𝑑𝑡

𝑇

0
, 

where 𝐻𝑇
𝑀(ℝ): = {𝑥 ∈ 𝐻𝑙𝑜𝑐

𝑀 (ℝ), 𝑥(𝑡 + 𝑇) = 𝑥(𝑡), ∫ 𝑥(𝑡)𝑑𝑡 = 0, ∀𝑡 ∈ ℝ
𝑇

0
} , and 𝐶𝑀: = (

𝑇

2𝜋
)
2𝑀

is the best constant for this 

inequality. 
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Lemma 2.2. ([15, Lemma 2.3]) Let 𝑥 ∈ 𝐶𝑇
𝑛(ℝ). Then we have  

 ‖𝑥 ′‖
𝑝
≤ (

𝑇

𝜋𝑝
)
(𝑛−1)

‖𝑥(𝑛)‖
𝑝
, 

where 𝜋𝑝 = 2∫ (1 −
𝑠𝑝

𝑝−1
)

𝑝−1

𝑝

0

−
1

𝑝

𝑑𝑠 =
2𝜋(𝑝−1)

−
1
𝑝

𝑝 𝑠𝑖𝑛(
𝜋

𝑝
)

 with 𝑝 > 1, 𝐶𝑇
𝑛(ℝ): = {𝑥 ∈ 𝐶𝑛(ℝ): 𝑥(𝑡 + 𝑇) = 𝑥(𝑡), ∀𝑡 ∈ ℝ}. 

In particular, if 𝑝 = 2, then 𝜋2 = 𝜋, that is, ‖𝑥 ′‖
2
≤ (

𝑇

𝜋
)
(𝑛−1)

‖𝑥(𝑛)‖
2
. 

We obtain equation (4) is non-degenerate employing the above two lemmas. 

Theorem 2.1. Assume that the coefficient 𝑎0(𝑡) ∈ 𝐿𝑝(ℝ/𝑇ℤ) satisfying 𝑎̄0 ≠ 0. Besides, suppose that one of the following 

conditions holds: 

(𝑖) For 𝑎4 ≠ 0, one has 

 ‖𝑎0‖ < (|𝑎4| − |𝑎2| (
𝑇

𝜋
)
2

) (
2𝜋

𝑇
)
4

               (6) 

(𝑖𝑖) For 𝑎4 = 0, one has 

 ‖𝑎0‖ < |𝑎2| (
2𝜋

𝑇
)
2

                                         (7) 

 

Then equation (4) is non-degenerate in𝑥 ∈ 𝑊𝑇
5,𝑝
(ℝ), where 𝑊𝑇

5,𝑝
(ℝ):= {𝑊𝑙𝑜𝑐

5,𝑝
(ℝ): 𝑥(𝑡 + 𝑇) ≡ 𝑥(𝑡), ∀𝑡 ∈ ℝ},𝑊𝑙𝑜𝑐

5,𝑝
(ℝ): =

{𝑥|𝐷𝑖𝑥 ∈ 𝐿𝑝(ℝ), 𝑖 = 0,1,⋯ ,5} is a Sobolev space and 𝐷𝑖𝑥 denotes the i-th order weak derivative of 𝑥. 

Proof. Assume that𝑥 ∈ 𝑊𝑇
5,𝑝
(ℝ) is a non-trivial solution of equation (4). Let us write 𝑥 = 𝑥̄ + 𝑥̃, where 𝑥̃: = 𝑥 − 𝑥̄ and 

∫ 𝑥̃(𝑡)
𝑇

0
𝑑𝑡 = 0. Substituting 𝑥 = 𝑥̄ + 𝑥̃ into (4), one obtains 

 𝑥̃(5)(𝑡) + ∑ 𝑎𝑖 𝑥̃
(𝑖)(𝑡)4

𝑖=1 = 𝑎0(𝑡)𝑥̄ + 𝑎0(𝑡)𝑥̃(𝑡)              (8) 

Integrating equation (8) over [0, 𝑇], one arrives at 

 ∫ 𝑥̃(5)(𝑡)𝑑𝑡
𝑇

0
+∑ 𝑎𝑖 ∫ 𝑥̃(𝑖)(𝑡)𝑑𝑡

𝑇

0
4
𝑖=1 = 𝑥̄ ∫ 𝑎0(𝑡)

𝑇

0
𝑑𝑡 + ∫ 𝑎0(𝑡)𝑥̃(𝑡)𝑑𝑡

𝑇

0
. 

Since ∫ 𝑥̃(5)(𝑡)𝑑𝑡
𝑇

0
= 0,  ∫ 𝑥̃(𝑖)(𝑡)𝑑𝑡

𝑇

0
= 0,  𝑖 = 1,2,3,4 and 𝑎̄0 ≠ 0, it is clear that 

 𝑥̄ = −
∫ 𝑎0(𝑡)𝑥(𝑡)𝑑𝑡
𝑇
0

𝑎̄0𝑇
                                                                       (9) 

Multiplying equation (8) by (𝑥̄ − 𝑥̃(𝑡)) and integrating it over [0, 𝑇], one has 

 𝑥̄ ∫ 𝑥̃(5)(𝑡)𝑑𝑡
𝑇

0
− ∫ 𝑥̃(5)(𝑡)𝑥̃(𝑡)𝑑𝑡

𝑇

0
+ ∑ 𝑎𝑖 𝑥̄ ∫ 𝑥̃(𝑖)(𝑡)𝑑𝑡

𝑇

0
4
𝑖=1  

−∑ 𝑎𝑖 ∫ 𝑥̃(𝑖)(𝑡)𝑥̃(𝑡)𝑑𝑡
𝑇

0
4
𝑖=1 = |𝑥̄|2 ∫ 𝑎0(𝑡)

𝑇

0
𝑑𝑡 − ∫ 𝑎0(𝑡)|𝑥̃(𝑡)|

2𝑑𝑡
𝑇

0
.      (10) 

Besides, employing integration by parts, one yields 

 ∫ 𝑥̃(4)(𝑡)𝑥̃(𝑡)𝑑𝑡
𝑇

0
= ∫ |𝑥̃ ′′||2𝑑|

𝑇∫

0
 

∫ 𝑥̃ ′′̃𝑑
𝑇∫ ∫ |𝑥′(𝑡)|

2
𝑑𝑡

𝑇
0

0

 

∫ 𝑥̃(𝑖)(𝑡)𝑥̃(𝑡)𝑑𝑡
𝑇

0
= 0,  𝑖 = 1,3,5.                                                        (11) 

Substituting (11) into (10), and it follows from 𝑥̃(0) = 𝑥̃(𝑇) that 

 𝑎4 ∫ |𝑥̃ ′′||2𝑑|
𝑇∫̄0|𝑥̄|

2 ∫ 𝑎0(𝑡)|𝑥(𝑡)|
2𝑑𝑡

𝑇
0 2

∫ |𝑥′(𝑡)|
2
𝑑𝑡

𝑇
0

0
   (12) 

In what follows, depending on the value of 𝑎4, the following three cases are considered: 

Case 1: If 𝑎4 > 0, it can be obtained from 𝑎̄0 > 0, Lemmas 2.1 and 2.2 that 

 𝑎4 ∫ |𝑥̃ ′′||2𝑑|
𝑇∫ ∫ 𝑎0(𝑡)|𝑥(𝑡)|

2𝑑𝑡
𝑇
0 2

∫ |𝑥′(𝑡)|
2
𝑑𝑡

𝑇
0

0
 

      ≤ ∫ |𝑎0(𝑡)||𝑥̃(𝑡)|
2𝑑𝑡

𝑇

0

+ |𝑎2| ∫ |𝑥̃ ′(𝑡)|
2
𝑑𝑡

𝑇

0

 

      ≤ (‖𝑎0‖ (
𝑇

2𝜋
)
4

+ |𝑎2| (
𝑇

𝜋
)
2

) ∫ |𝑥̃ ′′||2𝑑|
𝑇∫

0
              (13) 

From (6) one gets ∫ |𝑥̃′
′
||2𝑑|

𝑇∫

0
, i.e. 𝑥̃′(𝑡) ≡ 𝑐, 𝑐is a constant. Since ∫ 𝑥̃′(𝑡)𝑑𝑡

𝑇

0
= 𝑥̃(𝑇) − 𝑥̃(0) = 0, we have𝑥̃′(𝑡) ≡ 𝑐 ≡ 0, 

that is 𝑥̃(𝑡) ≡ 𝑐1, 𝑐1is a constant. And because ∫ 𝑥̃(𝑡)𝑑𝑡
𝑇

0
= 0, it is clear that 𝑥̃(𝑡) ≡ 𝑐1 ≡ 0. Combining with (9) we approach 

𝑥̄ = 0. Therefore, we have 𝑥(𝑡) = 𝑥̄ + 𝑥̃(𝑡) ≡ 0 which contradicts the assumption. Thus, equation (4) is non-degenerate. 
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Case 2: If 𝑎4 < 0, multiplying both sides of (12) by -1, one obtains 

 −𝑎4 ∫ |𝑥̃ ′′||2𝑑|
𝑇∫̄0|𝑥̄|

2 ∫ 𝑎0(𝑡)|𝑥(𝑡)|
2𝑑𝑡

𝑇
0 2

∫ |𝑥′(𝑡)|
2
𝑑𝑡

𝑇
0

0
. 

Similar to (13), from 𝑎̄0 < 0,  Lemmas 2.1 and 2.2, one sees that 

 |𝑎4| ∫ |𝑥̃ ′′||2𝑑|
𝑇∫ (‖𝑎0‖(

𝑇

2𝜋
)
4
+|𝑎2|(

𝑇

𝜋
)
2
) ∫ |𝑥̃′

′
||2𝑑|

𝑇∫
0

0
. 

It is evident from (6) that ∫ |𝑥̃ ′′||2𝑑|
𝑇∫

0
. Analogous to the proof of Case 1, one obtains that equation (4) is non-degenerate. 

Case 3: If 𝑎4 = 0, it follows from (12) that 

 −𝑎2 ∫ |𝑥̃ ′(𝑡)|
2
𝑑𝑡

𝑇

0
= −𝑎̄0𝑇|𝑥̄|

2 + ∫ 𝑎0(𝑡)|𝑥̃(𝑡)|
2𝑑𝑡

𝑇

0
. 

Similar to the discussion of Case 1 and Case 2, one concludes 

 |𝑎2| ∫ |𝑥̃ ′(𝑡)|
2
𝑑𝑡

𝑇

0
≤ ‖𝑎0‖ (

𝑇

2𝜋
)
2

∫ |𝑥̃ ′(𝑡)|
2
𝑑𝑡

𝑇

0
, 

that is, 

 (‖𝑎0‖ (
𝑇

2𝜋
)
2

− |𝑎2|) ∫ |𝑥̃ ′(𝑡)|
2
𝑑𝑡 ≥ 0

𝑇

0
. 

According to (7) one has ∫ |𝑥̃′(𝑡)|2𝑑𝑡
𝑇

0
= 0, i.e. 𝑥̃′(𝑡) ≡ 𝑐2, 𝑐2 is a constant. And since ∫ 𝑥̃′(𝑡)𝑑𝑡

𝑇

0
= 0, one gets 𝑥̃′(𝑡) ≡ 𝑐2 ≡

0. One has 𝑥̄ = 0 due to (9). Consequently, one sees that 𝑥(𝑡) = 𝑥̄ + 𝑥̃(𝑡) ≡ 0 contradicting the assumption. And hence it is 

known that (4) is non-degenerate. 

 

3. Uniqueness of Periodic Solution for Equation (5)  
In this section, the existence and uniqueness of periodic solutions for super-linear differential equation (5) are established 

by means of the non-degenerate results of equation (4). In fact, integrating equation (5) over [0, 𝑇], one obtains  

 ∫ 𝑥(5)(𝑡)𝑑𝑡
𝑇

0
+∑ 𝑎𝑖 ∫ 𝑥(𝑖)(𝑡)𝑑𝑡

𝑇

0
4
𝑖=1 = ∫ 𝑓(𝑥(𝑡))𝑑𝑡

𝑇

0
− 𝑠𝑇 + ∫ ℎ(𝑡)𝑑𝑡

𝑇

0

.
 

Since 𝑥(0) = 𝑥(𝑇) and ∫ ℎ(𝑡)𝑑𝑡 = 0
𝑇

0
 , it is clear that 

 𝑠 = 𝑇−1 ∫ 𝑓(𝑥(𝑡))𝑑𝑡
𝑇

0
= 𝑓(𝑥(𝑡∗)) ∈ ℜ(𝑓):= {𝑓(𝑢): 𝑢 ∈ ℝ}

, (14)
 

where 𝑡∗ ∈ (0, 𝑇). Consider the fifth-order differential equation 

 

 

(5) (4)

4 3 2 1( ) ( ) ( ) ( ) ( ) ( , ) ( )y t a y t a y t a y t a y t g t y q t  + + + + + = ,         (15) 

 

where 𝑎𝑖,𝑖 = 1,2,3,4are constants, 𝑔 ∈ 𝐶(ℝ  × ℝ,ℝ), and for all 𝑡 and 𝑦 one has 𝑔(𝑡 + 𝑇, 𝑦) = 𝑔(𝑡, 𝑦). 
Define the measurable functions 

 𝜇+(𝑡) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑦→−∞

𝑔(𝑡, 𝑦),  𝜇−(𝑡) = 𝑙𝑖𝑚𝑖𝑛𝑓
𝑦→+∞

𝑔(𝑡, 𝑦),  𝑡 ∈ ℝ. 

It is straightforward to see that 𝜇+, 𝜇− ∈ (ℝ,ℝ ∪ {−∞,∞}). Let 

 𝐿𝑦 = 𝑦(5)(𝑡) + 𝑎4𝑦
(4)(𝑡) + 𝑎3𝑦

′′2
′

′1
′

′

. 

In order to derive the existence and uniqueness of periodic solutions to equation (5), the following definitions and lemmas 

are first provided. 

 

Definition 3.1. ([8]) Given 𝜎 ∈ [1,∞), and 𝒜,ℬ ∈ [0,∞), we say that 𝑓satisfies the condition 𝒞(𝜎;𝒜,ℬ) if 

 |
𝑓(𝑥1)−𝑓(𝑥2)

𝑥1−𝑥2
|
𝜎

≤ 𝒜 (
𝑓(𝑥1)+𝑓(𝑥2)

2
) + ℬ, 

for every 𝑥1, 𝑥2 ∈ ℝ, 𝑥1 ≠ 𝑥2. 

 

Lemma 3.1. ([14], Theorem 1.1) Assume that 𝑔(𝑡, 𝑦) is bounded below for 𝑦 ≥ 0 and bounded above for 𝑦 ≤ 0. Besides, 

suppose that the following conditions hold: 

(𝑃1) The solutions of 𝐿𝑦 = 0 are constants. 

(𝑃2) There exists 𝛼,𝛽 such that |𝑔(𝑡, 𝑦)| ≤ 𝑔(𝑡, 𝑦) + 𝛼|𝑦| + 𝛽 for all (𝑡, 𝑦) ∈ ℝ  × ℝ. 

(𝑃3) ∫ 𝜇−(𝑡)𝑑𝑡
𝑇

0
< ∫ 𝑞(𝑡)𝑑𝑡

𝑇

0
< ∫ 𝜇+(𝑡)𝑑𝑡

𝑇

0
. 

Then there exists a constant 𝜀 > 0 such that equation (15) has at least one periodic solution if 𝛼 ≤ 𝜀. 

From Theorem 2.1 and Lemma 3.1, the following conclusions are obtained. 
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Theorem 3.1. Assume that the following conditions hold: 

(𝑃4)𝑓: ℝ  → ℝ  is bounded above for 𝑥 ≥ 0and bounded below for 𝑥 ≤ 0,𝑠 ∈ 𝑖𝑛𝑡ℜ (𝑓). 
(𝑃5) There exists 𝑎, 𝑏 ≥ 0 such that |𝑓(𝑥)| ≤ 𝑓(𝑥) + 𝑎|𝑥| + 𝑏. 

(𝑃6) 𝑓 ∈ 𝒞(𝜎;𝒜, ℬ)is a strictly increasing function and 𝑓 satisfies one of the following conditions: 

(𝑗) 𝒜𝑠 + ℬ <
(𝑀1(𝜎,𝑛))

𝜎

𝑇
, (17) 

where 𝑀1(𝜎, 𝑛): = (|𝑎4| − |𝑎2| (
𝑇

𝜋
)
2

) (
2𝜋

𝑇
)
4

. 

(𝑗𝑗) 𝒜𝑠 + ℬ <
(𝑀2(𝜎,𝑛))

𝜎

𝑇
, (18) 

where 𝑀2(𝜎, 𝑛): = |𝑎2| (
2𝜋

𝑇
)
2

. 

Then there exists a constant 𝑐0 > 0 such that equation (5) has a unique periodic solution if 𝑎 ≤ 𝑐0. 

 

Proof. Step 1. Claim that equation (5) has at least one periodic solution. 

Comparing equation (5) with (15), one yields 

 𝑔(𝑡, 𝑦) = −𝑓(𝑥(𝑡)),  𝑞(𝑡) = −𝑠 + ℎ(𝑡). (19) 

 

It is clear that (𝑃2) holds. And it follows from equation (14) and (19) that 

 −𝑠𝑇 = −∫ 𝑓(𝑥(𝑡))𝑑𝑡 =
𝑇

0
∫ 𝑔(𝑡, 𝑦)𝑑𝑡
𝑇

0
= ∫ 𝑞(𝑡)𝑑𝑡

𝑇

0
. 

 

Thus, (𝑃3) is satisfied and one only needs to show that (𝑃1) is held in the following. 

Assume that 𝑥(𝑡) is a periodic solution of the homogeneous linear differential equation 𝐿𝑦, then one gets 

 𝑥(5)(𝑡) + 𝑎4𝑥
(4)(𝑡) + 𝑎3𝑥

′′2
′

′1
′

′

. (20) 

 

Multiplying both sides of the equation (20) by 𝑥(𝑡) and integrating it over [0, 𝑇], it is evident that 

 ∫ 𝑥(5)(𝑡)𝑥(𝑡)
𝑇

0
𝑑𝑡 + ∑ 𝑎𝑖 ∫ 𝑥(𝑖)(𝑡)𝑥(𝑡)

𝑇

0
𝑑𝑡 = 04

𝑖=1 . (21) 

 

Similar to (11), applying integration by parts, (21) can be simplified as 

 𝑎4 ∫ |𝑥 ′′||2𝑑|
𝑇∫2 ∫ |𝑥′(𝑡)|

2
𝑑𝑡=0

𝑇
0

0
. 

From Lemma 2.2, one arrives at 

 (|𝑎2| (
𝑇

𝜋
)
2

− |𝑎4|) ∫ |𝑥 ′′||2𝑑|
𝑇∫

0
. 

 

It follows from (14), (16) and (17) that |𝑎2| (
𝑇

𝜋
)
2

− |𝑎4| < 0. Thus ∫ |𝑥′
′
||2𝑑|

𝑇∫

0
. And one obtains 𝑥(𝑡) ≡ 𝑐3,𝑐3 is a constant. 

Hence, (𝑃1) holds. It is not difficult to show that equation (5) has at least one periodic solution from Lemma 3.1. 

 

Step 2. Claim that equation (5) has at most one periodic solution. 

Let 𝑥1(𝑡) and 𝑥2(𝑡) be two different periodic solutions of equation (5) and then one has 

 𝑥𝑗
(5)(𝑡) + ∑ 𝑎𝑖𝑥𝑗

(𝑖)(𝑡)4
𝑖=1 = 𝑓(𝑥𝑗(𝑡)) − 𝑠 + ℎ(𝑡), 𝑗 = 1,2. (22) 

 

Integrating equation (22) over [0, 𝑇], one gets 

 ∫ 𝑓(𝑥𝑗(𝑡))𝑑𝑡
𝑇

0
= 𝑠𝑇, 𝑗 = 1,2. 

 

Let 𝑧(𝑡): = 𝑥1(𝑡) − 𝑥2(𝑡) be the difference of two solutions. Clearly, 𝑧(𝑡) ≠ 0.Then the difference of equation (22) gives 

 𝑧(5)(𝑡) + ∑ 𝑎𝑖𝑧
(𝑖)(𝑡)4

𝑖=1 = 𝑓(𝑥1(𝑡)) − 𝑓(𝑥2(𝑡)). (23) 

 

Let 𝐼: = {𝑡 ∈ ℝ: 𝑧(𝑡) ≠ 0}, which is a non-empty open subset of ℝ. The function 

 𝑎0(𝑡): =
𝑓(𝑥1(𝑡))−𝑓(𝑥2(𝑡))

𝑥1(𝑡)−𝑥2(𝑡)
 (24) 

 

is well defined for all 𝑡 ∈ 𝐼. It is easily seen to yield that 𝑎0(𝑡) ∈ 𝐶(𝐼) . As a matter of convenience, we define 𝑎0(𝑡) = 0 on 
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complement 𝐽: = ℝ\𝐼. Then 𝑎0(𝑡) is well-defined on ℝ. It is obvious that 𝑎0(𝑡) is measurable. As𝑓(𝑥(𝑡)) is strictly increasing, 

one has 𝑎0(𝑡) > 0 for all 𝑡 ∈ 𝐼. From (16) one obtains 

 |𝑎0(𝑡)|
𝜎 ≤ 𝒜 (

𝑓(𝑥1(𝑡))+𝑓(𝑥2(𝑡))

2
) + ℬ. (25) 

It follows from (25) that 

 ‖𝑎0‖𝜎
𝜎 = ∫ |𝑎0(𝑡)|

𝜎𝑑𝑡
𝐼∩[0,𝑇]

 

  ≤ ∫ (𝒜 (
𝑓(𝑥1(𝑡)) + 𝑓(𝑥2(𝑡))

2
) + ℬ)

𝐼∩[0,𝑇]

𝑑𝑡 + ∫ (𝒜 (
𝑓(𝑥1(𝑡)) + 𝑓(𝑥2(𝑡))

2
) + ℬ)

𝐽∩[0,𝑇]

𝑑𝑡 

  =
𝒜

2
(∫ 𝑓(𝑥1(𝑡))𝑑𝑡 + ∫ 𝑓(𝑥2(𝑡))𝑑𝑡

𝑇

0

𝑇

0

) + ℬ𝑇 

  = (𝒜 𝑠 + ℬ)𝑇. 
 

Thus, one deduces ‖𝑎0‖𝜎 ≤ ((𝒜 𝑠 + ℬ)𝑇)
1

𝜎 . From (17) and (18), one arrives at‖𝑎0‖𝜎 < 𝑀1(𝜎, 𝑛) and ‖𝑎0‖𝜎 < 𝑀2(𝜎, 𝑛), 

respectively. According to 𝑎̄0 ≠ 0, one has 𝑧(𝑡) ≡ 0 from Theorem 2.1, which contradicts 𝑥1(𝑡) ≠ 𝑥2(𝑡). Therefore, equation 

(5) has at most one periodic solution. 

 

Combining the two steps, there exists a constant 𝑐0 > 0 such that equation (5) has a unique periodic solution if 𝑎 ≤ 𝑐0. 

In what follows, an example is given to illustrate the results. 

 

Example 3.1. Consider the following fifth-order super-linear differential equation 

 

 
(5) (4)

4 3 2 1( ) ( ) ( ) ( ) ( ) exp( ( )) sinx t a x t a x t a x t a x t x t s t  + + + + = − + , (26) 

Where 𝑎𝑖 , 𝑖 = 1,2,3,4 , 𝑠 , 𝛾 are constants, 𝑠 ∈ (0,
𝑁

2𝜋
) , 𝑁:= 𝑚𝑎𝑥{𝑁1, 𝑁2} , here 𝑁2: = 𝛾|𝑎2| (

2𝜋

𝑇
)
2

, 𝑁1: = 𝛾 (|𝑎4| −

|𝑎2| (
𝑇

𝜋
)
2

) (
2𝜋

𝑇
)
4

. 

Comparing equation (5) and (26), one obtains 𝑓(𝑥(𝑡)) = 𝑒𝑥𝑝( 𝑥(𝑡)) andℜ(𝑓) = (0,∞),ℎ(𝑡) = 𝑠𝑖𝑛 𝛾 𝑡,𝑇 =
2𝜋

𝛾
. Besides, 

|𝑒𝑥𝑝( 𝑥)| ≤ 𝑒𝑥𝑝( 𝑥) + 1 , here 𝑎 = 0 ,𝑏 = 1 . Thus (𝑃4)  and(𝑃5)  hold. From [9] it is known that 𝑓(𝑥(𝑡)) = 𝑒𝑥𝑝( 𝑥(𝑡)) ∈
𝒞(1; 1,0). Hence, 𝜎 = 1,𝒜 = 1, ℬ = 0.  

 𝑠 = 𝒜 𝑠 + ℬ <
𝑁1

2𝜋
=

𝛾

2𝜋
(|𝑎4| − |𝑎2| (

𝑇

𝜋
)
2

) (
2𝜋

𝑇
)
4

 

and  

 𝑠 = 𝒜 𝑠 + ℬ <
𝑁2

2𝜋
=

𝛾

2𝜋
|𝑎2| (

2𝜋

𝑇
)
2

 

hold and satisfy (17) and (18). Thus (𝑃6) is held.  From Theorem 3.1, there exists a constant 𝑐0 > 0 such that equation (5) has a 

unique periodic solution. 

 

4. Conclusion 
In this paper, the non-degeneracy of a class of fifth-order linear differential equations with 𝑎̄0 ≠ 0 (i.e. 𝑎̄0 > 0 and 𝑎̄0 < 0) 

are obtained. And the most important aspect is that the obtained results of non-degeneracy are applied to establish the existence 

and uniqueness of periodic solutions for the corresponding non-linear differential equations, demonstrating the significance and 

value of studying the non-degeneracy of equations. 
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